
grSim – RoboCup Small Size Robot Soccer

Simulator

Valiallah Monajjemi1, Ali Koochakzadeh1, and Saeed Shiry Ghidary2

1 Parsian Robotic Center, Electrical Engineering Department,
Amirkabir University of Technology

2 Computer Engineering and Information Technology Department,
Amirkabir University of Technology

Abstract. Realtime simulation of RoboCup small size soccer robots is
a challenging task due to the high frame rate of input vision data and
complex dynamic model of robots. In this paper we describe a new multi-
robot 3D simulator for small size robot soccer domain named ‘grSim’. In
order to decrease the model complexity and increase simulation speed,
a simplified dynamic model for omni wheels is implemented. grSim has
a distributed architecture, feature-rich user interface and supports all
aspects of a small size robot soccer game, thus it can completely replace
all hardware used by teams during software development. grSim can help
software/AI developers design smarter SSL robot teams.

Keywords: Multi Robot Simulator, RoboCup Small Size League,
Omni-directional robot modeling.

1 Introduction

Developing artificial intelligence software for mobile robots is one of the most
challenging tasks in the process of designing an intelligent robot. Robot software
development usually requires a full functional real robot, however due to the
hardware problems which experimental robots always suffer from, it’s hard to
design software during hardware development process. In addition, when a full
functional real robot exists, constraints like cost, maximum operation time and
possible damages slow down the software development process. Robot simulators
can overcome such problems.

A robot simulator is used for developing software without depending ”phys-
ically” on the actual robot, thus saving cost and time. In advanced simulators,
robots and objects are modeled as rigid bodies in a virtual world. After receiv-
ing commands from clients or controllers, a physics engine simulates actions
and sends simulated robot perception data back to the client. The virtual world
can also (but not necessarily) be visualized using a two-dimensional or three-
dimensional graphics layer.

Small Size robot soccer focuses on the problem of intelligent multi-agent co-
operation and control in a highly dynamic environment with a hybrid central-
ized/distributed system [3]. Small Size League (SSL) is one of the main leagues

T. Röfer et al. (Eds.): RoboCup 2011, LNCS 7416, pp. 450–460, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



grSim – RoboCup Small Size Robot Soccer Simulator 451

of international RoboCup [2] competetions. In a small size robot soccer game,
two teams of five autonomous four wheeled omni-directional robots play against
each other in a 6.05m x 4.05m field with an orange golf ball. A global vision sys-
tem (which is also a shared system) with two overhead cameras and an off-field
PC calculates localization data and sends it to each team’s AI computer (which
is also off-field) via network connections. After a series of high level decision
making and low level control algorithms, commands are sent to the robots using
wireless communication.

SSL robots must fit inside a cylinder with radius of 9cm and height of 15cm.
This size constraint, in addition to high speed of the robots (2 m/s and above)
and the fact that there must be five robots to form a team, makes the design
and development of the robots a complex and time-consuming task. Software
development for SSL robots would be a hard and ineffective task without help
from realistic multi-agent simulation environments.

SSL software developers always have suffered from lack of a realistic simula-
tor. Existing multi-purpose simulators are not applicable for this field, therefor
designing a realistic simulation environment would be a great help to small size
soccer robots AI developers. The main problem in order to simulate small size
soccer robots are their complex dynamic model caused by their four wheel omni-
directional movement structure.

UberSim [6][10] is a vision centric 3D simulator designed for using in dynamic
environment like RoboCup domain. It supports limited numbers of sensors and
actuators. Robots are described as a set of C++ classes. The communication be-
tween clients and simulator are TCP/IP based. Although The main application
of this simulator has been defined on small size soccer robots domain, the simula-
tor is not under active development for years and is somehow outdated. Besides,
it is not compatible with new SSL shared vision system, it lacks a powerful and
easy to use graphical user interface and run-time configuration panel.

SimRobot [15] is another multi purpose simulator which supports more sensors
and actuators. Robots are described using XML description files. It has a rich
graphical user interface and it is possible to add some user/world interaction to
the simulation environment.

Another multi-purpose simulator is Gazebo [13] [14] which is part of Player
/ Stage [9] [4] project which supports many types of sensors and actuators,
as well as some popular pre-made robots. Robots and environment description
is based on XML files. Users can develop controllers using a rich Application
Programming Interface (API).

Webots [16] [8] is a commercial Simulator with a rich set of sensors, actuators
and pre-made robot models. Webots describes the environments and robots in
VRML format. Users can develop robot controllers in almost all popular pro-
gramming languages such as C/C++,Java,Python,Matlab and Urbi [5] [12].

All aforementioned simulators use Open Dynamics Engine (ODE) [19] as
rigid body dynamics engine and Open Graphics Library (OpenGL) [1] for
visualization.



452 V. Monajjemi, A. Koochakzadeh, and S.S. Ghidary

The ability to support a broad range of sensors, actuators and configurations,
adds some level of complexity to all aforementioned simulators, as a result, their
performance drops significantly in multi robot environments like small size soccer
robot domain with 10 agents inside. Dramatically all those simulators, except
Ubersim, have a complex model for omni wheels which slows down the simulation
speed for small size soccer robots.

A feature-rich user interface with abilities like run-time configurations in ad-
dition to easy robot and ball manipulation can reduce time and cost and increase
efficiency during development of multi robot systems’ low level and high level
algorithms; a feature which is missing (or is very hard to implement) in the those
simulators.

In order to overcome such problems and develop a state of the art 3D simula-
tion environment for small size soccer robot domain, we developed a brand new
simulator named “grSim” which will be described in detail in rest of this paper.

2 Overview

grSim is a multi-robot simulation environment designed specially for RoboCup
small size soccer robot domain. It is able to completely simulate and visualize a
robot soccer game with full details. Teams can communicate with the simulator
in the same way they communicate with real world, except the commands should
be sent to the simulator via network instead of radio connections to the robots.
In this way they can use this simulator as a powerful tool to test and develop
low level control and high level decision making algorithms without the need for
real robots.

grSim is developed in C++ programming language with Qt framework [17].
Qt is a cross-platform application development framework which makes it easy
to develop cross-platform GUI applications. The simulator has been developed
for GNU/Linux like operating systems, but it can be easily ported to other
operating systems as well.

In each cycle, two data packets are received from clients (artificial intelligent
softwares developed by teams) via network connections. These packet contain
desired control commands for each robot’s actuators (wheels, kickers and the
spinner [details in section 3.1]). After interpreting the information, the appro-
priate commands are fed to the physical layer of the program.

The physical layer uses Open Dynamics Engine (ODE) [19] physics engine.
This library supports many types of rigid bodies, joints and collision detection
functions. It can also simulate friction and bounciness. Each robot consists of
some basic objects and actuators connected together with joints.

The visualization layer of grSim uses Open Graphics Library (OpenGL)[1]
API. Due to the native support of hardware acceleration in OpenGL, this layer
renders the virtual environment in an acceptable frame rate and in an aesthetic
way.

At the end of each cycle, localization data (the current state of the objects
which were calculated in physical layer) are sent back to the clients. The format



grSim – RoboCup Small Size Robot Soccer Simulator 453

Open 
Dynamics 

Engine
Simulator Core

Open Graphics Library

Commands
Localization

Data

Visualization

XML 
Configs

Client 1

Client 2

Fig. 1. Overview of the system

used for encoding data is the same format used by small size league’s shared
vision system, named SSL-Vision. SSL-Vision[21] is the core software of league’s
shared vision system. As grSim and SSL-Vision use similar data format, clients
do not sense any difference between data sent from shared vision system and
data sent by grSim, thus no extra effort is needed to convert localization data.

Figure 1 shows an overall view of the simulator’s structure.

3 The Simulator

The physical environment consists of 10 robots (5 for each team), a ball, field
goals, walls, ground and sky. The dimensions and properties of all objects can
be modified in run time. The default values are optimized to comply with latest
Robocup SSL rules [7].

3.1 Modeling the Robots in ODE

Each robot consists of four omni wheels, a linear kicker, a chip kicking device and
a spin back device. The robot’s chassis is a simple cylinder. As the ODE library
does not support cylinder with cylinder collision, a dummy sphere is bounded in
each cylinder which can only collide with other spheres and cannot collide with
any other object. In Figure 2 a small size robot model is depicted.

