Skip to main content

Membrane Excitation and Cytoplasmic Streaming as Modulators of Photosynthesis and Proton Flows in Characean Cells

  • Chapter
  • First Online:

Abstract

Internodal cells of Chara corallina represent a unique model system to study interactions between photosynthesis, membrane excitation, and cytoplasmic streaming, as well as the role of these processes in generation and regulation of functional patterns in green cells and tissues. It is established that the inflow of cytoplasm from darkened cell parts promotes photosynthetic activity of chloroplasts residing at intermediate irradiance, whereas the arrival of cytoplasm from illuminated regions suppresses this activity and enhances nonphotochemical quenching. The vectorial movement of the “irradiated” cytoplasm induces functional asymmetry around the light spot (pattern formation) both in the chloroplast layer and in the plasma membrane. The messenger transported between illuminated and shaded cell parts was found to move at the velocity of cytoplasmic streaming. The effects of membrane excitation (action potential) on photosynthesis and membrane H+ transport are area specific; they are mediated by different mechanisms under physiological conditions and in the presence of some redox-cycling compounds. The influence of action potential on chlorophyll fluorescence under spot illumination appears to involve the activation of Ca2+-mediated pathways and the suppression of metabolite exchange between darkened and illuminated cell parts due to the stoppage of cyclosis. The cytoplasmic flow from darkened to illuminated cell parts seems to enhance interactions between respiratory and light-dependent metabolism, which promotes photosynthesis and protects chloroplasts from photooxidative damage under excess light.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AOI:

area of inspection where external pH and chlorophyll fluorescence are measured in Chara internodal cell;

AP:

action potential;

CB:

cytochalasin B;

DTT:

dithiothreitol;

MV:

methyl viologen;

NPQ:

nonphotochemical quenching;

pHc :

cytosolic pH;

pHo :

pH near the cell surface in the outer medium;

PM:

plasma membrane;

PFD:

photon flux density;

PSI and PSII:

photosystems I and II;

ROS:

reactive oxygen species;

ΔF/F m′:

effective quantum yield of electron transport in PSII

References

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  PubMed  CAS  Google Scholar 

  • Beilby MJ (2007) Action potential in charophytes. Int Rev Cytol 257:43–82. doi:10.1016/S0074-7696(07)57002-6

    Article  PubMed  CAS  Google Scholar 

  • Beilby MJ, Mimura T, Shimmen T (1993) The proton pump, high pH channels, and excitation: voltage clamp studies of intact and perfused cells of Nitellopsis obtusa. Protoplasma 175:144–152

    Article  CAS  Google Scholar 

  • Berestovsky GN, Kataev AA (2005) Voltage-gated calcium and Ca2+-activated chloride channels and Ca2+ transients: voltage-clamp studies of perfused and intact cells of Chara. Eur Biophys J 34:973–986. doi:10.1007/s00249-005-0477-9

    Article  PubMed  CAS  Google Scholar 

  • Bisson MA, Walker NA (1980) The Chara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH. J Membr Biol 56:1–7

    Article  CAS  Google Scholar 

  • Borowitzka MA (1987) Calcification in algae: mechanisms and the role of metabolism. Crit Rev Plant Sci 6:1–45

    Article  Google Scholar 

  • Bradley MO (1973) Microfilaments and cytoplasmic streaming: inhibition of streaming with cytochalasin. J Cell Sci 12:327–343

    PubMed  CAS  Google Scholar 

  • Braun M, Foissner I, Lühring H, Schubert H, Thiel G (2007) Characean algae: still a valid model system to examine fundamental principles in plants. Progr Bot 68:193–220

    Article  Google Scholar 

  • Bulychev AA, Dodonova SO (2011) Effects of cyclosis on chloroplast–cytoplasm interactions revealed with localized lighting in characean cells at rest and after electrical excitation. Biochim Biophys Acta 1807:1221–1230. doi:10.1016/j.bbabio.2011.06.009

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Kamzolkina NA (2006) Differential effects of plasma membrane electric excitation on H+ fluxes and photosynthesis in characean cells. Bioelectrochemistry 69:209–215. doi:10.1016/j.bioelechem.2006.03.001

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Krupenina NA (2008a) Action potential opens access for the charged cofactor to the chloroplasts of Chara corallina cells. Russ J Plant Physiol 55:175–184. doi:10.1134/S1021443708020039

    Article  CAS  Google Scholar 

  • Bulychev AA, Krupenina NA (2008b) Facilitated permeation of methyl viologen into chloroplasts in situ during electric pulse generation in excitable plant cell membranes. Biochem (Moscow), Suppl Series A: Membr Cell Biol 2:387–394. doi:10.1134/S1990747808040132

    Article  Google Scholar 

  • Bulychev AA, Krupenina NA (2008c) Effects of plasma membrane excitation on spatially distributed H+ fluxes, photosynthetic electron transport and non-photochemical quenching in the plant cell. In: Bernstein EM (ed) Bioelectrochemistry research developments. Nova Science Publishers, New York

    Google Scholar 

  • Bulychev AA, Krupenina NA (2009) Transient removal of alkaline zones after excitation of Chara cells is associated with inactivation of high conductance in the plasmalemma. Plant Signal Behav 4:727–734

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Krupenina NA (2010) Physiological implications of action potential in characean cell: effects on pH bands and spatial pattern of photosynthesis. In: DuBois ML (ed) Action potential: biophysical and cellular context, initiation, phases and propagation. Nova Science Publishers, New York

    Google Scholar 

  • Bulychev AA, Vredenberg WJ (2003) Spatio-temporal patterns of photosystem II activity and plasma-membrane proton flows in Chara corallina cells exposed to overall and local illumination. Planta 218:143–151. doi:10.1007/s00425-003-1084-6

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Cherkashin AA, Rubin AB, Vredenberg WJ, Zykov VS, Müller SC (2001a) Comparative study on photosynthetic activity of chloroplasts in acid and alkaline zones of Chara corallina. Bioelectrochemistry 53:225–232

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Polezhaev AA, Zykov SV, Pljusnina TY, Riznichenko GY, Rubin AB, Jantoss W, Zykov VS, Müller SC (2001b) Light-triggered pH banding profile in Chara cells revealed with a scanning pH microprobe and its relation to self-organization phenomena. J Theor Biol 212:275–294. doi:10.1006/jtbi.2001.2375

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Zykov SV, Rubin AB, Müller SC (2003) Transitions from alkaline spots to regular bands during pH pattern formation at the plasmalemma of Chara cells. Eur Biophys J 32:144–153. doi:10.1007/s00249-003-0280-4

    PubMed  CAS  Google Scholar 

  • Bulychev AA, Kamzolkina NA, Luengviriya J, Rubin AB, Müller SC (2004) Effect of a single excitation stimulus on photosynthetic activity and light-dependent pH banding in Chara cells. J Membr Biol 202:11–19. doi:10.1007/s00232-004-0716-5

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Van den Wijngaard PWJ, De Boer AH (2005) Spatial coordination of chloroplast and plasma membrane activities in Chara cells and its disruption through inactivation of 14-3-3 proteins. Biochemistry (Moscow) 70:55–61

    CAS  Google Scholar 

  • Coelho SMB, Brownlee C, Bothwell JHF (2008) A tip-high, Ca2+-interdependent, reactive oxygen species gradient is associated with polarized growth in Fucus serratus zygotes. Planta 227:1037–1046. doi:10.1007/s00425-007-0678-9

    Article  PubMed  CAS  Google Scholar 

  • Davies E (2006) Electrical signals in plants: facts and hypotheses. In: Volkov A (ed) Plant electrophysiology theory and methods. Springer, Berlin

    Google Scholar 

  • Dodge A (1989) Herbicides interacting with photosystem I. In: Dodge A (ed) Herbicides and plant metabolism. Cambridge University Press, Cambridge

    Google Scholar 

  • Dodonova SO, Bulychev AA (2011) Cyclosis-related asymmetry of chloroplast–plasma membrane interactions at the margins of illuminated area in Chara corallina cells. Protoplasma 248(4):737–749. doi:10.1007/s00709-010-0241-6

    Article  PubMed  CAS  Google Scholar 

  • Dodonova SO, Krupenina NA, Bulychev AA (2010) Suppression of the plasma membrane H+-conductance on the background of high H+-pump activity in dithiothreitol-treated Chara cells. Biochem (Moscow), Suppl Series A Membr Cell Biol 4:389–396. doi:10.1134/S1990747810040094

    Article  Google Scholar 

  • Dorn A, Weisenseel MH (1984) Growth and the current pattern around internodal cells of Nitella flexilis L. J Exp Bot 35:373–383

    Article  Google Scholar 

  • Eremin A, Bulychev A, Krupenina NA, Mair T, Hauser MJB, Stannarius R, Müller S, Rubin AB (2007) Excitation-induced dynamics of external pH pattern in Chara corallina cells and its dependence on external calcium concentration. Photochem Photobiol Sci 6:103–109. doi:10.1039/b607602e

    Article  PubMed  CAS  Google Scholar 

  • Feijo JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144:483–496

    Article  PubMed  CAS  Google Scholar 

  • Felle HH (1998) The apoplastic pH of the Zea mays root cortex as measured with pH-sensitive microelectrodes: aspects of regulation. J Exp Bot 49:987–995

    CAS  Google Scholar 

  • Finazzi G, Johnson GN, Dallosto L, Joliot P, Wollman F-A, Bassi R (2004) A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proc Natl Acad Sci U S A 101:12375–12380. doi:10.1073/pnas.0404798101

    Article  PubMed  CAS  Google Scholar 

  • Foissner I (2004) Microfilaments and microtubules control the shape, motility, and subcellular distribution of cortical mitochondria in characean internodal cells. Protoplasma 224:145–157. doi:10.1007/s00709-004-0075-1

    Article  PubMed  CAS  Google Scholar 

  • Foissner I, Wasteneys GO (2007) Wide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cells. Plant Cell Physiol 48:585–597. doi:10.1093/pcp/pcm030

    Article  PubMed  CAS  Google Scholar 

  • Fromm J (2006) Long-distance electrical signaling and physiological functions in higher plants. In: Volkov A (ed) Plant electrophysiology theory and methods. Springer, Berlin

    Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant, Cell Environ 30:249–257. doi:10.1111/j.1365-3040.2006.01614.x

    Article  CAS  Google Scholar 

  • Goldstein RE, Tuval I, Van de Meent J-W (2008) Microfluidics of cytoplasmic streaming and its implications for intracellular transport. Proc Natl Acad Sci U S A 105:3663–3667. doi:10.1073/pnas.0707223105

    Article  PubMed  CAS  Google Scholar 

  • Gow NAR, Kropf DL, Harold FM (1984) Growing hyphae of Achlya bisexualis generate a longtitudinal pH gradient in the surrounding medium. J Gen Microbiol 130:2967–2974

    PubMed  CAS  Google Scholar 

  • Grams TEE, Lautner S, Felle HH, Matyssek R, Fromm J (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant, Cell Environ 32:319–326. doi:10.1111/j.1365-3040.2008.01922.x

    Article  CAS  Google Scholar 

  • Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505. doi:10.1007/s10265-003-0110-x

    Article  PubMed  CAS  Google Scholar 

  • Hansen U-P, Moldaenke C, Tabrizi H, Ramm D (1993) The effect of transthylakoid proton uptake on cytosolic pH and the imbalance of ATP and NADPH/H+ production as measured by CO2− and light-induced depolarization of the plasmalemma. Plant Cell Physiol 34:681–695

    CAS  Google Scholar 

  • Harada A, Shimazaki K (2009) Measurement of changes in cytosolic Ca2+ in Arabidopsis guard cells and mesophyll cells in response to blue light. Plant Cell Physiol 50:360–373. doi:10.1093/pcp/pcn203

    Article  PubMed  CAS  Google Scholar 

  • Jansson C, Northen T (2010) Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage. Curr Opin Biotechnol 21:1–7. doi:10.1016/j.copbio.2010.03.017

    Article  Google Scholar 

  • Johnson CH, Shingles R, Ettinger WF (2006) Regulation and role of calcium fluxes in the chloroplast. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Dordrecht

    Google Scholar 

  • Kamiya N (1959) Protoplasmic streaming. Springer, Wien

    Book  Google Scholar 

  • Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2003) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722. doi:10.1046/j.1469-8137.2003.00985.x

    Article  Google Scholar 

  • Krol E, Dziubinska H, Trebacz K (2010) What do plants need action potentials for? In: DuBois ML (ed) Action potential: biophysical and cellular context, initiation, phases and propagation. Nova Science Publisher, New York

    Google Scholar 

  • Krupenina NA, Bulychev AA (2007) Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 1767:781–788. doi:10.1016/j.bbabio.2007.01.004

    Article  PubMed  CAS  Google Scholar 

  • Krupenina NA, Bulychev AA, Roelfsema MRG, Schreiber U (2008) Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photochem Photobiol Sci 7:681–688. doi:10.1039/b802243g

    Article  PubMed  CAS  Google Scholar 

  • Krupenina NA, Bulychev AA, Schreiber U (2011) Chlorophyll fluorescence images demonstrate variable pathways in the effects of plasma membrane excitation on electron flow in chloroplasts of Chara cells. Protoplasma 248:513–522. doi:10.1007/s00709-010-0198-5

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ (1975a) The influence of light intensity on the activation and operation of the hydroxyl efflux system of Chara corallina. J Exp Bot 26:347–360

    Article  CAS  Google Scholar 

  • Lucas WJ (1975b) Photosynthetic fixation of 14carbon by internodal cells of Chara corallina. J Exp Bot 26:331–346

    Article  CAS  Google Scholar 

  • Lucas WJ, Dainty J (1977) Spatial distribution of functional OH carriers along a characean internodal cell: determined by the effect of cytochalasin B on H14CO3 assimilation. J Membr Biol 32:75–92

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Nuccitelli R (1980) HCO3 and OH transport across the plasmalemma of Chara: spatial resolution obtained using extracellular vibrating probe. Planta 150:120–131

    Article  CAS  Google Scholar 

  • Lunevsky VS, Zherelova OM, Vostrikov IY, Berestovsky GN (1983) Excitation of characeae cell membranes as a result of activation of calcium and chloride channels. J Membr Biol 72:43–58

    Article  Google Scholar 

  • Marten I, Deeken R, Hedrich R, Roelfsema MRG (2010) Light-induced modification of plant plasma membrane ion transport. Plant Biol 12:64–79. doi:10.1111/j.1438-8677.2010.00384.x

    Article  PubMed  CAS  Google Scholar 

  • McConnaughey T (1991) Calcification in Chara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnol Oceanogr 36:619–628

    Article  CAS  Google Scholar 

  • Metraux JP, Richmond PA, Taiz L (1980) Control of cell elongation in Nitella by endogeneous cell wall pH gradients. Multiaxial extensibility and growth studies. Plant Physiol 65:204–210

    Article  PubMed  CAS  Google Scholar 

  • Muto S, Izawa S, Miyachi S (1982) Light-induced Ca2+ uptake by intact chloroplasts. FEBS Lett 139:250–254

    Article  CAS  Google Scholar 

  • Nobel PS (2005) Physicochemical and environmental plant physiology. Academic, London

    Google Scholar 

  • Ogata K, Toko K, Fujiyoshi T, Yamafuji K (1987) Electric inhomogeneity in membrane of characean internode influenced by light-dark transition, O2, N2, CO2-free air and extracellular pH. Biophys Chem 26:71–81

    Article  PubMed  CAS  Google Scholar 

  • Palmgren MG (1998) Protein gradients and plant growth: role of the plasma membrane H+-ATPase. Adv Bot Res 28:1–70

    Article  CAS  Google Scholar 

  • Pavlovic A, Slovakova L, Pandolfi C, Mancuso S (2011) On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). J Exp Bot 62:1991–2000. doi:10.1093/jxb/erq404

    Article  PubMed  CAS  Google Scholar 

  • Pickard WF (2003) The role of cytoplasmic streaming in symplastic transport. Plant, Cell Environ 26:1–15

    Article  CAS  Google Scholar 

  • Plieth C, Tabrizi H, Hansen U-P (1994) Relationship between banding and photosynthetic activity in Chara corallina as studied by the spatially different induction curves of chlorophyll fluorescence observed by an image analysis system. Physiol Plant 91:205–211

    Article  CAS  Google Scholar 

  • Plyusnina TY, Lavrova AI, Riznichenko GY, Rubin AB (2005) Modeling the pH and the transmembrane potential banding along the cell membrane of alga Chara corallina. Biophysics 50:434–440

    Google Scholar 

  • Prins HBA, Snel JFH, Zanstra PE, Helder RJ (1982) The mechanism of bicarbonate assimilation by the polar leaves of Potamogeton and Elodea. CO2 concentrations at the leaf surface. Plant, Cell Environ 5:207–214

    CAS  Google Scholar 

  • Rayle DL, Cleland DL (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Schmölzer PM, Höftberger M, Foissner I (2011) Plasma membrane domains participate in pH banding of Chara internodal cells. Plant Cell Physiol 52:1274–1288. doi:10.1093/pcp/pcr074

    Article  PubMed  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude (PAM) fluorometry and saturation pulse method. In: Papageorgiou G, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Schurr U, Walter A, Rascher U (2006) Functional dynamics of plant growth and photosynthesis—from steady-state to dynamics—from homogeneity to heterogeneity. Plant, Cell Environ 29:340–352. doi:10.1111/j.1365-3040.2005.01490.x

    Article  CAS  Google Scholar 

  • Sehnke PC, DeLille JM, Ferl RJ (2002) Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14:S339–S354. doi:10.1105/tpc.010430

    PubMed  CAS  Google Scholar 

  • Shepherd VA, Beilby MJ, Khazaaly SAS, Shimmen T (2008) Mechano-perception in Chara cells: the influence of salinity and calcium on touch-activated receptor potentials, action potentials and ion transport. Plant, Cell Environ 31:1575–1591

    Article  CAS  Google Scholar 

  • Shimmen T, Wakabayashi A (2008) Involvement of membrane potential in alkaline band formation by internodal cells of Chara corallina. Plant Cell Physiol 49:1614–1620. doi:10.1093/pcp/pcn136

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T, Yamamoto A (2002) Induction of a new alkaline band at a target position in internodal cells of Chara corallina. Plant Cell Physiol 43:980–983

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T, Yokota E (2004) Cytoplasmic streaming in plants. Curr Opin Cell Biol 16:68–72. doi:10.1016/j.ceb.2003.11.009

    Article  PubMed  CAS  Google Scholar 

  • Siebke K, Weis E (1995) Assimilation images of leaves of Glechoma hederacea: analysis of non-synchronous stomata related oscillations. Planta 196:155–165

    Article  CAS  Google Scholar 

  • Smith JR, Walker NA (1985) Effects of pH and light on the membrane conductance measured in the acid and basic zones of Chara. J Membr Biol 83:193–205

    Article  Google Scholar 

  • Spear DG, Barr JK, Barr CE (1969) Localization of hydrogen ion and chloride ion fluxes in Nitella. J Gen Physiol 54:397–414

    Article  PubMed  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1997) The propagation of slow wave potentials in pea epicotyls. Plant Physiol 113:209–217

    PubMed  CAS  Google Scholar 

  • Takakura T, Fang W (2002) Climate under cover. Kluwer, Dordrecht

    Book  Google Scholar 

  • Tazawa M (2003) Cell physiological aspects of the plasma membrane electrogenic H+ pump. J Plant Res 116:419–442. doi:10.1007/s10265-003-0109-3

    Article  PubMed  CAS  Google Scholar 

  • Thiel G, Wacke M, Foissner I (2002) Ca2+ mobilization from internal stores in electrical membrane excitation in Chara. Progr Bot 64:217–233

    Article  Google Scholar 

  • Van Sambeek JW, Pickard BG (1976) Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. III. Measurements of CO2 and H2O flux. Can J Bot 54:2662–2671

    Article  Google Scholar 

  • Verchot-Lubicz J, Goldstein RE (2010) Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma 240:99–107. doi:10.1007/s00709-009-0088-x

    Article  PubMed  Google Scholar 

  • Walker NA, Smith FA, Cathers IR (1980) Bicarbonate assimilation by fresh-water charophytes and higher plants. I. Membrane transport of bicarbonate ions is not proven. J Membr Biol 57:51–58

    Article  CAS  Google Scholar 

  • Williamson RE, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296:647–650

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation of Basic Research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bulychev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bulychev, A.A. (2012). Membrane Excitation and Cytoplasmic Streaming as Modulators of Photosynthesis and Proton Flows in Characean Cells. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29119-7_12

Download citation

Publish with us

Policies and ethics