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Abstract. We show that no commitment scheme that is hiding and
binding according to the standard definition is semantically-secure un-
der selective opening attack (SOA), resolving a long-standing and fun-
damental open question about the power of SOAs. We also obtain the
first examples of IND-CPA encryption schemes that are not secure un-
der SOA, both for sender corruptions where encryption coins are revealed
and receiver corruptions where decryption keys are revealed. These re-
sults assume only the existence of collision-resistant hash functions.

1 Introduction

A commitment scheme E can be applied to a message m and coins r to (de-
terministically) produce a commitment c ← E(m; r) that is sent to a receiver.
The sender can later “open” the commitment by providing m, r and the receiver
checks that E(m; r) = c. The first security requirement, often called hiding, is
formalized as IND-CPA, namely an adversary knowing m0, m1 and E(mb; r) for
random b, r has negligible advantage in computing challenge bit b. The second
requirement, binding, asks that it be hard for an adversary to produce r0, r1

and distinct m0, m1 such that E(m0; r0) = E(m1; r1) �= ⊥. Let us refer to a
commitment scheme as HB-secure (Hiding and Binding) if it satisfies both these
properties. HB-security is the standard requirement and HB-secure commitment
schemes are a fundamental tool in cryptography in general and in protocol de-
sign in particular. HB-secure commitment implies PRGs [31], PRFs [21] and ZK
proofs for NP [24].

Suppose there are n committers, the i-th computing its commitment c[i] ←
E(m[i]; r[i]) to its message m[i] using coins r[i], the coins of different commit-
ters being of course not only random but also independent of each other. An
adversary computes, as a function of the vector c of commitments, a subset
I ⊆ {1, . . . , n} of the senders, and obtains the corresponding openings, namely
〈m[i] : i ∈ I〉 and 〈r[i] : i ∈ I〉. This is called a selective opening attack (SOA).
We say that E is SOA-secure if privacy of the un-opened messages is preserved,
meaning the adversary, after its SOA, cannot learn anything about 〈m[i] : i �∈ I〉
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other than it would from possession of 〈m[i] : i ∈ I〉. (That is, the coins are
unhelpful.) SOAs arise quite naturally in multi-party cryptographic protocols
and SOA-security is desirable in many such settings.

A fundamental question that was posed in this area is whether (standard)
HB-security implies SOA-security, meaning, is a HB-secure commitment scheme
also SOA-secure? So far, the question has received neither a positive nor a neg-
ative answer. Intuitively, the answer would appear to be “yes,” for how could
the coins accompanying the opened messages help, beyond the opened mes-
sages themselves, in revealing something about the un-opened messages? Yet
attempts to prove SOA-security of a commitment scheme based on its HB-
security have failed. But attempts to find a counter-example have also failed.
We do not have a single example, even artificial, of a HB-secure commitment
scheme that is demonstrably not SOA-secure. This situation has vexed and in-
trigued cryptographers for many years and been the subject or inspiration for
much work [12,19,13,35,3,20,29,7,28].

This paper answers this long-standing open question. We show that the answer
is negative. We give an example of a HB-secure commitment scheme which we
prove is not SOA-secure. In fact our result is much stronger. It shows that no HB-
secure commitment scheme is SOA-secure. Given any HB-secure commitment
scheme, we present an attack showing it is not SOA-secure. Before going on to
our results on encryption let us expand on this result on commitment including
its implications and its relation to previous work.

SOA-secure commitment. Dwork, Naor, Reingold and Stockmeyer (DNRS)
[19] gave a definition of SOA-secure commitments, henceforth referred to as SS-
SOA, that captures semantic security for relations via a simulation-based for-
malization. Suitable for applications and widely accepted as the right definition,
SS-SOA is what we use in our results. We show that no HB-secure commitment
scheme is SS-SOA-secure by presenting, for any given HB-secure commitment
scheme E , an adversary for which we prove that there is no successful simulator.
We do not assume the simulation is blackbox. The only assumption made is the
existence of a collision-resistant (CR) hash function.

This general result rules out SS-SOA security for particular schemes. For
example, a widely employed way to commit to m ∈ Zp is by picking r ∈ Zp at
random and returning E(m; r) = gmhr ∈ G where g, h are generators of a group
G of prime order p [36]. This scheme is binding if the DL problem is hard in G

and it is unconditionally hiding. Our results imply that it is not SS-SOA secure.
They yield a specific attack, in the form of an adversary for which there is no
simulator. Since CR hash functions exist if DL is hard, one does not even need
extra assumptions. We stress that this is just an example; our result rules out
SS-SOA security for all HB-secure schemes.

Implications for IND-SOA-CRS. An indistinguishability-based definition of
SOA-secure commitment is given in [3,29]. It only applies when the message vec-
tor m is drawn from what’s called a “conditionally re-samplable (CRS) distribu-
tion,” and accordingly we denote it IND-SOA-CRS. This definition is of limited
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use in applications because message distributions there are often not CRS, but
for CRS distributions the definition is intuitively compelling and sound.

Letting SS-SOA-CRS denote the restriction of SS-SOA to CRS distributions,
[3,29] had noted that SS-SOA-CRS implies IND-SOA-CRS and asked whether
the converse was true. We settle this question in the negative, showing that
SS-SOA-CRS is strictly stronger. We arrive at this separation by combining
two facts. First, the message distribution underlying our negative result is CRS,
meaning we say that there does not exist a HB-secure commitment scheme that
is SS-SOA-CRS, not just SS-SOA. Second, it is known that there does exist a
HB-secure commitment scheme that is IND-SOA-CRS [3,29].

Hofheinz [3,29] shows that any commitment scheme that is statistically hiding
and binding is IND-SOA-CRS. This positive result does not contradict our result,
because, as we have just seen (indeed, invoking this positive result to do so),
IND-SOA-CRS is a strictly weaker requirement than SS-SOA or SS-SOA-CRS.
A question that still remains open is whether HB-security implies IND-SOA-CRS
security.

Message distribution. It has been suggested that the difficulty in showing
that HB-security implies SS-SOA is that the messages in the vector m may be
related to each other. Our results imply that although showing HB-security im-
plies SS-SOA-security is not just hard but impossible, it is not for this reason.
We have already noted that our negative result holds for a message distribution
that is CRS. In fact, the message distribution is uniform, meaning the messages
in the vector are uniformly and independently distributed strings. Even for this
uniform distribution, no HB-secure commitment scheme is SS-SOA secure. This
may at first glance appear to contradict known results, for DNRS [19] showed
that HB-security implied SOA-security for independently distributed messages.
The difference is that they only showed this for what they called semantic se-
curity for functions, a notion implied by, but not known to imply their main
notion of semantic security for relations that we call SS-SOA. Thus, not only is
there no contradiction, but our results settle an open question from [19]. Namely
we show that their result does not extend to SS-SOA and also that SS-SOA is
strictly stronger than semantic security for functions.

Random oracles. Our result holds in the standard model and in the non-
programmable random oracle (RO) model [32]. (In the latter the simulator
is given oracle access to the RO and cannot define it.) In the standard (pro-
grammable) RO model [5], where the simulator can define the RO, our result
is not true: there do exist HB-secure schemes that are SS-SOA secure. As an
example, commitment scheme EH(m; r) = H(m; r), where H is the RO, is HB-
secure in the non-programmable RO. Our results show it is not SS-SOA in this
model. However, it can be easily shown SS-SOA in the programmable RO model.
Consequently, our results yield another separation between the programmable
and non-programmable RO models complementing that of [32].

Previous negative results. Hofheinz [3,29] shows that no HB-secure scheme
can be proven SS-SOA secure via blackbox reduction to “standard” assumptions.
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(A “standard” assumption as defined in [17,3,29] is one specified by a certain
type of game.) However, it might still be possible to prove that a particular HB-
secure scheme was SS-SOA in some ad hoc and non-blackbox way. The blackbox
separation does not yield a single example of an HB-secure scheme that is not
SS-SOA secure, let alone show, as we do, that all HB-secure schemes fail to be
SS-SOA secure.

Interaction. Our result applies to non-interactive commitment schemes. When
commitment involves an interactive protocol between sender and receiver the
corresponding claim is not true. There does exist an interactive HB and SS-SOA
secure commitment scheme. Specifically, Hofheinz [3,29] presents a particular
construction of such a scheme based on one-way permutations. Further results
on interactive SOA-secure commitment are [39,34].

SOA-secure encryption for sender corruptions. Turning now to en-
cryption, consider a setting with n senders and one receiver, the latter having
public encryption key ek. Sender i picks random coins r[i], encrypts its message
m[i] via c[i] ← E(ek,m[i]; r[i]), and sends ciphertext c[i] to the receiver. The
adversary selects, as a function of c, a set I ⊆ {1, . . . , n} of the senders and
corrupts them, obtaining their messages 〈m[i] : i ∈ I〉 and coins 〈r[i] : i ∈ I〉.
As before, we say that E is SOA-secure if privacy of the un-opened messages
is preserved. An SS-SOA definition analogous to the one for commitment was
given in [3,8].

The standard and accepted security condition for encryption since [26] is of
course IND-CPA. SOA-security was identified upon realizing that it is necessary
to implement the assumed-secure channels in multi-party secure computation
protocols like those of [9,14]. The central open question was whether or not
IND-CPA implies SS-SOA. Neither a proof showing the implication is true, nor a
counter-example showing it is false, had been given. We show that IND-CPA does
not imply SS-SOA by exhibiting a large class of IND-CPA encryption schemes
that we prove are not SS-SOA. The class includes many natural and existing
schemes.

DNRS [19] had pointed out that the obstacle to proving that IND-CPA implies
SS-SOA is that most encryption schemes are “committing.” Our results provide
formal support for this intuition. We formalize a notion of binding-security for
encryption. Our result is that no binding encryption scheme is SS-SOA secure.
As with commitment, it holds when the distribution on messages is uniform.

The existence of a decryption algorithm corresponding to the encryption al-
gorithm means that for any ek created by honest key-generation, there do not
exist r0, r1 and distinct m0, m1 such that E(ek, m0; r0) = E(ek, m1; r1). Binding
strengthens this condition to also hold when ek is adversarially chosen, while
also relaxing it from unconditional to computational. It is thus a quite natural
condition and is met by many schemes.

Inability to show that IND-CPA implies SS-SOA led to the search for spe-
cific SS-SOA secure encryption schemes. Non-commiting encryption [12] yields
a solution when the number of bits encrypted is bounded by the length of the
public key. The first full solution was based on lossy encryption [3,8]. Deniable
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encryption [11] was used to obtain further solutions [20,7]. More lossy-encryption
based solutions appear in [28]. In all these solutions, the encryption scheme is
not binding. Our results show that this is necessary to achieve SS-SOA security.

SOA-security has so far been viewed as a theoretical rather than practical
issue because even if there was no proof that IND-CPA implies SS-SOA, there
were no attacks on standard, practical schemes such as ElGamal. Our results
change this situation for they show that ElGamal and other practical schemes
are not SS-SOA secure. Thus, the above-mentioned schemes that achieve SS-SOA
in more involved ways are necessary if we want SS-SOA security.

IND-CCA doesn’t help: The Cramer-Shoup scheme [15] meets our definition
of binding and is thus not SS-SOA secure. As with commitment, our results
imply that IND-SOA-CRS security is strictly weaker than SS-SOA-CRS security,
answering an open question from [3,8]. Subsequent to our work, the relations
between different notions of SOA-security under sender corruptions were further
clarified in [10] but whether there exist schemes that are IND-CPA but not
IND-SOA-CRS secure remains open.

SOA-secure encryption for receiver corruptions. In a dual of the above
setting, there are n receivers and one sender, receiver i having public encryp-
tion key ek[i] and secret decryption key dk[i]. For each i the sender picks ran-
dom coins r[i], encrypts message m[i] via c[i] ← E(ek[i],m[i]; r[i]), and sends
ciphertext c[i] to receiver i. The adversary selects, as a function of c, a set
I ⊆ {1, . . . , n} of the receivers and corrupts them, obtaining not only the mes-
sages 〈m[i] : i ∈ I〉 but also the decryption keys 〈dk[i] : i ∈ I〉. As usual, we
say that E is SOA-secure if privacy of the un-opened messages is preserved. An
SS-SOA definition analogous to the ones for commitment and sender-corruptions
in encryption is given in Section 5.

The status and issues are analogous to what we have seen above, namely that
it has been open whether IND-CPA security implies SS-SOA for receiver cor-
ruptions, neither a proof nor a counter-example ever being given. We settle this
with the first counter-examples. We define a notion of decryption verifiability for
encryption that can be seen as a weak form of robustness [1]. It asks that there
is an algorithm W such that it is hard to find ek, dk0, dk1 and distinct m0, m1

such that W(ek, dk0, m0) and W(ek, dk1, m1) both accept. We show that no
IND-CPA and decryption-verifiable encryption scheme is SS-SOA secure. Stan-
dard encryption schemes like ElGamal are decryption verifiable (even though
they are not robust) so our result continues to rule out SS-SOA security for
many natural schemes.

Non-committing encryption [12] yields an SS-SOA scheme secure for receiver
corruptions when the number of bits encrypted is bounded by the length of
the secret key. Nielsen [32] showed that any non-committing encryption scheme
has keys larger than the total number of message bits it can securely encrypt.
This result is not known to extend to SS-SOA, meaning the existence of an SS-
SOA scheme for receiver corruptions without this restriction is open. Our results
do not rule out such a full solution but indicate that the scheme must not be
decryption-verifiable.
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2 Technical Approach

We provide a high-level description of our approach, focusing for simplicity on
commitment schemes and the claim that no HB-secure commitment scheme is
SS-SOA secure. We then discuss extensions and variants of our results.

The definition. Let E be a commitment scheme. To compact notation, we
extend it to vector inputs by letting E(m; r) be the vector whose i-th component
is E(m[i]; r[i]). LetM be a message sampler that outputs a vector m of messages
and let R be a relation. Adversary A, given ciphertext vector c = E(m; r) will
corrupt a subset I of the senders, get their messages and coins, and output a value
w. It is said to win if R(m, I, w) is true. The simulator, given no ciphertexts, can
also corrupt a subset I of senders but gets back only the corresponding messages,
and outputs a value w. It too is said to win if R(m, I, w) is true. Security requires
that for every M, R and adversary A there is a simulator S such that S wins
with about the same probability as A. DNRS [19, Sec 7.1] require this to be true
even for any auxiliary input a given initially to A and also to S. See Section 4
for a formal definition.

The attack. Let E be any, given HB-secure commitment scheme. We construct
M, R, A for which we prove there is no simulator. We let M output n = 2h
randomly and independently distributed messages, each of length �. Our ad-
versary A applies to the vector c = E(m; r) of commitments a hash function
H to get back an h-bit string b[1] . . . b[h] and then corrupts the set of indices
I = {2j − 1 + b[j] : 1 ≤ j ≤ h} to get back 〈m[i] : i ∈ I〉 and 〈r[i] : i ∈ I〉.
Its output w consists of c and 〈r[i] : i ∈ I〉. We define R, on inputs m, I and
w, to check two constraints. The opening constraint is that E(m[i]; r[i]) = c[i]
for all i ∈ I. The hash constraint is that I = {2j − 1 + b[j] : 1 ≤ j ≤ h} for
b[1] . . . b[h] = H(c). A detailed description of A and R is in Fig. 3.

The simulator gets no ciphertexts. It must corrupt some set I of indices to
get back 〈m[i] : i ∈ I〉. Now it must create a ciphertext vector c and a list
〈r[i] : i ∈ I〉 of coins to output as w to R, and to satisfy the latter it must satisfy
both constraints. Intuitively, the simulator faces a Catch-22. It is helpful for the
intuition to think of H as a random oracle. The simulator could first pick I in
some way, get 〈m[i] : i ∈ I〉 from its oracle, and compute c and 〈r[i] : i ∈ I〉
to satisfy the opening constraint. But it is unlikely, given only poly(·) queries
to H , to satisfy the hash constraint. On the other hand it could pick some c,
define I to satisfy the hash constraint, and get 〈m[i] : i ∈ I〉 from its oracle.
But now it would have a hard time satisfying the opening constraint because the
commitment scheme is binding.

This intuition that the simulator’s task is hard is, however, not a proof that
a simulator does not exist. Furthermore, the intuition relies on the hash func-
tion being a random oracle and we only want to assume collision-resistance. Our
proof takes an arbitrary simulator and proves that the probability that it makes
the relation true is small unless it finds a hash collision or violates binding. The
proof involves backing up the simulator, feeding it different, random responses
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to its corruption query, and applying a Reset Lemma analogous to that of [4].
We do not assume the simulation is blackbox. See Theorem 2.

Related work. The strategy of specifying challenges by a hash of commitments
arose first in showing failure of parallel-repetition to preserve zero-knowledge
[22,23]. The model, goals and techniques are however quite different. Also in [23]
the simulator is assumed to make only blackbox calls to the adversary (verifier)
and we make no such assumption, and they use a pairwise independent hash
rather than a CR one. We point out that although the seed of our technique
can be traced back 20 years it was not noted until now that it could be of use
in settling the long-standing open question of whether HB-secure commitments
are SS-SOA-secure.

Adaptive security. Our definition of SS-SOA, following [19,3,7] is one-shot,
meaning the adversary gets all the ciphertexts at once and performs all its
corruptions in parallel. A definition where the adversary can make adaptive
ciphertext-creation and corruption requests is more suitable for applications.
But our result is negative so using a restricted adversary only makes it stronger.
(We are saying there is an attack with a one-shot adversary so certainly there is
an attack with an adaptive adversary.)

The flip side is that if the adversary is allowed to be adaptive, so is the
simulator. Our theorems only consider (and rule out) one-shot simulators for
simplicity, but the proofs can be extended to also rule out adaptive simulators.
We discuss briefly how to do this following the proof of Theorem 2.

Auxiliary inputs. As indicated above, the definition of DNRS [19] that we
use allows both the adversary and simulator to get an auxiliary input, denoted
“z” in [19, Sec 7.1]. The simplest and most basic form of our result exploits
the auxiliary input to store the key describing the CR hash function. (If the
simulator can pick this key the function will not be CR.)

Auxiliary inputs model history. They were introduced in the context of zero-
knowledge by Goldreich and Oren [25] who showed that in their presence ZK
had natural and desirable composability properties absent under the original
definition of [27]. They have since become standard in zero-knowledge and also
in simulation-based definitions in other contexts [18,19] to provide composability.
Their inclusion in the SS-SOA definition of commitment by DNRS [19] was thus
correct and justified and we put them to good use.

Later definitions [3,29] however appear to have dropped the auxiliary inputs.
Although this appears to be only for notational simplicity (modern works on
ZK also often drop auxiliary inputs since it is well understood how to extend
the definition to include them) it does raise an interesting technical question,
namely what negative results can we prove without auxiliary inputs?

A simple solution is to use one of the messages as a key. The adversary would
corrupt the corresponding party to get this key, thereby defining the hash func-
tion, and then proceed as above. This however makes the adversary adaptive,
and while this is still a significant result, we ask whether anything can be shown
for one-shot adversaries without using auxiliary inputs.
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This turns out to be technically challenging. The difficulty is that the simu-
lator can control the hash key. In [2] we present a construction relying on a new
primitive we call an encrypted hash scheme (EHS). The idea is that there is an
underlying core hash function whose keys are messages and an encrypted hash
function whose keys are ciphertexts. We show how to build an EHS based on
DDH.

We remark that from a practical perspective these distinctions are moot since
hash functions like SHA-256 are keyless. Also, it is possible to work theoret-
ically with keyless hash functions [38]. But in classical asymptotic theoretical
cryptography, hash functions are keyed and we were interested in results in this
setting.

3 Preliminaries

Notation and conventions. If n ∈ N then let 1n denote the string of n ones
and [n] the set {1, . . . , n}. The empty string is denoted by ε. By a ‖ b we denote
the concatenation of strings a, b. If a is tuple then (a1, . . . , an) ← a means we
parse a into its constituents. We use boldface letters for vectors. If x is a vector
then we let |x| denote the number of components of x and for 1 ≤ i ≤ |x| we let
x[i] denote its i-th component. For a set I ⊆ [|x|] we let x[I] be the |x|-vector
whose i-th component is x[i] if i ∈ I and ⊥ otherwise. We let ⊥n denote the
n-vector all of whose components are ⊥. We define the Embedding subroutine
Emb to take 1n, I ⊆ [n], a |I|-vector x∗ and a n-vector x and return the n-
vector that consists of x with x∗ embedded in the positions indexed by I. More
precisely,

Subroutine Emb(1n, I,x∗,x)
j ← 0 ; For i = 1, . . . , n do If i ∈ I then j ← j + 1 ; x[i]← x∗[j]
Return x.

All algorithms are randomized, unless otherwise specified as being deterministic.
We use the abbreviation PT for polynomial-time. If A is an algorithm then
y ← A(x1, . . . , xn; r) represents the act of running the algorithm A with inputs
x1, . . . , xn and coins r to get an output y and y←$ A(x1, . . . , xn) represents the
act of picking r at random and letting y ← A(x1, . . . , xn; r). By [A(x1, . . . , xn)]
we denote the set of all y for which there exists r such that y = A(x1, . . . , xn; r).

Games. We use the language of code-based game-playing [6]. A game (see Fig. 1
for examples) has an Initialize procedure, procedures to respond to adversary
oracle queries, and a Finalize procedure. A game G is executed with an adver-
sary A and security parameter λ as follows. A is given input 1λ and can then call
game procedures. Its first oracle query must be Initialize(1λ) and its last oracle
query must be to Finalize, and it must make exactly one query to each of these
oracles. In between it can query the other procedures as oracles as it wishes. The
output of Finalize, denoted GA(λ), is called the output of the game, and we
let “GA(λ)” denote the event that this game output takes value true.
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Initialize(1λ)

b←$ {0, 1} ; π←$P(1λ)
(ek, dk)←$K(π)
Return (π, ek)

LR(m0, m1)

c←$ E(1λ, π, ek, mb)
Return c

Finalize(b′)
Return (b′ = b)

Initialize(1λ)

π←$P(1λ)
Return π

Finalize(ek, c, m0, m1, r0, r1)

d0 ← V(1λ, π, ek, c, m0, r0)

d1 ← V(1λ, π, ek, c, m1, r1)
Return (d0 ∧ d1 ∧ (m0 �= m1))

Fig. 1. Game INDΠ (left) and game BINDΠ (right) defining, respectively, IND-CPA
privacy and binding security of CE scheme Π = (P ,K, E ,V)

CE Schemes. We introduce CE (Committing Encryption) schemes as a way
to unify commitment and encryption schemes under a single syntax and avoid
duplicating similar definitions and results for the two cases. A CE scheme Π =
(P ,K, E ,V) is specified by four PT algorithms. Via π←$P(1λ) the parameter-
generation algorithm P generates system parameters such as a description of
a group. Via (ek, dk)←$K(π) the key-generation algorithm K generates an en-
cryption key ek and decryption key dk. Via c← E(1λ, π, ek, m; r) the encryption
algorithm deterministically maps a message m and coins r ∈ {0, 1}ρ(λ) to a ci-
phertext c ∈ {0, 1}∗∪ {⊥} where ρ: N→ N is the randomness length associated
to Π and c �= ⊥ iff |m| = �(λ) where �: N→ N is the message length associated
to Π . Via d← V(1λ, π, ek, c, m, r), deterministic verification algorithm V returns
true or false. We require that V(1λ, π, ek, E(1λ, π, ek, m; r), m, r) = true for all
λ ∈ N, all π ∈ [P(1λ)], all (ek, dk) ∈ [K(π)], all r ∈ {0, 1}ρ(λ) and all m ∈ {0, 1}∗
such that E(1λ, π, ek, m; r) �= ⊥. We say that the verification algorithm V is
canonical if V(1λ, π, ek, c, m, r) returns the boolean (E(1λ, π, ek, m; r) = c �= ⊥).

Game INDΠ of Fig. 1 captures the standard notion of indistinguishability
under chosen-plaintext attack (IND-CPA) [26] and serves to define privacy for
CE schemes. The adversary is allowed only one LR query and the messages
m0, m1 involved must be of the same length. Game BINDΠ captures binding
security. For adversaries A, B we let

Advindcpa
Π,A (λ) = 2 Pr[INDA

Π(λ)]−1 and Advbind
Π,B(λ) = Pr[BINDB

Π(λ)] .

We say that Π is IND-CPA secure if Advindcpa
Π,A (·) is negligible for all PT A, bind-

ing if Advbind
Π,B(·) is negligible for all PT B and perfectly binding if Advbind

Π,B(·) = 0
for all (not necessarily PT) B.

Discussion. Commitment and encryption schemes can be recovered as special
cases of CE schemes as follows. We say that Π is a commitment scheme if K
always returns (ε, ε). We see that our two security requirements capture the stan-
dard hiding and binding properties. In Section 1 we had simplified by assuming
the verification algorithm is canonical and there were no parameters but here we
are more general. We say that D is a decryption algorithm for CE scheme Π if
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D(1λ, π, dk, E(1λ, π, ek, m; r)) = m for all λ ∈ N, all π ∈ [P(1λ)], all (ek, dk) ∈
[K(π)], all r ∈ {0, 1}ρ(λ) and all m ∈ {0, 1}∗ such that E(1λ, π, ek, m; r) �= ⊥.
We say that Π admits decryption if it has a PT decryption algorithm and in
that case we say Π is an encryption scheme. IND-CPA is then, of course, the
standard privacy goal.

Typical encryption schemes are perfectly binding under canonical verification
with some added checks. For example, the ElGamal encryption scheme over a
order-p group G with generator g (these quantities in the parameters) is binding
under a verification algorithm that performs the re-encryption check and then
also checks that quantities that should be in G or Zp really are. RSA-based
schemes can be made binding by requiring the encryption exponent to be a
prime larger than the modulus.

Lossy encryption schemes [3,30,37] are not binding because the adversary
could provide a lossy encryption key and, under this, be able to generate encryp-
tion collisions. Non-commiting [12,16] and deniable [11,33] encryption schemes
are intentionally not binding. These types of encryption schemes have been
shown to have SOA security. Our results show that the lack of binding was
necessary for their success at this task.

Hash Functions. A hash function Γ = (A,H) with associated output length
h: N→ N is a tuple of PT algorithms. Via a←$A(1λ) the key-generation algo-
rithm A produces a key a. Via y ← H(a, x) the deterministic hashing algorithm
H produces the h(λ)-bit hash of a string x under key a. Collision-resistance
is defined via game CRΓ whose Initialize(1λ) procedure returns a←$A(1λ)
and whose Finalize procedure on input (x, x′) returns (x �= x′) ∧ (H(a, x) =
H(a, x′)). There are no other procedures. The advantage of an adversary C is de-
fined by Advcr

Γ,C(λ) = Pr
[
CRC

Γ (λ)
]
. We say that Γ is collision-resistant (CR)

if Advcr
Γ,C(·) is negligible for every PT C. The following says that CR hash

functions must have super-logarithmic output length and will be useful later:

Proposition 1. LetΓ = (A,H) be a hash function with associatedoutput length
h: N→ N. If Γ is collision-resistant then the function 2−h(·) is negligible.

4 SOA-C Insecurity of CE Schemes

Here we show that no CE-scheme that is binding is SOA-C secure. This im-
plies that no HB-secure commitment scheme is SOA-secure and that no binding
IND-CPA encryption scheme is SOA-secure under sender corruptions. In [2] we
establish similar results for SOA-K to show that no robust IND-CPA encryption
scheme is SOA-secure for receiver corruptions.

SOA-C Security. A relation is a PT algorithm with boolean output. A message
sampler is a PT algorithm M taking input 1λ and a string α and returning a
vector over {0, 1}∗. There must exist a function n: N → N (called the number
of messages) and a function �: N×{0, 1}∗×N→ N (called the message length)
such that |m| = n(λ) and |m[i]| = �(λ, α, i) for all m ∈ [M(1λ, α)] and all
i ∈ [n]. An auxiliary-input generator is a PT algorithm.
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Initialize(1λ)

π←$P(1λ) ; a← A(1λ) ; (ek, dk)←$K(π)
Return (a, π, ek)

Enc(α)

m←$M(1λ, α)
For i = 1, . . . , n(λ) do

r[i]←$ {0, 1}ρ(λ) ; c[i]← E(1λ, π, ek,m[i]; r[i])
Return c

Corrupt(I)

Return m[I ], r[I ]

Finalize(w)

Return R(1λ, a, π,m, α, I,w)

Initialize(1λ)

π←$P(1λ) ; a← A(1λ)
Return (a, π)

Msg(α)

m←$M(1λ, α)

Corrupt(I)

Return m[I ]

Finalize(w)

Return R(1λ, a, π,m, α, I, w)

Fig. 2. Game RSOACΠ,M,R,A capturing the real-world SOA-C attack to be mounted
by an adversary (left) and game SSOACΠ,M,R,A capturing the simulated-world SOA-C
attack to be mounted by a simulator (right)

Let Π = (P ,K, E ,V) be a CE-scheme, R a relation, M a message sampler
and A an auxiliary-input generator. We define SOA-C security via the games of
Fig. 2. “Real” game RSOACΠ,M,R,A will be executed with an adversary A. An
soa-c adversary’s (mandatory, starting) Initialize(1λ) call results in its being
returned an auxiliary input, parameters, and an encryption key, the latter cor-
responding to the single receiver modeled here. The adversary is then required
to make exactly one Enc(α) call. This results in production of a message vector
whose encryption is provided to the adversary. Now the adversary is required
to make exactly one Corrupt(I) call to get back the messages and coins cor-
responding to the senders named in the set I ⊆ [n(λ)]. It then calls Finalize

with some value w of its choice and wins if the relation returns true on the in-
puts shown. A soa-c simulator S runs with the simulator game SSOACΠ,M,R,A
and gets back only auxiliary input and parameters from its Initialize(1λ) call,
there being no encryption key in its world. It is then required to make ex-
actly one Msg(α) call resulting in creation of a message vector but the simu-
lator is returned nothing related to it. It must then make its Corrupt(I) and
Finalize(w) calls like the adversary and wins under the same conditions. The
soa-c-advantage of an soa-c-adversary A with respect to CE-scheme Π , message
sampler M, relation R, auxiliary input generator A and soa-c simulator S is
defined by

Advsoa-c
Π,M,R,A,A,S(λ) = Pr

[
RSOACA

Π,M,R,A(λ)
]− Pr

[
SSOACS

Π,M,R,A(λ)
]

.

We say that Π is (M,A)-SOA-C-secure if for every PT R and every PT soa-c
adversary A there exists a PT soa-c simulator S such that Advsoa-c

Π,M,R,A,A,S(·)
is negligible. We say that Π is SOA-C-secure if it is (M,A)-SOA-C-secure for
every PTM,A.

Result. The following implies that any binding CE-scheme is not SOA-C-secure.
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Theorem 2. Let Π = (P ,K, E ,V) be a binding CE-scheme with message length
�: N→ N. Let Γ = (A,H) be a collision-resistant hash function with associated
output length h: N → N. Let n(·) = 2h(·) and let M be the message sampler
that on input 1λ, α (ignores α and) returns a n(λ)-vector whose components are
uniformly and independently distributed over {0, 1}�(λ). Then there exists a PT
soa-c adversary A and a PT relation R such that for all PT simulators S there is
a negligible function ν such that Advsoa-c

Π,M,R,A,A,S(λ) ≥ 1− ν(λ) for all λ ∈ N.

Thus, Π is not (M,A)-SOA-C-secure and hence cannot be SOA-C-secure. More-
over, this is true when the distribution on messages is uniform. These claims
would only require Advsoa-c

Π,M,R,A,A,S(·) in the theorem to be non-negligible, but
we show more, namely that it is almost one. Note that � is arbitrary and could
even be �(·) = 1, meaning we rule out SOA-C-security even for bit-commitment
and encryption of 1-bit messages. The proof will make use of the following variant
of the Reset Lemma of [4].

Lemma 3. Let V = {Vλ}λ∈N be a collection of non-empty sets. Let P1, P2 be
algorithms, the second with boolean output. The single-execution acceptance prob-
ability AP1(P1, P2, V, λ) is defined as the probability that d = true in the single
execution experiment St←$ P1(1λ) ; m∗←$ Vλ ; d←$ P2(St ,m∗). The double-
execution acceptance probability AP2(P1, P2, V, λ) is defined as the probabil-
ity that d1 = d2 = true and m∗

0 �= m∗
1 in the double execution experiment

St←$ P1(1λ); m∗
0,m

∗
1←$ Vλ ; d0←$ P2(St ,m∗

0); d1←$ P2(St ,m∗
1). Then AP1(P1,

P2, V, λ) ≤ 1/|Vλ|+
√

AP2(P1, P2, V, λ) for all λ ∈ N.

The two executions in the double-execution experiment are not independent
because St is the same for both, which is why the lemma is not trivial.

Proof (Lemma 3). Let δ = 1/|Vλ|. Let X(ω) = Pr[d = true] in the experiment
St ← P1(1λ; ω) ; m∗←$ Vλ ; d←$ P2(St ,m∗). So E[X] = AP1(P1, P2, V, λ) where
the expectation is over the coins ω of P1. Let a1 = AP1(P1, P2, V, λ) and a2 =
AP2(P1, P2, V, λ). Then

a2 ≥ E[X(X− δ)] = E[X2]− δ ·E[X] ≥ E[X]2 − δ ·E[X] = a2
1 − δ · a1

where the third step above is by Jensen’s inequality. Now a2
1 − δ · a1 = (a1 −

δ/2)2 − δ2/4 so

a1 ≤ δ/2 +
√

a2 + δ2/4 ≤ δ/2 +
√

a2 +
√

δ2/4 = δ +
√

a2

which yields the lemma.

Proof (Theorem 2). The adversary A and relation R are depicted in Fig. 3. Let
S be any PT soa-c simulator. In the real game the adversary always makes the
relation return true hence

Advsoa-c
Π,M,R,A,A,S(λ) = 1− Pr

[
SSOACS

Π,M,R,A(λ)
]

.
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Adversary A(1λ)

(a, π, ek)← Initialize(1λ)
c← Enc(ε)
b[1] . . . b[h(λ)]←H(a, ek ‖ c)
I ← {2j − 1 + b[j] : 1 ≤ j ≤ h(λ)}
(m, r)← Corrupt(I)
w← (ek, c, r)
Finalize(w)

Relation R(1λ, a, π,m, α, I, w)

If α �= ε then return false
(ek, c, r)← w ; b[1] . . . b[h(λ)]←H(a, ek ‖ c)
If (I �= {2j − 1 + b[j] : 1 ≤ j ≤ h(λ)}) then

return false
If |c| �= n(λ) or |r| �= n(λ) then return false
For all i ∈ I do

If V(1λ, π, ek, c[i], m[i], r[i]) = false then
return false

Return true

Fig. 3. Adversary A and relation R for the proof of Theorem 2

We will construct a binding-adversary B and cr-adversary C such that

Pr
[
SSOACS

Π,M,R,A(λ)
] ≤ 2−h(λ)�(λ) +

√
Advcr

Γ,C(λ) + Advbind
Π,B(λ) . (1)

The assumptions that Γ is collision-resistant, Π is binding, together with Propo-
sition 1, imply that the RHS of Eq. (1) is negligible, which proves the theorem.
It remains to construct B and C. Given S we can define sub-algorithms S1, S2

such that S can be written in terms of S1, S2 as follows:

Simulator S(1λ)
(a, π)← Initialize(1λ) ; Msg(1λ, ε) ; (St , I)←$ S1(a, π)
m← Corrupt(I) ; w ← S2(St ,m) ; Finalize(w)

We clarify that we are not defining S; the latter is given and arbitrary. Rather,
any S has the form above for some S1, S2 that can be determined given S.
Specifically, S1 runs S until S makes its Corrupt(I) query, returning I along
with the current state St of S. Then S2, given the response m to the query, feeds
it back to S and continues executing S from St . By having S1 put all S’s coins
in St we can assume S2 is deterministic. We may assume wlog that |I| is always
h(λ) and that the argument α in S’s Msg call is ε since otherwise R rejects.
We now define adversary B. The embedding subroutine Emb it calls and the
notation ⊥n(λ) were defined in Section 3:

Adversary B(1λ)
π ← Initialize(1λ) ; a←$A(1λ) ; (St , I)←$ S1(a, π)
m∗

0,m
∗
1←$ ({0, 1}�(λ))h(λ)

m0 ← Emb(1n(λ), I,m∗
0,⊥n(λ)) ; m1 ← Emb(1n(λ), I,m∗

1,⊥n(λ))
w0 ← S2(St ,m0) ; (ek0, c0, r0)← w0

w1 ← S2(St ,m1) ; (ek1, c1, r1)← w1 ; t←$ I
For all i ∈ I do If m0[i] �= m1[i] then t← i
Finalize(ek0, c0[t],m0[t],m1[t], r0[t], r1[t])

Adversary B is running S to get its Corrupt query I and then, by backing it
up, providing two different responses. Adversary C has a similar strategy, only
deviating in how the final values are used:
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Adversary C(1λ)
a← Initialize(1λ) ; π←$P(1λ) ; (St , I)←$ S1(a, π)
m∗

0,m
∗
1←$ ({0, 1}�(λ))h(λ)

m0 ← Emb(1n(λ), I,m∗
0,⊥n(λ)) ; m1 ← Emb(1n(λ), I,m∗

1,⊥n(λ))
w0 ← S2(St ,m0) ; (ek0, c0, r0)← w0

w1 ← S2(St ,m1) ; (ek1, c1, r1)← w1

Finalize((ek0 ‖ c0, ek1 ‖ c1)).

The analysis will use Lemma 3. Let Vλ = ({0, 1}�(λ))h(λ) and V = {Vλ}λ∈N.
Define P1, P2 via:

Algorithm P1(1λ)
π ← P(1λ) ; a←$A(1λ) ; (St , I)←$ S1(a, π)
m←$ ({0, 1}�(λ))n(λ) ; St ← (1λ, a, π,m, I,St)
Return St

Algorithm P2(St ,m∗)
(1λ, a, π,m, I,St)← St
m← Emb(1n(λ), I,m∗,⊥n(λ))
w ← S2(St ,m)
m← Emb(1n(λ), I,m∗,m)
Return R(1λ, a, π,m, ε, I, w)

Above the argument m∗ to P2 is drawn from Vλ. Now

Pr
[
SSOACS

Π,M,R,A(λ)
]

= AP1(P1, P2, V, λ)

≤ 2−h(λ)�(λ) +
√

AP2(P1, P2, V, λ) (2)

Above the equality is from the definitions and the inequality is by Lemma 3.
Finally we claim that

AP2(P1, P2, V, λ) ≤ Advcr
Γ,C(λ) + Advbind

Π,B(λ) . (3)

Eqs. (2) and (3) imply Eq. (1) and conclude the proof. We now justify Eq. (3).
To do so it is helpful to write down the double-execution experiment underlying
AP2(P1, P2, V, λ):

π ← P(1λ) ; a←$A(1λ) ; (St , I)←$ S1(a, π) ; m←$ ({0, 1}�(λ))n(λ)

m∗
0,m

∗
1←$ ({0, 1}�(λ))h(λ)

m0 ← Emb(1n(λ), I,m∗
0,⊥n(λ)) ; m1 ← Emb(1n(λ), I,m∗

1,⊥n(λ))
w0 ← S2(St ,m0) ; w1 ← S2(St ,m1) ; (ek0, c0, r0)← w0 ; (ek1, c1, r1)← w1

m0 ← Emb(1n(λ), I,m∗
0,m) ; m1 ← Emb(1n(λ), I,m∗

1,m)
Return R(1λ, a, π,m0, ε, I, w0) ∧ R(1λ, a, π,m1, ε, I, w1) ∧ (m∗

0 �= m∗
1).

Assume this experiment returns true. By definition of R it must be that I = {2j−
1 + b0[j] : 1 ≤ j ≤ h(λ)} where b0[1] . . . b0[h(λ)] = H(a, ek0 ‖ c0) and also I =
{2j−1+b1[j] : 1 ≤ j ≤ h(λ)} where b1[1] . . . b1[h(λ)] = H(a, ek1 ‖ c1). However,
I is the same in both cases, so we must have H(a, ek0 ‖ c0) = H(a, ek1 ‖ c1),
meaning we have a hash collision. This means that C succeeds unless ek0 ‖ c0 =
ek1 ‖ c1. But we now argue that in the latter case, B succeeds. We know m∗

0 �= m∗
1

so there is some t ∈ I such that m0[t] �= m1[t]. The definition of R implies that
V(1λ, π, ek0, c0[t],m0[t], r0[t]) = true and also V(1λ, π, ek1, c1[t],m1[t], r1[t]) =
true. But since ek0 ‖ c0 = ek1 ‖ c1 we have V(1λ, π, ek0, c0[t],m0[t], r0[t]) = true
and also V(1λ, π, ek0, c0[t],m1[t], r1[t]) = true with m0[t] �= m1[t] so B wins.
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Extensions, applications and remarks. The SOA-C definition could be
weakened by allowing the simulator’s corruptions to be adaptive, meaning S
is allowed multiple queries to procedure Corrupt that now would take input
i ∈ [n(λ)] and return m[i]. The proof strategy of Theorem 2 no longer works but
can be extended to also rule out adaptive simulators. We would back S up to its
last Corrupt query and give a new response only to this query. We would now
require �(·) to be super-logarithmic so that collisions are rare on single messages.
We omit the details.

Theorem 2 applies to all commitment schemes since they are binding by defi-
nition. Not all encryption schemes are binding, but many popular ones are. For
example, the ElGamal scheme is binding. The Cramer-Shoup scheme [15] is also
binding, showing that IND-CCA is not a panacea against SOAs.

Our model allows a scheme to have system parameters π that effectively func-
tion as auxiliary input. This means the simulator cannot modify them. This is
not necessary but merely makes the results more general. If one wishes to view
commitment, as in DNRS [19], as having no parameters, just restrict attention
to schemes where π is always 1λ. Our result applies to these as a special case.

5 SOA-K Insecurity of Encryption Schemes

Here we show that no decryption-verifiable IND-CPA encryption scheme is SOA-
secure for receiver corruptions.

SOA-K Security. This is the dual of SOA-C where there are multiple receivers
and a single sender rather than a single receiver and multiple senders, and cor-
ruptions reveal decryption keys rather than coins. The definition uses games
RSOAKΠ,M,R,A and SSOAKΠ,M,R,A of Fig. 4. The soa-k-advantage of an soa-
k-adversary A with respect to the encryption scheme Π , message sampler M,
relation R, auxiliary input generator A and soa-k simulator S is defined by

Advsoa-k
Π,M,R,A,A,S(λ) = Pr

[
RSOAKA

Π,M,R,A
]− Pr

[
SSOAKS

Π,M,R,A
]

.

We say that Π is (M,A)-SOA-K-secure if for every PT R and every PT soa-k
adversary A there exists a PT soa-k simulator S such that Advsoa-k

Π,M,R,A,A,S(·)
is negligible. We say that Π is SOA-K-secure if it is (M,A)-SOA-K-secure for
every PTM,A.

Result. The following implies that any decryption-verifiable encryption scheme
is not SOA-K-secure. Decryption-verifiable encryption schemes are defined in [2]
and include many common schemes. The proof is in [2].

Theorem 4. Let Π = (P ,K, E ,V) be a decryption-verifiable encryption scheme
with decryption verifier W and message length �: N → N. Let Γ = (A,H) be
a collision-resistant hash function with associated output length h: N → N. Let
n(·) = 2h(·) and let M be the message sampler that on input 1λ, α (ignores α
and) returns a n(λ)-vector whose components are uniformly and independently
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Initialize(1λ)

π←$P(1λ) ; a← A(1λ)
For i = 1, . . . , n(λ) do (ek[i], dk[i])←$K(π)
Return (a, π, ek)

Enc(α)

m←$M(1λ, α)
For i = 1, . . . , n(λ) do

r[i]←$ {0, 1}ρ(λ) ; c[i]← E(1λ, π, ek[i], m[i]; r[i])
Return c

Corrupt(I) Finalize(w)

Return m[I ],dk[I ] Return R(1λ, a, π,m, α, I, w)

Initialize(1λ)

π←$P(1λ) ; a← A(1λ)
Return (a, π)

Msg(α)

m←$M(1λ, α)

Corrupt(I)

Return m[I ]

Finalize(w)

Return R(1λ, a, π,m, α, I,w)

Fig. 4. Game RSOAKΠ,M,R,A capturing the real-world SOA-K attack to be mounted
by an adversary (left) and game SSOAKΠ,M,R,A capturing the simulated-world SOA-K
attack to be mounted by a simulator (right)

distributed over {0, 1}�(λ). Then there exists a PT soa-k adversary A and a PT
relation R such that for all PT soa-k simulators S there is a negligible function
ν such that Advsoa-k

Π,M,R,A,A,S(λ) ≥ 1− ν(λ) for all λ ∈ N.
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