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Abstract. This paper describes an approach to Gaussian mixture filter-
ing which combines the accuracy of the Kalman filter and the robustness
of particle filters without sacrificing computational efficiency. Critical ap-
proximations of common Gaussian mixture algorithms are analyzed and
similarities are pointed out to particle filtering with an extremely low
number of particles. Known techniques from both fields are applied in
a new combination resulting in a multi-hypotheses Kalman filter which
is superior to common Kalman filters in its ability of fast relocalization
in kidnapped robot scenarios and its representation of multi-modal be-
lief distributions, and which outperforms particle filters in localization
accuracy and computational efficiency.

1 Introduction

Localization is a central aspect for autonomous robots playing soccer as well as
in most other application fields. The higher level decision making relies on an
accurate knowledge of the robot’s position, e.g. positioning a defending player
to block its own goal or to support a team mate, or kicking the ball into the
right direction even when goal posts are temporarily occluded.

Most localization algorithms which have been applied in RoboCup contexts
are Bayesian algorithms such as particle or Kalman filters [11]. In general, par-
ticle filters are favored when belief distributions are expected to be multi-modal
and sensor information is uncertain and ambiguous, while otherwise Kalman fil-
ters are expected to produce more accurate and smooth results. Gutmann and
Fox express this common consensus in [4]: “Markov localization is more robust
than Kalman filtering while the latter can be more accurate than the former”.
While hybrid solutions, special variants and problem-specific adaptations always
have the potential to outperform pure implementations of the general methods,
this seems to be the general trend and particle filters are often the method
of choice for handling multi-modal belief distributions [11]. However, multiple
model Kalman filters have been well established in other fields of research [1]
and are well suited for such tasks.

The Kalman filter as an estimator for linear Gaussian systems has been
adapted with variants such as the Extended or Unscented Kalman filter. Both
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maintain the convenient Gaussian representation throughout the filter update
steps by linearizing the process and measurement functions. However, such Gaus-
sian approximations perform unsatisfactory or even diverge completely when the
non-linearity in the system becomes too severe. This is obvious especially for
multi-modal systems.

Weighted sums of Gaussians offer an approximation for those non-linear non-
Gaussian systems [1]. The resulting filters are referred to as Gaussian sum or
Gaussian mixture filters. The high number of Gaussians necessary to appro-
priately approximate any given belief distribution leads to an increase in com-
putational complexity so that pruning of the belief representation becomes an
important issue in practical real-time implementations on mobile platforms. Due
to this, multiple-model Kalman filter implementations loose some of their gen-
erality, computational efficiency and theoretical elegance.

The same is true for particle filter implementations which aim at high per-
formance and applicability on limited platforms. Those usually operate with an
extremely low number of particles to be efficient enough to operate for example
on the Aibo or the Nao. This paper’s main contribution is to point out and apply
techniques originally introduced in particle filtering contexts to multiple-model
Kalman filtering.

This has been implemented for a RoboCup Standard Platform League sce-
nario, i.e. for humanoid robots with highly uncertain odometry in a dynamic
soccer scenario where most landmarks are ambiguous field features, occlusion
frequently occurs and false positives are likely to be generated from observations
of the audience. Situations with various degrees of similarity to robot kidnapping
happen due to frequent struggles and shoving among the robots and interven-
tions by the referees. This work is related to [10] in terms of the application
scenario and the general idea of using a multiple-model Kalman filter to ad-
dress the correspondence problem for ambiguous landmarks and false positive
observations, but the proposed solution differs in the overall approach as well as
various implementation details.

2 Gaussian Mixture Filtering

An overview of Gaussian Mixture filtering and its applicability to state estima-
tion in domains of multi-modal probability distributions is given in this chapter.
The general Bayes filter convention under the Markov assumption [11] is used
in the following discussion in order not to commit to any specific form of non-
linearity approximation to the Kalman filter.

