
On the Instantiability of Hash-and-Sign RSA

Signatures

Yevgeniy Dodis1, Iftach Haitner2,�, and Aris Tentes1

1 Department of Computer Science, New York University
{dodis,tentes}@cs.nyu.edu

2 School of Computer Science, Tel Aviv University
iftachh@cs.tau.ac.il

Abstract. The hash-and-sign RSA signature is one of the most elegant
and well known signatures schemes, extensively used in a wide variety
of cryptographic applications. Unfortunately, the only existing analysis
of this popular signature scheme is in the random oracle model, where
the resulting idealized signature is known as the RSA Full Domain Hash
signature scheme (RSA-FDH). In fact, prior work has shown several
“uninstantiability” results for various abstractions of RSA-FDH, where
the RSA function was replaced by a family of trapdoor random permu-
tations, or the hash function instantiating the random oracle could not
be keyed. These abstractions, however, do not allow the reduction and
the hash function instantiation to use the algebraic properties of RSA
function, such as the multiplicative group structure of Z∗

n. In contrast,
the multiplicative property of theRSA function is critically used in many
standard model analyses of various RSA-based schemes.

Motivated by closing this gap, we consider the setting where the
RSA function representation is generic (i.e., black-box) but multiplica-
tive, whereas the hash function itself is in the standard model, and can
be keyed and exploit the multiplicative properties of the RSA function.
This setting abstracts all known techniques for designing provably se-
cure RSA-based signatures in the standard model, and aims to address
the main limitations of prior uninstantiability results. Unfortunately, we
show that it is still impossible to reduce the security of RSA-FDH to
any natural assumption even in our model. Thus, our result suggests
that in order to prove the security of a given instantiation of RSA-FDH,
one should use a non-black box security proof, or use specific properties
of the RSA group that are not captured by its multiplicative structure
alone. We complement our negative result with a positive result, showing
that the RSA-FDH signatures can be proven secure under the standard
RSA assumption, provided that the number of signing queries is a-priori
bounded.

Keywords: RSA Signature, Hash-and-Sign, Full Domain Hash, Ran-
dom Oracle Heuristic, Generic Groups, Black-Box Reductions.

� Research supported by Check Point Institute for Information Security, and ISF grant
1076/11.

R. Cramer (Ed.): TCC 2012, LNCS 7194, pp. 112–132, 2012.
c© International Association for Cryptologic Research 2012

On the Instantiability of Hash-and-Sign RSA Signatures 113

1 Introduction

Bellare and Rogaway, [3], introduced the random oracle (RO) model, as a
“paradigm for designing efficient protocols”. When following this paradigm,
one first builds a provably secure scheme assuming that an access to a ran-
dom function is given, and (possibly) assuming some “standard” hardness as-
sumption (e.g., factoring is hard). Then it instantiates the scheme by replacing
the random function with some concrete “hash function” (e.g., SHA-1). The
intuition underlying this paradigm is that a successful attack on the resulting
scheme should indicate (unexpected) weaknesses of the hash function used. This
paradigm (also known as the random oracle heuristic) has led to several highly ef-
ficient and widely used in practice constructions, such as the RSA Full Domain
Hash signature scheme (RSA-FDH) [3] and RSA Optimal Asymmetric En-
cryption Padding scheme (RSA-OAEP) [4]. Typically, however, little is known
about the provable security of such popular schemes in the standard model. In
particular, it is unknown whether we can reduce their security to some “natural”
assumption.

In this work we revisit this question once again, focusing, in particular, on
the instantiability of the RSA hash-and-sign signatures. The RSA signature [31]
is one of the most elegant and well known signatures schemes. It is extensively
used in a wide variety of applications, and serves as the basis of several existing
standards such as PKCS #1 [32]. In its “textbook” form, the signature σ of the
message m is simply σ = md mod n, which can be verified by checking if σe ≡ m
mod n, where e is the public RSA exponent, and d = e−1 mod φ(n). Of course,
the textbook variant is completely insecure, as any σ is a valid signature of
some message m = σe mod n. The traditional fix, known as RSA hash-and-sign
signature, is to hash the message m before signing it using some “appropriate”
hash function h (i.e., σ = h(m)d mod n). The key question is how to instantiate
this function h?

Bellare and Rogaway, [3], showed that in the random oracle model, where h is
modeled as a truly random function (freely available to all the parties including
the adversary), the resulting RSA hash-and-sign signature (which they called
RSA Full Domain Hash, for short, RSA-FDH) is secure assuming that the
(standard) RSA assumption holds. When considering an actual instantiation
of h, though, a moment’s reflection shows that all known security notions for
hash functions, such as collision-resistance or pseudorandomness, do not appear
to help. In fact, even more “esoteric” notions, such as perfect one-way hash
functions or verifiable random functions [5], are not sufficient either. On the
other hand, no significant attacks on RSA-FDH signatures are known when h
is instantiated using popular “cryptographic hash functions”, such as SHA-1.
This gave rise to the following important question, which is the main focus of
this paper.

Is there an instantiation of RSA-FDH signature scheme (namely, of the
hash function h) that can be proven secure under a natural assumption
in the standard model?

114 Y. Dodis, I. Haitner, and A. Tentes

Of course, for any concrete hash function, one can “reduce” the security of RSA-
FDH signatures to that of RSA-FDH signatures, which is not very useful. So it
is important that the assumption used to argue the security of the scheme should
be considerably simpler than the chosen message attack on RSA signatures. The
best case scenario would be a reduction to the one-wayness of the RSA function
(i.e., the standard “RSA assumption”), which is indeed what happened in the
idealistic RO model. Unfortunately, we seem to be very far from this goal. In
fact, several works, which we survey next, showed various arguments suggesting
that no such reduction is likely to exist.

Existing Impossibility Results. It is well known that in the general case
the random oracle heuristic is false. Specifically, there exist schemes secure in
the random oracle model that cannot be instantiated by any concrete hash func-
tion [8,7,26,18,2]. Most counter-examples of this kind, however, are rather ar-
tificial, and do not shed much light on the security of concrete schemes used
in practice. The work that seems most relevant to the focus of this paper is
those of [12] and [27] described below (whereas other related work is discussed
in Section 1.3).

Dodis et.al., [12], considered a generalization of RSA-FDH signatures, known
as (general) Full Domain Hash (FDH) signatures. In such signatures, the signer
has access to an arbitrary trapdoor permutation f , and sets σ = f−1(h(m)).1

The main result of [12] rules out proving the security of an instantiation FDH,
by reducing it to the one-wayness of f (or more generally, to any assumption
on f that is satisfied by a random trapdoor permutation). Their result, how-
ever, does not capture reductions that use additional assumptions about f . In
particular, it seems likely that if a proof of security of some instantiation of
RSA-FDH does exist, then it would use the algebraic properties of the RSA
function. To demonstrate this point, we present (see Section 1.1) an instantia-
tion of RSA-FDH under the standard RSA assumption, that is secure as long
as the number of signing queries is a-priori bounded.2 Our reduction is black
box, and critically uses the algebraic properties of Z∗n. (Indeed, [12] showed that
even one-time security of general FDH signatures cannot be black-box reduced
to the one-wayness of the trapdoor permutation.) In addition, the “RSA-based”
signatures [16,10,22], which can be proven secure in the standard model (but,
alas, no longer have the simple syntax of the RSA signature), critically use
the algebraic properties of the RSA function. Finally, even in the random or-
acle model, tighter security bounds are sometimes achieved using the algebraic
properties of RSA (cf., [9], as compared to the generic proofs from trapdoor
permutations [3,13]).

More recently, Paillier, [27], looked at the question of instantiating RSA-FDH
using a fixed hash function (as opposed to a keyed family), and showed that no
such instantiation can be black-box reduced to the traditional RSA assumption,

1 As in the case of RSA-FDH signatures, FDH signatures are known to be secure
when the hash function is modeled as a truly random function [3].

2 With a different motivation, the same result was independently obtained by [21].

On the Instantiability of Hash-and-Sign RSA Signatures 115

assuming the so called “RSA non-malleability” assumption. Informally, this as-
sumption states that calling the RSA inverter on arbitrary “permitted” inputs
(n′, e′) �= (n, e) does not help in breaking the instance (n, e). We remark that, as
observed by Paillier in [27], this assumption is false for various reasonable interpre-
tations of “permitted” tuples (n′, e′). More significantly, although the restriction
to a fixed hash function h is consistentwith the existing use in practice, froma theo-
retical perspective this assumption is somewhat restrictive. For example, while the
result of [27] rules out proving even one-time security of RSA-FDH, our positive
result (see Section 1.1) circumvents this impossibility result by using a keyed hash
family.

1.1 Our Results

Our main result is a new negative result regarding the instantiability of RSA-
FDH, which addresses some of the limitations of the previous negative results
of [12,27]. To motivate this result, we start by describing our already mentioned
positive result.

Theorem 1 (Informal). Under the standard RSA assumption, for every poly-
nomial t there exists an instantiation of RSA-FDH that is existentially unforge-
able against t(k) signing queries (where k is the security parameter). Further-
more, the reduction treats the group Z

∗
n and the potential adversary in a black-box

way.

The claimed construction is fully described in the full version [], but here we
highlight some of its features. First, the result on works for bounded values of t,
since the constructed hash function description length, is polynomial (quadratic)
in the number of signing queries. Second, our construction uses a keyed family
of hash functions (which is needed to overcome the impossibility result of [27]).
Third, the hash function depends on the RSA modulus n and critically uses the
multiplicative structure of the RSA function (which is needed to overcome one
of the impossibility result of [12]). Finally, our reduction does not use any other
properties of the RSA function besides its multiplicative homomorphism over
Z
∗
n. Formally, this means that the reduction works given only oracle access to

the multiplication and the inversion operations of Z∗n.
We now turn to our main, negative result, which can be informally stated as

follows:

Theorem 2 (Informal). It is impossible to reduce the security of an instantia-
tion of RSA-FDH to a “natural” assumption (and in particular to the hardness
of RSA), provided that (1) the reduction treats the potential adversary in a
black-box way; (2) the public exponent e used by the scheme is prime with non-
negligible probability; (3) the instantiation only “uses the multiplicative properties
of Z∗n”, and should “relativize” to any group isomorphic to Z

∗
n.

We now explain this result in more detail. First, our result holds even if the hash
function h is allowed to be keyed, and, moreover, to depend on the RSA modulus
n (which was used in our positive result). More significantly, we allow both the

116 Y. Dodis, I. Haitner, and A. Tentes

hash function and the hypothetical security reduction R to use the multiplicative
structure of Z∗n. Finally, we not only rule out reductions to the standard RSA
assumption, but also to other non-interactive “RSA-type” assumptions, such as
the “strong RSA assumption”.

However, our result also has three limitations, (1)-(3). First, and least impor-
tant, is the assumption that the reduction must treat the adversary in a black-box
way. This limitation is met by most existing reductions, and also quite standard
in most black-box impossibility results. Technically, it means that the reduction
should work given oracle access to any (even inefficient) attacker breaking the
security of RSA-FDH. Second, and more significant, is the fact that our current
proof relies on the fact that the instantiation will use a prime exponent e (at
least with non-negligible probability). Although this limitation appears to be an
odd artifact of our specific proof technique, and also seems to be met by most
known RSA instantiations, it does leave a possibility for a secure RSA-FDH
instantiation always using some composite exponent e. Finally, and most signif-
icantly, we assume that the reduction “treats the multiplicative RSA group Z

∗
n

in a black-box manner”. This is formalized (see Section 2) using the notion of
generic groups [33,25,23]. Informally, though, it means that nothing is assumed
about a group element, apart from what was revealed through the performed
group operations (i.e., multiplication, inverse and equality check). In particular,
an algorithm that treats Z∗n in a black-box way should perform equally well given
oracle access to any group isomorphic to Z

∗
n (without knowing the isomorphism).

With this intuition in mind, we can interpret Theorem 2 as an indication that
in order to prove the security of a given instantiation of RSA-FDH, one should
use a non-black box security proof, or use properties of the RSA group, that
are not captured by the generic group abstraction. To the best of our knowledge,
all known positive results on building “RSA-type” signatures — including our
new positive result in Theorem 1, the standard model constructions of [16,10,22],
and the random-oracle based analysis of [3,9] — treat Z

∗
n as a black-box, and

only use its multiplicative structure. Thus, although still restrictive, our result
rules out all known techniques for proving the security of RSA-based signatures,
which was not the case for the previous results of [12,27]. Still, the restriction of
the reduction to only use the multiplicative structure of Z∗n is quite significant,
which raises the question if this restriction could be relaxed.

Removing Generic Groups? Unfortunately, removing (or even relaxing) the
above mentioned restriction appears to be very challenging. Intuitively, with our
current techniques (see more below) we must be able to construct an algorithm
Forger which, given any (family of) hash function(s) h, should be able to (1) break
the RSA-FDH instantiation using this h, and, yet, (2) do so by only forging the
signature which the reduction R must already “know” (so that Forger never
helps R compute something which R does not know to begin with, potentially
helping R to break some hardness assumption). In particular, satisfying conflict-
ing properties (1) and (2) seems to require some kind of “reverse-engineering”
(or “de-obfuscation”) techniques on h which seem to be completely beyond our
current capabilities, without placing any restriction on the reductions we allow.

On the Instantiability of Hash-and-Sign RSA Signatures 117

Indeed, the introduction of the generic group model was precisely the step which
(a) allowed our forger to “reverse engineer” the given hash function h (so as to
provably satisfy properties (1)-(2) above), and, yet, (b) allowed the reduction to
use the algebraic properties of Z∗n.

1.2 Our Technique

On a very high level, our proof follows the approach of [12] used to prove that
there exists no fully black-box reduction from (general) FDH signature schemes
to the one-wayness of random functions. [12] defined an oracle Forger relative
to which no FDH signature scheme is secure, yet Forger does not help inverting
a random function. In more detail, on input (h, {σi}i∈[t]), Forger checks that
(1) {σi} are valid signatures for the messages 1, . . . , t (i.e., f(σi) = h(i) for every
i ∈ [t], where f is the random function), (2) the evaluation of h(1), . . . , h(t)
does not query f on any element of {σi}, and (3) t is at least equal to |h|
– the description size of h. If positive, Forger returns the signature of 0 (i.e.,
f−1(h(0))).

It is clear that Forger can be used to break the existential security of any FDH
scheme: the attacker uses Sign, the signer of the scheme, to compute {σi}i∈[t] for
some t ≥ |h|, and then calls Forger on (h, {σi}), where we assume without loss of
generality that condition (2) above holds with respect to this query (otherwise,
faking a signature without Forger is easy). On the other hand, [12] showed that
an efficient algorithm (with oracle access to f , but not to Sign) cannot provide
all these signatures. Thus, Forger is useless in these settings, and in particular a
black-box reduction (i.e., algorithm) cannot make use of Forger for inverting a
random function, proving the main result of [12].

Intuitively, Forger is useless for an algorithm with no access to Sign, for the
following reason. Fix some efficient oracle-aided algorithm R and let {0, 1}n be
the domain of the random function f . Since a random function is one way,
the only elements that R can invert are those elements it previously received
as answers to its f -queries. Hence (since f is random), R only knows how to
invert random elements inside {0, 1}n. Since it takes at least t bits to describe t
random elements in {0, 1}n (actually, it takes tn bits) and since the evaluation
of h(1), . . . , h(t) does not query f on elements inside {σi}i∈[t], there must exist
h(i) ∈ {h(1), . . . , h(t)} that R does not know how to invert, and thus cannot
provide a valid signature for the message i.

Moving to our setting, we focus for concreteness on fully black-box reductions
fromRSA-FDH to the hardness of RSA (i.e., such reductions use the multiplica-
tive RSA group Z

∗
n and the adversary in a black-box way). The blackboxness in

the RSA group tells us that such a reduction should work with respect to any
group isomorphic to Z

∗
n. In particular, it should work well with respect to the

group π(Z∗n), obtained by renaming the elements of Z∗n according to a random
permutation π over Z∗n (i.e., a · b is defined as π(π−1(a) · π−1(b) mod n)).

Given the above understanding, the first attempt would be to define Forger
analogously to that of [12]. Namely, on input (n, e, h, {σi}i∈[t]), Forger checks
that (1) σe

i ≡ h(i) for every i ∈ [t], (2) the evaluation of h(1), . . . , h(t) does

118 Y. Dodis, I. Haitner, and A. Tentes

not compute σi for some i ∈ [t], and (3) t ≥ |h|. If positive, Forger returns the
signature of 0 (i.e., h(0)d, for d = e−1 mod φ(n), where all group operations are
over the group π(Z∗n).

We would like to argue that if π is chosen at random, then the only way to
make a non-aborting query to Forger is via using Sign, the signer of the scheme.
It would then follow that Forger is useless for an algorithm R that has no access
to Sign (and in particular to a black-box reduction). It turns out, however, that
in our settings such R can make non aborting calls to Forger. The issue is that
unlike in the setting of [12], R can make use of the algebraic structure of Z∗n to
construct a non-aborting query to Forger. For instance, R can compute {je}j∈[�],
and assuming some reasonable mapping M from [t = �2] to {j · k}j,k∈[�], let
h(i) = M(i)e mod n and σi = M(i). Since the evaluation of h(1), . . . , h(t) does
not query an element of {σi}i∈[t]), it follows that (n, e, h, {σi}i∈[t]) is a non-
aborting query.3 Alternatively, if R can break the RSA assumption over π(Z∗n)
(say, if it knows the factorization of n), then it can set h(i) = i and compute
σi = h(i)d (using the factorization of n to compute d).

Fortunately, we manage to prove that a non-aborting query of R is either
“degenerated” (as in the first example) or indicates that R knows the factor-
ization of n. To handle the first case, we change Forger to identify and abort
on degenerated queries. Where we also show that it is easy to forge a signature
with respect to a degenerated h (i.e., h that is part of a degenerated query),
even without the help of Forger. Namely, we show that there is no secure RSA-
FDH scheme relative to the modified Forger. We then show that with respect
to this modified Forger, one can efficiently extract the factorization of n from an
algorithm that produces a non-aborting query. It follows that for any efficient
algorithm R with oracle access to Forger, there exists an efficient algorithm, with
no access to Forger, that emulates RForger well. In other words, we prove that
Forger is useless for the class of efficient algorithms with no oracle access to Sign.

Proving the above intuition is the main challenge of this work, and we achieve
that using a novel adaptation of the Gennaro-Trevisan, [17], short description
paradigm, described below, to the generic groups realm.4

The Gennaro-Trevisan [17] Short Description Paradigm and Its Adap-
tion to Generic Groups. Loosely, [17] shows that an efficient algorithm that
inverts a random function too well, can be used to give a too short description for
a random function (and thus cannot exist). This elegant approach has turned
to be an extremely powerful approach for proving impossibility results in the
random functions realm, which typically imply black-box impossibility results
for one-way functions/permutations based constructions. While the Gennaro-
Trevisan paradigm (from now on, the GT paradigm) has several extensions (e.g.,
[15,35,19,20,30]), all are given in the random functions realm.

3 Note that to describe h it suffices to describe the set {je}j∈[�]. Thus |h| ∈ O(� log n),
which is smaller than t for large enough �.

4 A side benefit of this proof technique, is an alternative proof to the equivalence of
RSA and factoring over generic groups, firstly proven by Aggarwal and Maurer, [1]
(the latter, however, also proves it over “generic rings”).

On the Instantiability of Hash-and-Sign RSA Signatures 119

We would like to apply a similar approach for arguing that an algorithm that
makes a non-aborting query to Forger, can be either used to factor n, or to
“compress” the random permutation π (which defines the group π(Z∗n)). Since
compressing π is impossible, it follows that a non-aborting query of such an
algorithm can be used to factor n. Hence, such queries can be answered efficiently,
yielding the existence of an efficient emulator (without access to Forger) for any
efficient algorithm.5

Extending the GT paradigm to our settings involves many complications. The
main part of the GT paradigm is using the (hypothetical) attacker to reconstruct
a random function using (too) short advice. This reconstruction involves emulat-
ing the attacker, where the key point is to do this without “wasting information”:
any bit used to emulate, should give a bit of information about the (random)
function. Doing the latter is quite easy for random functions; the answer to any
query of the attacker gives the same amount of information about the function
(i.e., the info that it maps the query input to the provided output). The only sub-
tlety is that there are repeated queries (which are clearly wasteful), but handling
such queries is easy: simply keep track of the query history on the emulation.

In our setting, however, things get much more complicated. To begin with,
there might be non-repeating queries whose answers yield very little informa-
tion about the random group π(Z∗n) (and therefore about π). For instance, for
some n’s there are only four possible answers for the query aφ(n)/4 over π(Z∗n).
Thus, roughly speaking, the answer for this query contains only two bits of in-
formation about π. More generally, it appears that one can create much more
intricate examples; e.g., when the answer to the query follows a very complicated
distribution, based on the answers given so far.

An even more challenging task is proving the dichotomy that a non-aborting
query can either be used to (efficiently) factor n, or implies a (too) short de-
scription of π. Handling the above challenges requires an intimate understanding
of the algebraic structure of the group Z

∗
n, in particular of the set of solutions

for linear equations over this group, and critically uses the fact that factoring is
solvable in sub-exponential time [11,34].

1.3 Other Related Work

We briefly mention other known results concerning the uninstantiability of pop-
ular signature and encryption schemes that can be proven secure in the random
oracle model. Paillier and Vergnaud, [28], showed that many popular discrete
log based signatures (including ElGamal, DSA and Schnorr) cannot be reduced
to the discrete log assumption in the standard model, using the so called “alge-
braic” reductions. (Similar results also hold for related GQ signatures under the
RSA assumption.) Although technically incomparable to our “generic group”
modeling, conceptually such reductions are related to our assumption that the

5 In addition, since non-aborting queries are easy to generate assuming that RSA
is easy over π(Z∗

n), the above would immediately yield that RSA is equivalent to
factoring over (random) π(Z∗

n), and thus over generic groups.

120 Y. Dodis, I. Haitner, and A. Tentes

reduction can only use the multiplicative structure of a given group. Indeed,
in both cases the “meta-reduction” can eventually figure out the multiplicative
relations used be the reduction R in its queries to the attacker. The main dif-
ference applies in the way the reduction can prepare its queries to the attacker.
While the generic group modeling allows the reduction R to use some “hidden
values” related to the assumption that R is trying to break, “algebraic” reduc-
tion do not allow this flexibility. Thus, much of the technical difficulties in the
generic group modeling (e.g., extracting the hidden representations computed
by the reduction “on the side”) are somewhat trivialized when restricted to “al-
gebraic” reductions. Additionally, the results of [28] are specific to reductions
from a concrete assumption (e.g., discrete log), and are conditional on another
assumption (e.g., “one-more” discrete log). In contrast, our results are uncon-
ditional and rule out all starting assumptions, but only in the generic group
model.

Finally, in the realm of factoring/RSA-based CCA encryption, Paillier and
Villar, [29] and Brown et.al., [6], showed uninstantiability results analogous to
already-mentioned RSA signature result of [27].

Paper Organization

In Section 2 we formally define RSA-FDH and its security in the generic group
model and the type of reductions we rule out. Our main result, regarding the
impossibility of existentially unforgeable RSA-FDH against unbounded number
of signing queries, is proven in Section 3. However, the proof of our main technical
lemma using the GT short description paradigm is omitted and can be found in
the full version [14].

2 RSA-FDH in the Generic Group Model

In the following we first formally define what we mean by generic group model,
then extend the standard definitions of RSA-FDH to this model and finally
define weakly black-box proofs of security.

2.1 The Generic Group Model

There are different ways to interpret what it means to “treat the multiplicative
RSA group Z

∗
n in a black-box way” (see Theorem 2). In the generic algorithm

model due to Maurer, [23], “generic” algorithms do not have a direct access to
the group elements, but rather to a “black box” containing each element. The
only operations allowed with these boxes, are the group operations (inverse and
multiplication) and comparing two boxes for equality. The formulation we have
chosen here, which we simply call the generic group model, is somewhat less
abstract. An algorithm in our model has an oracle access to a group isomorphic to

On the Instantiability of Hash-and-Sign RSA Signatures 121

Z
∗
n (specifically, the group resulting by renaming the elements of Z∗n according to

some random permutation), through which it can perform the group operations.
Unlike the generic algorithm model, however, in our model algorithms we do
have access to the representation of the group elements and can manipulate
them.

Since any algorithm that “works well” in the generic algorithm model (e.g.,
breaks the RSA assumption) implies an algorithm that works equally well in
our model with respect to any group isomorphic to Z

∗
n, an impossibility result

in our model implies a similar result in the model of Maurer, [23]. Namely, our
model can be viewed as a model for proving impossibility results in the generic
algorithm model.

We formally define our model as follows: for n ∈ N, let Πφ(n) be the set of all
permutations from Z

∗
n to Z

∗
n. For π ∈ Πφ(n), we denote with π(Z∗n) the group

induced by the group Z
∗
n where each element of Z

∗
n is renamed according to

π. More specifically, the group operations over π(Z∗n) are defined as follows: the
inverse of a ∈ Z

∗
n is π((π−1(a))−1 mod n) and the (group) product of a, b ∈ π(Z∗n)

is π(π−1(a) · π−1(b) mod n). By Π(Z∗n) we denote the multiset of all groups
π(Z∗n), where G = {G = {Gn : Gn ∈ Π(Z∗n)}n∈N} (i.e., G consists of sets of
groups, where each set contains a group of Π(Z∗n) for every n ∈ N).