Wheels. In grSim each robot has four attached wheels with configurable struc-
ture. The wheels are solid cylinders attached to the robot’s chassis with an ODE’s



454 V. Monajjemi, A. Koochakzadeh, and S.S. Ghidary

Fig. 2. Robot model in grSim

Hinge joint. In order to rotate the wheels an angular motor with configurable
limited torque is attached to each joint.

Omni directional robots like small size soccer robots, use a special type of
wheels called omni (or poly) wheels. In omni wheels there are number of sub-
wheels around the circumference which are perpendicular to rolling direction.
Sub-wheels help the wheel to side-slide.

Physical modeling of sub-wheels increases the model complexity and is a ma-
jor cause for simulator deficiency. To overcome this problem we implemented a
special model for these wheels inspired by [6]. In this model the wheels have a
configurable friction with the ground surface. This friction is different for tangen-
tial and perpendicular directions (figure 3). Using this technique, the complexity
of robot’s physical model is decreased which results in less resource usage and
higher simulation speed.

Kicker and Spin-Back Device. Each SSL robot is equipped with a special
mechanism to kick the ball. This mechanism will let the robot make a direct or a
chip kick. In order to simulate the kicker, a solid cube is attached to each robot’s
front face. Whenever the kick command is received and the ball is in touch, a
proper force will be applied to the ball. The magnitude and type of this force
are configurable.

Small size soccer robots use a special actuator in front of their robots in
order to manipulate the ball while moving. This device, called spin-back or
spinner, helps the robot not to lose the ball’s possession while moving. In order
to simulate this device, the kicker’s solid cube applies a torque to the ball when
it touches it. In this way the ball rolls around itself and moves backwards, thus
sticks to the robot. In real robots, because of the specific shape of the spinner,
ball’s side movement during spin back does not happen. In order to avoid ball’s
side movement, grSim uses the same method discussed in section 3.1 between
ball and the ground, i.e. defining different friction coefficients for tangential and



grSim – RoboCup Small Size Robot Soccer Simulator 455

Tangential Friction
Force Direction

Normal Friction
Force Direction

Fig. 3. Omniwheel model in grSim (note that the sub-wheels are textures)

perpendicular directions to the spinner. All of the parameters for the kicker
and spinner, like size, maximum torque, maximum force and chip kick angle are
configurable.

3.2 Communication

As discussed in section 2 all communications between grSim and clients are
network based using User Datagram Protocol (UDP).

Output Packets. The output packet contains the localization data, the po-
sition and direction of all ten robots and position of the ball. The packets are
generated in the same way that SSL-Vision generates packets. Both SSL-Vision
and grSim use Google Protocol Buffer (protobuf) library [11] to encode the data
packets. To generate the exact same packet, grSim uses the same protocol con-
figuration file that SSL-Vision uses. The generated packets are sent to the clients
with the frequency of 60 times per second, however it can be increased up to
100fps based on simulator rendering frame rate.

To make the simulation output data more realistic, user can specify differ-
ent kind of noise and disturbances to be added to the localization data. The
simulator can apply a two dimensional Gaussian noise to localization data with
user specified parameters. It can also add delay to output data to simulate the
loop delay which exists in Small Size teams hardware/software architecture. Fur-
thermore, It can add some vanishing effect to output data with user-specified
probability. The vanishing effect simulates the temporary loss of an object in
vision data. Like other configurations, all these parameters are configurable in
run-time.



456 V. Monajjemi, A. Koochakzadeh, and S.S. Ghidary

Input Packets. The simulator receives packets from clients using two UDP
sockets, one for the blue team and the other one for the yellow team. Blue and
Yellow are standard colors that teams use as the main identifier in SSL matches.

In order to standardize the software’s input/output protocols, the commands
must be sent using Google Protobuf (section 3.2) encoded data packets. The
protocol schema is depicted in Figure 4. The protocol schema describes how the
clients must encode their desired control commands before sending data to grSim
using Google Protobuf library. The required header and source files to encode
data using this schema is included in grSim’s software package. According to this
schema, in each cycle, the client must first specify the target team, yellow or blue.
Next, a series of control commands must be provided for all active robots.

message grSim_Robot_Command {

required uint32 id = 1;

required float kickspeedx = 2;

required float kickspeedz = 3;

required float veltangent = 4;

required float velnormal = 5;

required float velangular = 6;

required bool spinner = 7;

required bool wheelsspeed = 8;

optional float wheel1 = 9;

optional float wheel2 = 10;

optional float wheel3 = 11;

optional float wheel4 = 12;

}

message grSim_Commands {

required double timestamp = 1;

required bool isteamyellow = 2;

repeated grSim_Robot_Command robot_commands = 3;

}

Fig. 4. The grSim’s Google Protobuf schema for receiving control commands from
clients. The protocol documentation and examples can be found in the grSim’s docu-
mentation and webpage

3.3 User Interface

To ease the software/AI development process, each robot simulator software
must be equipped with a good user interface. In order to achieve that, a modern,
feature-rich and user friendly Graphical User Interface (GUI) has been developed
for grSim. Using the power of Qt framework and its OpenGL integration, the
user can modify the objects in the scene, the camera and configurations in an
easy way using keyboard or mouse. For example, In order to modify each object’s
position and orientation, the user can select or move each object by moving the



grSim – RoboCup Small Size Robot Soccer Simulator 457

Run-time 
configuration Panel

Hierachtical 
Configuration 

Schema
Active Robot Panel

: Manual reset, 
precise robot 

location

Messages, Debug & 
Log Information

Drag & Drop Object Move

Camera Control

Various Object Formations

Current frame rate (93 fps)

Fig. 5. Features of grSim’s Graphical User Interface

mouse and clicking in the scene window. An overview of some UI features are
shown in figure 5.

For easy run-time configuration of the simulator parameters, grSim uses Var-
Types library[20]. VarTypes is a feature-rich, object-oriented framework for man-
aging variables in C++/Qt4. This library stores all configurable variables and
their descriptions in a XML file. It creates a Qt Widget for easy modification of
variable values during run-time in a thread-safe manner. In this way all of the
physical parameters including friction and bounciness of the surfaces, mass of
the rigid bodies, actuator parameters and network properties are configurable
during program run.

4 grSim in Action

grSim is currently under active development by Amirkabir university’s small size
soccer robot team named “Parsian”[18]. This simulator plays an important role
in the software, control and AI development of aforementioned team.

In order to demonstrate the simulator’s accuracy and performance, one robot’s
simulated motion profile, has been compared to real world data. In the first test,
the robot traveled a 4.4m straight line along its local x-axis (its head direction).
In the second test, the robot traveled a 3.6m straight line along its local y-axis
(perpendicular to its head direction). The position of the robot during the tests
are depicted in figures 6, 7 and 8. All the tests were done using 5th generation



458 V. Monajjemi, A. Koochakzadeh, and S.S. Ghidary

Parsian small size robots [18] on a dual core PC with 4GB of RAM running
Ubuntu Linux. Both the vision system and simulator’s update rate were 62fps
during the tests.

Fig. 6. Comparison between robot’s position on the field, while traveling along its head
(left) and perpendicular to its head (right). [Blue is from real data]

Fig. 7. Comparison between global x and y components of robot’s position while trav-
eling along its head direction

Fig. 8. Comparison between x and y components of robot’s position while traveling
perpendicular to its head direction



grSim – RoboCup Small Size Robot Soccer Simulator 459

5 Conclusion

In this paper we described grSim simulator, which can simulate and visualize
a RoboCup small size soccer robot game in a realistic way and in real-time.
By using a simplified robot model it can reach high simulation speeds (60fps or
more). The flexible input protocol and SSL-Vision compatible localization data
output make it easy to integrate grSim into any existing SSL software chain. gr-
Sim’s rich user interface makes it an easy to learn, useful tool in AI development
process. Our plan is to release grSim as a free and open-source application to
RoboCup small size community in near future. Updates, screenshots and videos
are available at http://eew.aut.ac.ir/~parsian/grsim/ .

References

1. OpenGL - The industry standard for high performance graphics (2011),
http://www.opengl.org/ (accessed January 2011)

2. RoboCup - official website (2011), http://www.robocup.org/ (accessed January
2011)

3. Small Size Robot League - official website (2011),
http://small-size.informatik.uni-bremen.de/ (accessed January 2011)

4. The Player Project - free software tools for robot and sensor applications (2011),
http://playerstage.sourceforge.net/ (accessed January 2011)

5. Baillie, J.: Urbi: Towards a universal robotic low-level programming language. In:
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2005), pp. 820–825. IEEE (2005)

6. Browning, B., Tryzelaar, E.: Übersim: A multi-robot simulator for robot soccer. In:
Proceedings of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 948–949 (2003)

7. RoboCup Small Size League Technical Committee: RoboCup Small Size League
Rules (2011), http://small-size.informatik.uni-bremen.de/rules:main (ac-
cessed January 2011)

8. Cyberbotics: Webots, fast prototyping and simulation of mobile robots (2011),
http://www.cyberbotics.com/ (accessed January 2011)

9. Gerkey, B., Vaughan, R., Howard, A.: The Player/Stage project: Tools for multi-
robot and distributed sensor systems. In: Proceedings of the 11th International
Conference on Advanced Robotics (January 2003)

10. Go, J., Browning, B., Veloso, M.: Accurate and flexible simulation for dynamic,
vision-centric robots. In: Proceedings of International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, AAMAS 2004 (2004)

11. Google Inc.: Protocol buffers - google’s data interchange format (2011),
http://code.google.com/p/protobuf/ (accessed January 2011)

12. Gostai Ltd.: Urbi - The universal platform (2011),
http://www.gostai.com/urbi.php (accessed January 2011)

13. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In: Proceedings of 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2149–2154. IEEE (2005)

14. Koenig, N., Howard, A.: Gazebo - 3D multiple robot simulator with dy-
namics (2011), http://playerstage.sourceforge.net/gazebo/gazebo.html (ac-
cessed January 2011)

http://eew.aut.ac.ir/~parsian/grsim/
http://www.opengl.org/
http://www.robocup.org/
http://small-size.informatik.uni-bremen.de/
http://playerstage.sourceforge.net/
http://small-size.informatik.uni-bremen.de/rules:main
http://www.cyberbotics.com/
http://code.google.com/p/protobuf/
http://www.gostai.com/urbi.php
http://playerstage.sourceforge.net/gazebo/gazebo.html


460 V. Monajjemi, A. Koochakzadeh, and S.S. Ghidary

15. Laue, T., Spiess, K., Röfer, T.: SimRobot – A General Physical Robot Simulator
and its Application in RoboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Taka-
hashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer,
Heidelberg (2006)

16. Michel, O.: Cyberbotics Ltd. Webots TM: Professional mobile robot simulation.
International Journal of Advanced Robotic Systems 1(1), 39–42 (2004)

17. Nokia Inc.: Qt - A cross-platform application and UI framework (2011),
http://qt.nokia.com/ (accessed January 2011)

18. Poorjandaghi, S., Monajjemi, V., Mehrabi, V., Nabi, M., Koochakzadeh, A.,
Atashzar, F., Omidi, E., Pahlavani, A., Sheikhi, E., Bahmand, A., Mohaimanian,
M., Saeidi, A., Shamipour, S., Karkon, R.: Parsian - Amirkabir university of tech-
nology RoboCup small size soccer team. Team Description Paper for RoboCup
(February 2011)

19. Smith, R.: ODE - Open Dynamics Engine (2011), http://www.ode.org/ (accessed
January 2011)

20. Zickler, S.: Vartypes - A feature-rich, object-oriented framework for managing vari-
ables in C++ / QT4 (2011), http://code.google.com/p/protobuf/ (accessed
January 2011)

21. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-Vision:
The Shared Vision System for the RoboCup Small Size League. In: Baltes, J.,
Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI),
vol. 5949, pp. 425–436. Springer, Heidelberg (2010)

http://qt.nokia.com/
http://www.ode.org/
http://code.google.com/p/protobuf/

	grSim – RoboCup Small Size Robot Soccer Simulator
	Introduction
	Overview
	The Simulator
	Modeling the Robots in ODE
	Communication
	User Interface

	grSim in Action
	Conclusion
	References