The initial probability distribution for the n-dimensional state x0 is expressed
by the prior belief bel(x0). Each discrete time step the estimation is updated
using the following equations.

bel(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dxt−1 (1)

bel(xt) = ηp(zt|xt)bel(xt) (2)
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Equation 1 describes the prediction step or process update, in which the past be-
lief is updated using the known control input ut and the process model, which is
expressed by the conditional probability p(xt|ut, xt−1). This predicted posterior
belief bel(xt) is corrected in equation 2 using the measurement zt and the sensor
model p(zt|xt). This is commonly referred to as measurement or sensor update.

The standard Kalman algorithm provides an optimal estimation in case of
linear Gaussian systems, which however is rarely given for real problems. Non-
linearity in the process and sensor model is handled by linearization in order to
apply the familiar Kalman filter equations, which then do not yield the optimal
solution but only an approximation. This can be done either using Jacobians in
the Extended Kalman filter or the unscented transform in the Unscented Kalman
filter.

If the model shows only certain non-linear characteristics around the cur-
rent estimation, this linearization is enough to allow an appropriate estimation.
Representing the belief state with Gaussian mixtures as in equation 3 can also
improve the estimation in those cases, but the real benefit becomes obvious in
cases where the models show multi-modal characteristics.

bel(xt) =

N∑
i=1

αi
1

(2π)n/2|Pi|1/2 e
(−1/2(xt−μi)

TP−1
i (xt−μi)) (3)

Here μi and Pi are the means and covariances of the individual Gaussians and
αi are the weights which sum up to 1 over all N models. Note that N might
change during operation of the filter, and the explicit dependence on time in the
indexes of those parameters is dropped for simplicity.

Gaussian mixtures introduce several changes into the filtering process. Note
that in most applications only a subset of these aspects is actually imple-
mented [10,9,3,12,5], i.e. the one or two aspects most crucial to the estimation
process, and a strict limit to the number of separate Gaussians is enforced to
maintain acceptable processing time.

The initial belief is obviously easier represented by Gaussian mixtures than
by a single Gaussian. This can be done either by a regular distribution param-
eterized to fit an a-priori belief as proposed in [1], or by generating the initial
belief from the first sensor information as done in [3] and [5]. Re-localization
from kidnapped robot scenarios is closely related, since allowing for the possi-
bility of robot kidnapping means assigning a small probability to the case that
the robot is repositioned without any knowledge, which is similar to the initial
global position finding. Gaussian mixtures might also be applied for a better
representation of highly uncertain odometry as for walking robots, but due to
the drawbacks of the increase of terms in the mixture this is rarely implemented.

2.1 Sensor Update and Correspondence Problem

The most focused on filtering aspect for applying Gaussian mixtures is the sen-
sor update. While Gaussian mixtures can be beneficial in modeling a spread-out
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belief for uncertain measurements, the major reason for using them is the up-
date with ambiguous landmarks. In single-Gaussian Kalman filters this case is
handled by choosing the correspondence with maximum likelihood and proceed-
ing by linearizing a sensor model for a unique landmark update. This results in
a Kalman filter operating “more as a maximum likelihood estimator than as a
minimum variance estimator and the mean follows (hopefully) one of the peaks
of the density function” [1].

Gaussian mixtures allow to construct a sensor model with one Gaussian term
for each possible correspondence. In [9] for example, Gaussian mixture sensor
models are used to avoid an exclusive correspondence choice for the likelihood
calculation in Monte Carlo localization. In the Kalman approach the sensor
update using this model results in applying all possible correspondences to all
hypotheses maintained by the current belief prediction bel(xt) as done in [10].
The terms in bel(xt) therefore increase by the factor Ms which is the number of
terms in the sensor model.

The weights αi are recursively updated according to [1] by multiplication with
the probability of the measured m-dimensional innovation η = (zt − ẑi) by

αi = να′
i

(
1√

(2π)m |Pη|
e−

1
2η

−1P−1
η η

)
(4)

where ẑi is the expected observation for the fixed correspondence according to the
i’th model, Pη is the sum of the measurement and the prediction covariance, and
ν is a normalization factor. To improve the lack of robustness to outliers, Quinlan
and Middleton add a term ε0 expressing a static probability of the observation
being an outlier, i.e. a false positive in the measurement process such as echoes
in sonar data or incorrectly classified objects in a vision system [10]. A further
discussion of the implications of this will be given in section 3.

2.2 Pruning the Belief Representation

The multiplicative increase per time step in the number of terms in the Gaussian
mixture introduced by the sensor update and potentially also the process update
is countered by pruning the resulting belief representation, for which several
different methods have been proposed. In general, a suitable Gaussian mixture
representation with a specified maximum number of terms needs to be found
which approximates a given probability distribution. This is similar to finding
the initial parametrization, only in this case the target distribution is already
given as a Gaussian mixture, only with a higher number of terms.

In most practical applications, sophisticated re-parametrization strategies
as described in [12] and [6] achieve excellent results, but are often too time-
consuming. Instead of applying iterative optimization or regression procedures,
simple heuristics are used to reduce the number of terms in the Gaussian mix-
ture. This is done by combining multiple terms into one and by neglecting terms
with small enough weighting factors whenever possible [1,10].
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3 Problems Resulting from Efficiency-Related Trade-offs
and Model Limitations

Many of the problems classical Kalman filters face in realistic application sce-
narios can be addressed by the extension to use sums of Gaussians. Ensuring
efficient computation however introduces compromises which together with some
of the common assumptions described in the previous section potentially nullify
certain aspects which make the Gaussian mixture representation desirable in
the first place. Two potential problems related to pruning and to the handling
of false positives shall be analyzed in the following as a motivation for the al-
ternative approach described in section 4 which differs in contrast to common
implementations like [1,10].

3.1 Influence of Pruning on Quality of Estimation

The exponential growth of Gaussian terms necessitates aggressive pruning as
described in section 2. This pruning however does not only lead to a slight
loss of accuracy, but may potentially undo some of the central benefits of using
Gaussian mixtures.

One significant problem shall be illustrated using the following simplified ex-
ample. Consider a robot which is well localized with a current belief state con-
sisting of a single Gaussian, and whose position is altered at a time t0, e.g.
by a collision with another agent changing the robot’s orientation significantly
without it perceiving it. In the following time steps the robot repeatedly makes
ambiguous observations which correspond to one of two possible landmarks in
its map, as visualized in figure 1(a). In this scenario, let each blue link corre-
spond to the correspondence choice c1 and each red link to choice c2. c1 is the
real observed landmark, but c2 is the choice which fits the (wrong) initial belief
state bel(xt0) better. Figure 1(b) visualizes the model splitting resulting from
each multi-modal sensor update without any pruning.

In this situation, updates based on the correspondence choice c2 result in small
innovations, while those based on choice c1 initially produce large innovations,
which only decrease when frequent updates using c1 shift the corresponding mean
closer to the true position. In this scenario, continuous multi-modal updates
obviously do not resolve the localization ambiguity, but lead to a belief state
bel(xt0+n) which includes a term αiNi which is the result of a series of “right”
choices and which, after the corresponding mean is close to the true position,
also has a high weight. In a situation like this, few additional complementary
observations of different landmarks might resolve the ambiguity and leave the
true position as the most probable estimate in the belief. Thus the Gaussian
mixture filtering allows for more than just mere maximum likelihood estimation
if extensive pruning does not interfere with this characteristic.

Assuming equal a-priori probabilities for both data associations and assuming
simple uni-modal process updates, the weight factors αi of the different terms in
the belief of the following time steps t0 + δ is changed exclusively by the sensor
update in equation 4. Since initially the correspondence choices c1 do not fit the
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(a) Correspondence
situation.

(b) Model splitting resulting from a series of ambiguous
landmark observations.

Fig. 1. Example situation with ambiguous observation correspondence

belief as the alternative choices do, the weight α8 in figure 1(b) is much smaller
than α1 at time step t0+3. This makes paths in a tree of correspondence choices,
which do not instantly lead to maximum likelihood estimates, ideal candidates
for pruning techniques as described in [10]. So this kind of aggressive pruning
does not only decrease the estimation quality, but actually removes one of the
most significant advantages of Gaussian mixture filtering, i.e. the possibility to
maintain different hypotheses of which some may temporarily be unlikely, but
still allow the observation of the influence of new measurements on regions of
the state space away from the maximum likelihood estimate. Note that this is
also essential for re-localization in kidnapped-robot scenarios.

3.2 Integrations of Explicit False Positive Handling

False positives are incorrect measurements that violate the assumption of Gaus-
sion distributed errors insofar as they are not only inaccurate measurements
from a known feature, but originate from some other unmodeled source in the
environment unrelated to any known feature and its position. In scenarios such
as the RoboCup Standard Platform League those false positive observations are
quite common since no barrier exists between the field and its surroundings.
This frequently causes false perceptions from the robot’s image processing when
the clothings of people standing close to or directly on the edge of the field show
the same outline and color of expected features such as goal posts.

The common compensation is to enlarge the tail-end of an otherwise Gaus-
sian distribution as done in [10] where a probability is assumed of ε0 that an
observation is an outlier, and equation 4 is adapted as follows:

αi = να′
i

(
(1 − ε0)

1√
(2π)m |Pη|

e−
1
2 η

−1P−1
η η + ε0

)
. (5)
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This change prevents the weighting of Gaussians to drop too much by an update
with a single outlier. While this approach seems intuitive and is often applied to
the weighting functions in particle filters, it does not affect the actual Kalman
update with the outlier observation itself. Instead the implicit assumption is
that outliers appear randomly and therefore do not systematically influence the
system estimation. As can be seen from the SPL scenario example, this is not
necessarily true and might lead to seriously biased estimation errors.

The means for an alternative method for handling such false positives is al-
ready provided by the sensor update step described in section 2.1. Instead of
incorporating the possibility for false positive observations into each sensor up-
date for each correspondence, a more natural alternative is to handle false posi-
tives as just another correspondence alternative. The underlying assumption is
that each landmark observation, not just the inherently ambiguous ones, either
corresponds to one of the known locations of such landmarks on the map or
to another source not included in the map. In SLAM contexts these additional
observation origins might be mapped and used for further localization purposes,
resulting in a multiple-hypothesis SLAM approach similar to [2]. In localization
tasks however such observations corresponding to unmapped landmarks can sim-
ply be discarded, i.e. no update is performed at all to the term generated by this
correspondence choice.

This approach provides the possibility of a position tracking unbiased by
false positives, thus more robust especially in situations where false positive
observations do not occur randomly.

4 An Alternative Approach to Multiple-hypotheses
Kalman Filtering

As argued in section 3.1, operating Gaussian mixture filters with a strictly low
limit on the number of terms and the consequential aggressive pruning deprives
such filters of much of their multiple-hypothesis tracking potential. This situation
shows parallels to certain particle filter implementations. Both algorithms have
originally been designed under the assumption of enough hypotheses to appro-
priately cover the state space. For particle filters with extremely low numbers of
particles several techniques have been proposed to compensate for the low state
space coverage [7,8]. The established policy in this case consists of two measures.
The first one is to limit the influence of single inconclusive measurements (for
details see for example [8]). The second is to accept the impossibility to track
all important hypotheses in the exponentially growing number of paths, while at
the same time providing the means to recover from the neglect to model those
which rise in importance again in the future. Particle filters add new particles
which are uncorrelated to the current belief during the resampling step, either
randomly distributed over the state space, or more efficiently by drawing few
particles directly from the sensor model, called sensor resetting [7].

In the context of Gaussian mixture Kalman filters this mainly means a mod-
ification of the sensor update step. First of all, only the maximum likelihood
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Fig. 2. Tracking only maximum-likelihood correspondence choices for ambiguous land-
marks, relying on sensor resetting to generate terms close to those corresponding to
the neglected paths leading to conclusive estimates

update is applied, explicitly taking into account also false positive measurement
possibilities, in which case the current mean stays unchanged. Consequently it
is obvious that the weight update needs to be adjusted. Following the temporal
smoothing idea for particle filters [8] the weight update for hypotheses can be
adjusted so as not to be influenced that much by different degrees of outlier
measurements. Instead it is possible to weight different models based exclusively
on how many observations can be conclusively explained by them. But more im-
portantly an additional new sensor update in parallel to the old one will perform
the same function as the sensor resetting part of the particle filter’s resampling
step, i.e. introducing new Gaussian terms based not on the previous state esti-
mate, but on the recent sensor measurements’ sensor model only. Note that this
is not equivalent to model splitting since the new terms are not correlated to the
old ones.

The resulting filter frequently injects new low-weighted models into regions
with high probability based on the last observations, which might be expected
to rise in weight in case theses hypotheses also fit future observations. This
however relieves the necessity to track multiple paths of correspondence choices
for updates of existing models as described in section 2.1 and illustrated in
figure 1(b). In [10] many multi-modal sensor updates basically result in uni-
modal ones due to the aggressive pruning. While this already corresponds to
implicit maximum-likelihood updates, it is now possible to explicitly do exactly
this. As a consequence both the process update and the old sensor update can
be applied with the uni-modal maximum-likelihood choice, explicitly neglecting
alternative paths in the decision tree of correspondence choices, but relying on
the sensor resetting functionality to pick up those paths which lead to conclusive
estimates as illustrated in figure 2 relating to the example in section 3.1.

This application of the sensor resetting concept also solves the problem that
common Kalman implementations have concerning the kidnapped robot prob-
lem. Both a sudden change of robot orientation with consequential wrong data
association as described in the example in 3.1 and a real teleportation event will
be handled accordingly.



230 G. Jochmann et al.

5 Evaluation

The multiple-hypotheses Kalman filter approach described in this paper has
been implemented for the humanoid robot Nao which is produced by Aldebaran
Robotics and used in the RoboCup Standard Platform League (SPL). This robot
contains a x86 AMD Geode 500MHz CPU and 256MB SDRAM. The SPL en-
vironment consists of a soccer field of specified dimensions and colored goals,
which can be used for localization together with the field markings, i.e. lines,
corners, and center circle. Most measurements are ambiguous: Observing a single
goal post leaves at least two choices, while a field line crossing can be associated
with 6 true positions on the field in case of a T-crossing or with 8 positions in
case of an L-crossing. Even more correspondences are possible when allowing
incompletely/uncertainly classified crossings, e.g. in case of occlusion or for the
observation of two perpendicular lines whose crossing is outside of the image.
One important feature of the SPL environment is that no barrier exists between
the soccer field and its surroundings, which frequently includes colorfully clothed
audience. So a localization algorithm needs to be robust not only to noisy mea-
surements due to staggering robots but also to frequent false positives. This is
the setup in which the proposed multiple-hypotheses Kalman filter is evaluated.

The software running on the robot includes the manufacturer’s middleware
NaoQi as well as the robot control software consisting of a motion thread running
at 100Hz and a cognition thread running at 15Hz, both with all regular SPL
soccer modules activated. To evaluate the localization quality a camera system
is mounted above the field, detects markers attached to the robot, and provides
ground truth data to an additional module in the robot’s software.

The presented approach is evaluated in experiments on real robots in a typ-
ical SPL scenario and compared against a particle filter solution utilizing sen-
sor resetting, temporal smoothing, and lazy resampling, and which has been in
use in RoboCup competitions up to the development of the presented multiple-
hypotheses Kalman filter. For all experiments both localization algorithms run
in parallel on the robot, thus working with the exact same input from image
processing and ensuring the comparability of the results.

A first experiment evaluates the re-localization ability after several teleporta-
tion events. In figure 3 each red mark on the time axis indicates that the robot
has been picked up to be placed at a random new position on the field. The illus-
trated performance represents typical behavior for both filters, which expectedly
show similar behavior since both get their relocalization ability from the same
principles. Between seconds 90 and 110 the multiple-hypotheses Kalman filter
generates a hypothesis close to the correct position, but does not rate it high
enough in those 20 seconds to output it as the likeliest location. Similarly the
particle filter jumps between different clusters after second 170. This shows that
the proposed filter is able perform at the same level as a particle filter imple-
mentation tuned especially to handle such situations. Note that this is classically
regarded as a particle filters specialty and similar performance has not been re-
ported for related Kalman variants.
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Fig. 3. Ability for relocalization from kidnapped-robot situations
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Fig. 4. Comparison of localization performance in an SPL scenario

Additional experiments have been set up to quantitatively evaluate the lo-
calization quality. In all experiments the robot is placed on the field without
prior knowledge of its position and the movement is started after a fixed time.
Figure 4 shows a ground truth paths on the field and the localization result
of the multiple-hypotheses unscented Kalman filter and the particle filter. The
Kalman filter’s characteristic of smooth and accurate position tracking is clearly
visible and the filter’s output in form of its strongest hypothesis is superior to
the particle filter’s most probable cluster.

Figure 5 shows one run where many persons walked around the field thus
occluding field features and provoking false positives at the same time, e.g. blue
jeans sometimes are falsely recognized as blue goal posts. While both localiza-
tion approaches show diminished results, the multiply-hypotheses UKF clearly
produces estimations closer to the real robot path.

A comparison of the different algorithms’ runtime is given in figure 6. It has to
be noted that the presented measurement is not unbiased, since larger runtimes
tend to be influenced more by random threading issues and thus the larger mod-
ule update time of the particle filter might include more motion thread update
cycles. Nevertheless, the multiple-hypotheses Kalman filter is clearly much more
efficient. While this does not allow to compare this implementation of a Gaus-
sian mixture Kalman filter to the one proposed by Quinlan and Middleton [10],
it can be argued to be more efficient since a similar comparison to a state of
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Fig. 5. Comparison of localization performance in a worst case situation with much
occlusion and many false positive observations

Fig. 6. Runtime comparison between the multiple-hypotheses Kalman filter and the
particle filter

the art particle filter in [10] showed only slightly better runtime and averaged
around a third of the image processing time, which would still be in the range
of multiple milliseconds. The average runtime of the approach presented here is
0.4ms, which obviously eliminates the localization problem as a computational
bottleneck. Most of the time is spend on image processing, the remaining time
difference goes to infrastructure and other tasks such as ball tracking or behavior
decisions. The periodic tendencies in the measurements in figure 6 are a result
of the robot’s head motion which also searches for the ball in front of the robot’s
feet where only little localization information can be extracted.

6 Conclusion

This paper presents an approach for Gaussian mixture filtering which utilizes
techniques from particle filtering to incorporate valuable aspects of both filter
strategies. The resulting multiple-hypotheses unscented Kalman filter is superior
to common Kalman filters in its ability of fast relocalization in kidnapped robot
scenarios and its representation of multi-modal belief distributions, and it out-
performs particle filters in localization accuracy and computational efficiency. A
direct comparison to the approach proposed in [10] or similar classical Gaussian
mixture filters has yet to be done.
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Future work will focus on a collaborative localization and tracking strategy for
a team of robots. First results have been presented in [2], but those were particle
filter based and have not been efficient enough to run at high frame rates on
the Nao. Building a similar system with a multiple-hypotheses Kalman filter
as a basis promises real-time performance, but involves additional difficulties
concerning the stochastic soundness of the overall filtering scheme.
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