Skip to main content

Solving the Longest Simple Path Problem with Constraint-Based Techniques

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7298))

Abstract

The longest simple path problem on graphs arises in a variety of context, e.g., information retrieval, VLSI design, robot patrolling. Given an undirected weighted graph G = (V,E), the problem consists of finding the longest simple path (i.e., no vertex occurs more than once) on G. We propose in this paper an exact and a tabu search algorithm for solving this problem. We show that our techniques give competitive results on different kinds of graphs, compared with recent genetic algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications. Prentice-Hall, Inc., Upper Saddle River (1993)

    MATH  Google Scholar 

  2. Dooms, G.: The CP(Graph) Computation Domains in Constraint Programming. Ph.D. thesis, UCLouvain, Belgium (2006)

    Google Scholar 

  3. Feillet, D., Dejax, P., Gendreau, M., Gueguen, C.: An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks, 216–229 (2004)

    Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory of NP-Completeness, 1st edn. W.H. Freeman (1979)

    Google Scholar 

  5. Gondran, M., Minoux, M.: Graphes et algorithmes, 3e édition revue et augmentée. Collection de la Direction des Études et Recherches d’Électricité de France, Eyrolles, vol. 37 (1995)

    Google Scholar 

  6. van Hoeve, W.J.: The alldifferent constraint: A survey. In: Sixth Annual Workshop of the ERCIM Working Group on Constraints (2001)

    Google Scholar 

  7. Karger, D., Motwani, R., Ramkumar, G.: On approximating the longest path in a graph. Algorithmica 18, 421–432 (1993)

    MathSciNet  Google Scholar 

  8. Pham, Q.D., Deville, Y., Van Hentenryck, P.: Constraint-Based Local Search for Constrained Optimum Paths Problems. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 267–281. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Pham, Q.D.: LS(Graph): A constraint-based local search framework for constrained optimum tree and path problems on graphs. Ph.D. thesis, UCLouvain, Belgium (2011)

    Google Scholar 

  10. Portugal, D., Antunes, C.H., Rocha, R.: A study of genetic algorithms for approximating the longest path in generic graphs. In: Proceedings of SMC 2010, pp. 2539–2544 (2010)

    Google Scholar 

  11. Portugal, D., Rocha, R.: Msp algorithm: Multi-robot patrolling based on territory allocation using balanced graph partitioning. In: Proceedings of SAC 2010, pp. 1271–1276 (2010)

    Google Scholar 

  12. Portugal, D.: Multi-robot patrolling simulation package, http://paloma.isr.uc.pt/davidbsp/

  13. Schmidt, K., Schmidt, E.G.: A longest-path problem for evaluating the worst-case packet delay of switched ethernet. In: Proceedings of SIES 2010, pp. 205–208 (2010)

    Google Scholar 

  14. Sellmann, M., Gellermann, T., Wright, R.: Cost-Based Filtering for Shorter Path Constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 694–708. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tseng, I.L., Chen, H.W., Lee, C.I.: Obstacle-aware longest-path routing with parallel milp solvers. In: Proceedings of WCECS-ICCS, vol. 2, pp. 827–831 (2010)

    Google Scholar 

  17. Wong, W.Y., Lau, T.P., King, I.: Information retrieval in p2p networks using genetic algorithm. In: Proceedings of the 14th Int. World Wide Web Conference, Special Interest Tracks and Posters, pp. 922–923 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pham, Q.D., Deville, Y. (2012). Solving the Longest Simple Path Problem with Constraint-Based Techniques. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds) Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems. CPAIOR 2012. Lecture Notes in Computer Science, vol 7298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29828-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29828-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29827-1

  • Online ISBN: 978-3-642-29828-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics