Skip to main content

OpenCL Implementation of Cellular Automata Finite Element (CAFE) Method

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7204))

Abstract

The implementation of multiscale numerical simulations on heterogeneous hardware architectures is presented in the paper. The simulations are composed of coupled micro and macro scale approaches, which are implemented by using cellular automata and finite element method respectively. Details of both of these methods are described in the papers as well. The simulations were performed for the problem of material heat treatment (macro scale) with simultaneous application of grain growth calculation (micro scale). Comparison of quantitative results obtained by using separated and coupled computing methods are presented in form of speedup and efficiency coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grosman, F.: Application of the flow stress function in programmes for computer simulation of plastic working processes. Journal of Materials Processing Technology 64, 169–180 (1997)

    Article  Google Scholar 

  2. Estrin, Y., Mecking, H.A.: Unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metallurgica 32, 57–70 (1984)

    Article  Google Scholar 

  3. Madej, L., Rauch, L., Yang, C.: Strain distribution analysis based on the digital material representation. Archives of Metallurgy and Materials 54, 499–507 (2009)

    Google Scholar 

  4. Goetz, R.L., Seetharaman, V.: Modeling dynamic recrystalization using cellular automata. Scripta Materialia 38, 405–413 (1998)

    Article  Google Scholar 

  5. Pietrzyk, M., Madej, L., Rauch, L., Golab, R.: Multiscale modeling of microstructure evolution during laminar cooling of hot rolled DP steels. Archives of Civil and Mechanical Engineering 10, 57–67 (2010)

    Article  Google Scholar 

  6. Gawad, J., Pietrzyk, M.: Application of CAFE coupled model to description of microstructure development during dynamic recrystallization. Archives of Metallurgy and Materials 52, 257–266 (2007)

    Google Scholar 

  7. Cannataro, M., Di Gregorio, S., Rongo, R., Spataro, W., Spezzano, G., Talia, D.: A parallel cellular automata environment on multicomputers for computational science. Parallel Computing 21, 803–823 (1995)

    Article  MATH  Google Scholar 

  8. Patra, A.K., Laszloffy, A., Long, J.: Data structures and load balancing for parallel adaptive hp finite-element methods. Computers & Mathematics with Applications 46(1), 105–123 (2003)

    Article  MATH  Google Scholar 

  9. Čiegis, R., Čiegis, R., Meilūnas, M., Jankevičiūtė, G., Starikovičius, V.: Parallel mumerical algorithm for optimization of electrical cables. Mathematical Modelling and Analysis 13(4), 471–482 (2008)

    Article  MATH  Google Scholar 

  10. Murugesan, S.: Harnessing Green IT: Principle and Practices. IT Professional 10(1), 24–33 (2008)

    Article  Google Scholar 

  11. Brodtkorb, A.R., Dyken, C., Hagen, T.R., Hjelmervik, J.M., Storaasli, O.O.: State-of-the-art in heterogeneous computing. Scientific Programming 18, 1–33 (2010)

    Google Scholar 

  12. Maciol, P., Plaszewski, P., Banas, K.: 3D finite element numerical integration on GPUs. Procedia Computer Science 1, 1093–1100 (2010)

    Article  Google Scholar 

  13. Spytkowski, P., Klimek, T., Rauch, L., Madej, L.: Implementation of cellular automata framework dedicated to digital material representation. Computer Methods in Materials Science 9(2), 283–288 (2009)

    Google Scholar 

  14. Chen, F., Cui, Z., Liu, J., Chen, W., Chen, S.: Mesoscale simulation of the high-temperature austenizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique. Materials Science and Engineering A 527, 5539–5549 (2010)

    Article  Google Scholar 

  15. Thomas, D.B., Howes, L., Luk, W.: A comparison of CPUs, GPUs, FPGAs, and massively parallel processor arrays for random number generation. In: Proceeding of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA 2009, pp. 63–72 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rauch, L., Bzowski, K., Rodzaj, A. (2012). OpenCL Implementation of Cellular Automata Finite Element (CAFE) Method. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31500-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31500-8_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31499-5

  • Online ISBN: 978-3-642-31500-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics