Skip to main content

Mechanism of Passive Permeation of Ions and Molecules Through Plant Membranes

  • Chapter
  • First Online:
Plant Electrophysiology

Abstract

The Gibbs free energy of ion and molecule transfer ΔG(tr) from the aqueous phase to a hydrophobic part of a biomembrane can be calculated as a sum of all contributions ΔG(tr) = ΔG(el) + ΔG(hph) + ΔG(si), where ΔG(el) is electrostatic contribution, ΔG(hph) is the hydrophobic effect, and ΔG(si) is determined by specific interactions of the transferred particle (ion, dipole) with solvent molecules, such as hydrogen bond formation, donor–acceptor, and ion–dipole interactions. The electrostatic component of the Gibbs energy of ion transfer from medium w into the medium m was found from conventional Born expression corrected for the image energy in a thin membrane. The hydrophobic contribution to the Gibbs free energy of solute resolvation with surface area S can be calculated using the equation, \( \Updelta G_{s} = - N_{A} S\gamma , \) where γ is the surface tension in the cavity formed by the transferred particle in the media and N A is the Avogadro’s number. A significant point is that the free energy of the hydrophobic effect is opposite in sign to the electrostatic effect. As a result, the sum of electrostatic and hydrophobic components of the Gibbs free energy decreases with a solute size, so that ΔG(tr) > 0 only for small ions. The specific energy of ion/dipolar layer interaction depend on the dipolar membrane surface potential ϕ s as ΔG(si) = −zFϕ s, where ze is the charge of ions and F is the Faraday constant. These calculations yielded the permeability of different ions and neutral molecules through plant membranes in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson AA (1981) Surface active compounds. Properties and applications. Khimiya, Leningrad

    Google Scholar 

  • Antonow G (1907) Sur la tension superficielle a la limite de deux couches. J Chim Phys 5:372–385

    CAS  Google Scholar 

  • Arakelyan VB, Arakelyan SB (1983) Energetic profile of a dipole molecule in the thin membrane. Biol Zh Armenii 36:775–779

    CAS  Google Scholar 

  • Arakelyan VB, Arakelyan SB, Avakyan TsM, Aslanyan VM (1985) Electrostatic effects on transport of water across bilayer lipid membranes. Biofizika 30:170–171

    CAS  Google Scholar 

  • Becker M, Kerstiens G, Schönherr J (1986) Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees 1:54–60

    Article  CAS  Google Scholar 

  • Bell RP (1932) The electrical energy of dipole molecules in solution and solubilities of ammonia, hydrogen chloride, and hydrogen sulfite in various solvents. J Chem Soc 32:1371–1382

    Google Scholar 

  • Bellaloui N, Brown PH, Dandekar AM (1999) Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant Physiol 119:735–741

    Article  PubMed  CAS  Google Scholar 

  • Bemporad D, Luttmann C, Essex JW (2004) Computer simulation of small molecule permeation across a lipid bilayer: dependence on bilayer properties and solute volume, size, and cross-sectional area. Biophys J 87:1–13

    Article  PubMed  CAS  Google Scholar 

  • Benga G (1989) Water transport in biological membranes. CRC Press, Boca Raton, pp 41–75

    Google Scholar 

  • Benjamin I (1993) Mechanism and dynamics of ion transfer across a liquid–liquid interface. Science 261:1558–1560

    Article  PubMed  CAS  Google Scholar 

  • Blandamer MJ, Symons MCR (1963) Significance of new values for ionic radii to solvation phenomena in aqueous solution. J Phys Chem 67:1304–1306

    Article  CAS  Google Scholar 

  • Born M (1920) Volumen und hydrationswärme der ionen. Z Phys 1:45–48

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationship between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic Sci 13:495–504

    Article  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Chiou CT, Sheng G, Manes M (2001) A partition-limited model of the plant uptake of organic contaminants from soil and water. Environ Sci Technol 35:1437–1444

    Article  PubMed  CAS  Google Scholar 

  • Collander R (1937) The permeability of plant protoplasts to non-electrolytes. Trans Faraday Soc 33:985–990

    Article  CAS  Google Scholar 

  • Collander R (1941) Selective absorption of cations by higher plants. Plant Physiol 16:691–720

    Article  PubMed  CAS  Google Scholar 

  • Collander R (1949) The permeability of plant protoplasts to small molecules. Physiol Plant 2:300–311

    Article  Google Scholar 

  • Collander R (1950) The distribution of organic compounds between iso-butanol and water. Acta Chem Scand 4:1085–1098

    Article  CAS  Google Scholar 

  • Collander R (1951) The partition of organic compounds between higher alcohols and water. Acta Chem Scand 5:774–780

    Article  CAS  Google Scholar 

  • Collander R (1954) The permeability of Nitella cells to non-eleetrolytes. Physiol Plant 7:420–445

    Article  CAS  Google Scholar 

  • Deamer DW, Volkov AG (1995) Proton permeation of lipid bilayers. In: Disalvo EA, Simon SA (eds) Permeability and stability of lipid bilayers. CRC Press, Boca Raton

    Google Scholar 

  • Dogonadze RR, Kornyshev AA (1974) Polar-solvent structure in theory of ion solvation. J Chem Soc, Faraday Trans 2(70):1121–1132

    Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1361

    Article  PubMed  CAS  Google Scholar 

  • Flewelling RF, Hubbell WL (1986a) Hydrophobic ion interactions with membranes: thermodynamic analysis of tetraphenylphosphonium binding to vesicles. Biophys J 49:531–540

    Article  PubMed  CAS  Google Scholar 

  • Flewelling RF, Hubbell WL (1986b) The membrane dipole potential in a total membrane potential model. Biophys J 49:541–552

    Article  PubMed  CAS  Google Scholar 

  • Gawrish K, Ruston D, Zimmerberg J, Parsegian VA, Rand RP, Fuller N (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J 61:1213–1223

    Article  Google Scholar 

  • Gennis RB (1989) Biomembranes: molecular structure and function. Springer Verlag, NY

    Google Scholar 

  • Goldschmidt VM (1926) Geochem Vert Ges der Elemente, Oslo

    Google Scholar 

  • Gourary BS, Adrian FS (1960) Wave functions for electron-excess color centers in alkali halide crystals. Solid State Phys 10:127–247

    Article  CAS  Google Scholar 

  • Grotthus CJT (1806) Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann Chim 58:54–73

    Google Scholar 

  • Haas K, Schönherr J (1979) Composition of soluble cuticular lipids and water permeability of cuticular membranes from citrus leaves. Planta 146:399–403

    Article  CAS  Google Scholar 

  • Hamilton RT, Kaler EW (1990a) Alkali metal ion transport through thin bilayers. J Phys Chem 94:2560–2566

    Article  CAS  Google Scholar 

  • Hamilton RT, Kaler EW (1990b) Facilitated ion transport through thin bilayers. J Membr Sci 54:259–269

    Article  CAS  Google Scholar 

  • Hsu FC, Marxmiller RL, Yang AYS (1990) Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique. Plant Physiol 93:1573–1578

    Article  PubMed  CAS  Google Scholar 

  • Ikonen M, Murtomaki L, Kontturi K (2007) An electrochemical method for the determination of liposome–water partition coefficients of drugs. J Electroanal Chem 602:189–194

    Article  CAS  Google Scholar 

  • Kornyshev AA (1981) Nonlocal screening of ions in a structurized polar liquid. New aspects of solvent description in electrolyte theory. Electrochim Acta 26:1–20

    Article  CAS  Google Scholar 

  • Kornyshev AA, Volkov AG (1984) On the evaluation of standard Gibbs energies of ion transfer between two solvents. J Electroanal Chem 180:363–381

    Article  CAS  Google Scholar 

  • Ksenzhek OS, Volkov AG (1998) Plant energetics. Academic, San Diego

    Google Scholar 

  • Landau LD, Lifshitz EM (1984) Electrodynamics of continuous media, 2nd edn. Pergamon, NY

    Google Scholar 

  • Leontiadou H, Mark AE, Marrink SJ (2004) Molecular dynamics simulation of hydrophobic pores in lipid bilayers. Biophys J 86:2156–2164

    Article  PubMed  CAS  Google Scholar 

  • Macdonald RC (1976) Energetics of permeation of thin lipid membranes by ions. Biochim Biophys Acta 448:193–198

    Article  PubMed  CAS  Google Scholar 

  • Mälkiä A, Murtomäki L, Urtti A, Kontturi K (2004) Drug permeation in biomembranes in vitro and in silico prediction and influence of physicochemical properties. Eur J Pharm Sci 23:13–47

    Article  PubMed  CAS  Google Scholar 

  • Markin VS, Kozlov MM (1985) Pores statistics in bilayer lipid membranes. Biol Membr 2:205–223

    CAS  Google Scholar 

  • Markin VS, Volkov AG (1987a) The standard Gibbs energy of ion resolvation and non-linear dielectric effects. J Electroanal Chem 235:23–40

    Article  CAS  Google Scholar 

  • Markin VS, Volkov AG (1987b) Theoretical description of Gibbs energy of ion transfer. Russ Chem Rev 56:1953–1972

    Article  CAS  Google Scholar 

  • Markin VS, Volkov AG (1987c) The standard Gibbs free energy of ion transfer. Sov Electrochem 23:1105–1112

    CAS  Google Scholar 

  • Markin VS, Volkov AG (1989a) Interfacial potentials at the interface between two immiscible electrolyte solutions–some problems in definitions and interpretation. J Colloid Interface Sci 131:382–392

    Article  CAS  Google Scholar 

  • Markin VS, Volkov AG (1989b) The Gibbs energy of ion transfer between two immiscible liquids. Electrochim Acta 34:93–107

    Article  CAS  Google Scholar 

  • Markin VS, Volkov AG (1990) Potentials at the interface between two immiscible electrolyte solution. Adv Colloid Interface Sci 31:111–152

    Article  CAS  Google Scholar 

  • Markin VS, Volkov AG (2004) Distribution potential in small liquid–liquid systems. J Phys Chem B 108:13807–13812

    Article  CAS  Google Scholar 

  • Markin VS, Volkov AG, Jovanov E (2008) Active movements in plants: mechanism of trap closure by Dionaea muscipula ellis. Plant Signal Behav 3:778–783

    Article  PubMed  Google Scholar 

  • Marrink SJ, Berendsen HCJ (1996) Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J Phys Chem 100:16729–16738

    Article  CAS  Google Scholar 

  • Marrink SJ, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168

    Article  CAS  Google Scholar 

  • Marrink SJ, Jahnig F, Berendsen HJC (1996) Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys J 71:632–647

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1999) Mineral nutrition of higher plants. Academic, San Diego

    Google Scholar 

  • Mohr H, Schopfer P (1994) Plant physiology. Springer, Berlin

    Google Scholar 

  • Mueller P, Rudin DO, Ti Tien H, Wescott WC (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–980

    Article  PubMed  CAS  Google Scholar 

  • Murtomaki L, Manzanares JA, Mafe S, Kontturi K (2001) Phospholipids at liquid–liquid interfaces and their effect on charge transfer. In: Volkov AG (ed) Liquid interfaces in chemical, biological, and pharmaceutical applications, surfactant science series, vol 95. M Dekker, NY

    Google Scholar 

  • Nagle JF, Morowitz HJ (1978) Molecular mechanisms for proton transport in membrane. Proc Natl Acad Sci U S A 75:298–302

    Article  PubMed  CAS  Google Scholar 

  • Nagle JF, Tristram-Nagle S (1983) Hydrogen bonded chain mechanisms for proton conduction and proton pumping. J Membr Biol 74:1–14

    Article  PubMed  CAS  Google Scholar 

  • Neumke B, Lauger P (1969) Nonlinear electrical effects in lipid bilayer membranes II. Integration of the generalized Nernst–Plank equations. Biophys J 9:1160–1170

    Article  Google Scholar 

  • Nobel PS (1999) Physicochemical and environmental plant physiology. Academic, San Diego

    Google Scholar 

  • O’Neill SD, Keith B, Rappaport L (1986) Transport of gibberellin A1 in cowpea membrane vesicles. Plant Physiol 80:81–817

    Google Scholar 

  • Overton E (1895) Über die osmotishen Eigenschaften der lebenden Pflanzen und Tierzelles. Vierteljahrsschr Naturforch Ges Zuerich 40:159–201

    Google Scholar 

  • Overton E (1899) Über die allgemeinen osmotishen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung fur die physiologie. Vierteljahrsschr Naturforch Ges Zuerich 44:88–114

    Google Scholar 

  • Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 70:339–348

    Article  PubMed  CAS  Google Scholar 

  • Paula S, Volkov AG, Deamer DW (1998) Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism. Biophys J 74:319–327

    Article  PubMed  CAS  Google Scholar 

  • Pauling L (1927) The sizes of ions and the structure of ionic crystals. J Amer Chem Soc 49:765–790

    Article  CAS  Google Scholar 

  • Pohorille A, Wilson MA (1996) Excess chemical potential of small solutes across water-membrane and water-hexane interfaces. J Chem Phys 104:3760–3773

    Article  PubMed  CAS  Google Scholar 

  • Poznansky M, Tong S, Perrin WC, Milgram JM, Solomon AK (1976) Nonelectrolyte diffusion across lipid bilayer systems. J Gen Physiol 67:45–66

    Article  PubMed  CAS  Google Scholar 

  • Ray P (1960) On the theory of osmotic water movement. Plant Physiol 35:783–795

    Article  PubMed  CAS  Google Scholar 

  • Rusanov AI, Dukhin SS, Yaroshchuk AE (1984) Problem of the surface layer in liquid mixtures and the electric double layer. Kolloidnyi Zh 46:490–494

    CAS  Google Scholar 

  • Rusanov AI, Kuni FM (1982) Theory of nucleation on charged nuclei 1. General thermodynamic relationships. Kolloidnyi Zh 44:934–941

    CAS  Google Scholar 

  • Sisskind B, Kasarnowsky J (1933) Studying of gases solubilities 2. The solubility of argon. Zh Fiz Khim 4:683–690

    Google Scholar 

  • Taiz L, Zeiger E (1999) Plant physiology. Sinauer Associates, Sunderland

    Google Scholar 

  • Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. Wiley, NY

    Google Scholar 

  • Tien TH (1974) Bilayer lipid membranes (BLM) theory and practice. M Dekker, NY

    Google Scholar 

  • Tien TH, Ottova-Leitmannova A (2000) Membrane biophysics as viewed from experimental bilayer lipid membranes. Elsevier, Amsterdam

    Google Scholar 

  • Tolman R (1949) The effect of droplet size on surface tension. J Chem Phys 17:333–337

    Article  CAS  Google Scholar 

  • Trapp S (2000) Modeling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56:767–778

    Article  CAS  Google Scholar 

  • Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11(1):33–39

    Article  CAS  Google Scholar 

  • Tyerman SD, Steudle E (1984) Determination of solute permeability in Chara internodes by a turgor minimum method. Plant Physiol 74:464–468

    Article  PubMed  CAS  Google Scholar 

  • Uhlig HH (1937) The solubilities of gases and surface tension. J Phys Chem 41:1215–1225

    Article  CAS  Google Scholar 

  • Volkov AG (1989) Oxygen evolution in the course of photosynthesis. Bioelectrochem Bioenerg 21:3–24

    Article  CAS  Google Scholar 

  • Volkov AG (1996) Potentials of thermodynamic and free zero charge at the interface between two immiscible electrolytes. Langmuir 12:3315–3319

    Article  CAS  Google Scholar 

  • Volkov AG (2000) Green plants: electrochemical interfaces. J Electroanal Chem 483:150–156

    Article  CAS  Google Scholar 

  • Volkov AG (ed) (2001) Liquid interfaces in chemical, biological, and pharmaceutical applications, surfactant science series, vol 95. M Dekker, NY

    Google Scholar 

  • Volkov AG (ed) (2003) Interfacial catalysis. M Dekker, NY

    Google Scholar 

  • Volkov AG (ed) (2006) Plant electrophysiology. Springer, Berlin

    Google Scholar 

  • Volkov AG (2008a) Gibbs energy of ion and dipole transfer. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, Berlin, p 305

    Google Scholar 

  • Volkov AG (2008b) Ion transport through membranes and ion channels. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, Berlin, pp 369–370

    Google Scholar 

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2008a) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146:694–702

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2007) Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal Behav 2:139–144

    Article  PubMed  Google Scholar 

  • Volkov AG, Baker K, Foster JC, Clemmons J, Jovanov E, Markin VS (2011a) Circadian variations in biologically closed electrochemical circuits in Aloe vera and Mimosa pudica. Bioelectrochem 81:39–45

    Article  CAS  Google Scholar 

  • Volkov AG, Carrell H, Adesina T, Markin VS, Jovanov E (2008b) Plant electrical memory. Plant Signal Behav 3:490–492

    Article  PubMed  Google Scholar 

  • Volkov AG, Carrell H, Baldwin A, Markin VS (2009a) Electrical memory in Venus flytrap. Bioelectrochem 75:142–147

    Article  CAS  Google Scholar 

  • Volkov AG, Carrell H, Markin VS (2009b) Biologically closed electrical circuits in Venus flytrap. Plant Physiol 149:1661–1667

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Coopwood KJ, Markin VS (2008c) Inhibition of the Dionaea muscipula ellis trap closure by ion and water channels blockers and uncouplers. Plant Sci 175:642–649

    Article  CAS  Google Scholar 

  • Volkov AG, Deamer DW (1994) Mechanisms of the passive ion permeation of lipid bilayers: partition or transient aqueous pores. In: Allen MJ, Cleary SF, Sowers AE (eds) Charge and field effects in biosystems-4. World Scientific, Singapore

    Google Scholar 

  • Volkov AG, Deamer DW, Tanelian DI, Markin VS (1997a) Liquid interfaces in chemistry and biology. Wiley, NY

    Google Scholar 

  • Volkov AG, Foster JC, Ashby TA, Walker RK, Johnson JA, Markin VS (2010a) Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant Cell Environ 33:163–173

    Article  PubMed  Google Scholar 

  • Volkov AG, Foster JC, Baker KD, Markin VS (2010b) Mechanical and electrical anisotropy in Mimosa pudica. Plant Signal Behav 5:1211–1221

    Article  PubMed  Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2010c) Molecular electronics in pinnae of Mimosa pudica. Plant Signal Behav 5:826–831

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2010d) Signal transduction in Mimosa pudica: biologically closed electrical circuits. Plant Cell Environ 33:816–827

    Article  PubMed  Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2011b) Anisotropy and nonlinear properties of electrochemical circuits in leaves of Aloe vera L. Bioelectrochem 81:4–9

    Article  CAS  Google Scholar 

  • Volkov AG, Wooten JD, Waite AJ, Brown CR, Markin VS (2011c) Circadian rhythms in electrical circuits of Clivia miniata. J Plant Physiol 168:1753–1760

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Kornyshev AA (1985) Dependence of the free Gibbs energy of resolvation during ion transfer from one solvent to another on the ion size. Sov Electrochem 21:814–817

    CAS  Google Scholar 

  • Volkov AG, Markin VS (2002) Electrochemical double layers: liquid–liquid interfaces. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry: thermodynamics of electrified interfaces, vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  • Volkov AG, Paula S, Deamer DW (1997b) Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem Bioenerg 42:153–160

    Article  CAS  Google Scholar 

  • Volkov AG, Pinnock MR, Lowe DC, Gay MS, Markin VS (2011d) Complete hunting cycle of dionaea muscipula: consecutive steps and their electrical properties. J Plant Physiol 168:109–120

    Article  PubMed  CAS  Google Scholar 

  • Vorotyntsev MA, Kornyshev AA (1993) Electrostatics of a medium with the spatial dispersion. Nauka, Moscow

    Google Scholar 

  • Waddington TC (1966) Ionic radii and the method of the undetermined parameter. Trans Faraday Soc 62:1482–1492

    Article  CAS  Google Scholar 

  • Wilson MA, Pohorille A (1996) Mechanism of unassisted ion transport across membrane bilayers. J Am Chem Soc 118:6580–6587

    Article  PubMed  CAS  Google Scholar 

  • Zahn D, Brickmann J (2001) Quantum-classical simulation of proton transport via a phospholipid bilayer. Phys Chem Chem Phys 3:848–852

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant CBET-1064160 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Volkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Volkov, A.G., Murphy, V.A., Markin, V.S. (2012). Mechanism of Passive Permeation of Ions and Molecules Through Plant Membranes. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29119-7_14

Download citation

Publish with us

Policies and ethics