Abusing notation, we view G ∈ G as an oracle that given as input n ∈ N and
one [resp., two elements] of Gn (i.e., of Z∗n), returns the group inverse [resp.,
the group product] of the element (if the oracle G is given as input an element
outside Gn, it returns ⊥), and let Gn(·) = G(n, ·). Given a sequence of group
operations (e.g., a · b−1), we sometimes add the term [Gn], to indicate that
the operations are done with respect to the group Gn. In the following, abusing
notation again, we will write G ← G, where this sampling is not well defined
because G is an infinite set. However, we can assume lazy sampling, namely for
every query which contains a new n, Gn is sampled uniformly at random from
Π(Z∗n) (which is a finite set).

2.2 RSA-FDH Signature Schemes in the Generic Group Model

RSA-FDH signature schemes over G ∈ G is defined as follows:

Definition 1 (RSA-FDH signature scheme in the generic group
model). An RSA-FDH signature scheme ΣG in the generic group model, con-
sists of the following triplet of oracle-aided ppt ’s (KeyGen, Sign,Verify):

– Given oracle access to G ∈ G and input 1k, KeyGenG outputs a “public key”
(n, e, h), where n ∈ N is a product of two primes, e ∈ Z

∗
φ(n) and h is a (hash)

function, represented as an oracle-aided circuit mapping values into Z
∗
n, and

a “secret key” d = e−1 mod φ(n).

– Given oracle access to G ∈ G, input n ∈ N, d ∈ Z
∗
φ(n), a circuit h mapping

values into Z
∗
n and a “message” m in the domain of h, SignG outputs the

“signature” hG(m)d [Gn].

122 Y. Dodis, I. Haitner, and A. Tentes

– Given oracle access to G ∈ G, input n ∈ N, e ∈ Z
∗
φ(n), a circuit h mapping

values into Z
∗
n, a “message” m in the domain of h and σ ∈ Z

∗
n, VerifyG

outputs one iff σe ≡ hG(m) [Gn].

For G ∈ G, we let ΣG be the instantiation of ΣG with G.

Security Definition. The following definition realizes the security of bounded
and unbounded existential unforgeability under chosen message attack of an
RSA-FDH signature in the generic group model, analogously to that of the
standard model.

Definition 2 (security of RSA-FDH signature in the generic group
model). An oracle-aided algorithm F breaks the security of an RSA-FDH
signature scheme ΣG = (KeyGen, Sign,Verify), if

PrG←G,(sk,pk)←KeyGenG(1k)[(m,σ)← FG,SignG(sk,pk,·)(pk) :

VerifyG(σ,m, pk) = 1 ∧ Sign was not queried on m] > neg(k)

A signature scheme ΣG is EU-CMA-secure, if no (oracle-aided) ppt breaks its
security, where ΣG is t-EU-CMA-secure, if no ppt breaks its security when
restricted to query Sign at most t(k) times.

2.3 Weakly Black-Box Proofs of Security

Since we would like to rule out an EU-CMA-secure scheme, we ask the security
proof of the scheme to be realized via a “black-box reduction” (as discussed
in the introduction, we have very little chance to rule out a general proof of
security). On the other hand, we consider a very weak form of such a reduction
(which strengthens our main impossibility result).

Definition 3 (weakly black-box proof of security of RSA-FDH). An
RSA-FDH signature scheme ΣG = (KeyGen, Sign,Verify) in the generic group
model has a weakly black-box proof of security based on an assumption X, if there
exists an oracle-aided ppt R such that if X is true, then the following holds: let
F be a (possibly unbounded) adversary that breaks the security of ΣG (see Def-
inition 2), then for any ppt Emul there exists a polynomial-length distribution
ensemble D = {Dk}k∈N such that

SD
(
(x,RG,FG

(1k, x)), (x,EmulG(1k, x))
)
G←G,x←Dk

> neg(k).6

Remark 1 (A black-box proof implies a weakly black-box proof). Assuming that
X is true, the above intuitively asks that a security breach of ΣG implies that a

6 Note that F is an adversary which expects oracle access to Sign and R can control
the responses of these queries of F . The same does not hold for the queries of F
to G.

On the Instantiability of Hash-and-Sign RSA Signatures 123

(slightly) non-trivial task can be performed. Specifically, an efficient oracle-aided
algorithm can use a breaker of the scheme (in a black-box way) to sample some
unsamplable distribution. Note that this is a very modest demand and indeed,
it is implied by most black-box proofs of security one can think of.

Consider for instance a proof of security R that black-box reduces the security
of a scheme ΣG to an assumption X, say to the hardness of factoring. It follows

that given any adversary F to ΣG, the algorithm RG,FG

factors integers too

well. Assume without loss of generality that RG,FG

(x), if succeeds, outputs the
factorization of the integer x, let Dk be the distribution that outputs an integer
x = pq, for two randomly chosen k-bits prime, and consider the distribution ξk =

(x,RG,FG

(1k, x))G←G,x←Dk
it induces. Now if factoring is hard, then there is no

efficient Emul such that (x,EmulG(1k, x))G←G,x←Dk
is (even computationally)

close to ξk. Namely, there is no weakly black-box proof of security for ΣG based
on factoring.

Now if factoring is hard, then there is no efficient Emul such that
(x,EmulG(1k, x))G←G,x←Dk

is (even computational) close to ξk. Namely, there
is no weakly black-box proof of security for ΣG based on factoring.7

3 There Exists No RSA-FDH with a Weakly Black-Box
Proof

In this section we prove the main result of this paper.

Theorem 3 (Theorem 2, restated). Let ΣG = (KeyGen, Sign,Verify)
be an RSA-FDH signature scheme in the generic group model in which
PrG←G,(n,e,h)←KeyGenG(1k)[e ∈ P] > neg(k). If ΣG has a weakly black-box proof of
security based on (an assumption) X, then X is false.

The proof of Theorem 3 immediately follows from the next lemma:

Lemma 1. Let ΣG be as in Theorem 3, then there exist a family of oracles
Forger = {ForgerG}G∈G and oracle-aided ppt’s F and Emul, such that the fol-
lowing hold:

1. For every G ∈ G, FG,ForgerG breaks the security of ΣG.
2. For any oracle-aided ppt A and polynomial-length distribution ensemble D =
{Dk}k∈N:

SD
(
(x,AG,ForgerG(1k, x)), (x,EmulG(1k, x, desc(A)))

)
G←G,x←Dk

= neg(k),

where desc(A) denotes the description of the Turing Machine A.

Before proving Lemma 1, let us first use it for proving Theorem 3.

7 Note that there nothing specific to the hardness of factoring in the above discussion,
but rather it seems to be generic to “any” hardness assumption (e.g., strong RSA).

124 Y. Dodis, I. Haitner, and A. Tentes

Proof (of Theorem 3). Let ΣG be an RSA-FDH scheme with
PrG←G,(n,e,h)←KeyGenG(1k)[e ∈ P] > neg(k). Assume that ΣG has a weakly
black-box proof of security based on (an assumption) X and let R be the
algorithm guaranteed by this proof. Let Emul be the algorithm guaranteed by
Lemma 1 with respect to ΣG . Lemma 1 yields that

SD
(
(x, R̃G,ForgerG(1k, x)), (x,EmulG(1k, x, desc(R̃))

)
G←G,x←Dk

= neg(k)

for any polynomial-length distribution ensemble D = {Dk}, where

R̃G,ForgerG(·) = RG,F ForgerG (·). Letting F̃G(·) = FG,ForgerG(·) and EmulGR(·) =
EmulG(·, desc(R̃)), it follows that

SD
(
(x,RG,F̃G

(1k, x)), (x,EmulGR(1
k, x))

)
G←G,x←Dk

= neg(k)

for any polynomial-length distribution ensemble D, yielding that X is false.

The rest of this section is devoted for proving Lemma 1. We find it more con-
venient, however, to prove a variant of Lemma 1 in which the emulator should
work for any (polynomial-size) family of circuits. Namely, we prove the follow-
ing lemma (in the following statement we only focus on the part that changed
comparing to the original statement):

Lemma 2 (non uniform variant of Lemma 1)

2. The following holds for any (no input) polynomial-size family of oracle-aided
circuits {Ck}k∈N:

SD
(
C

G,ForgerG
k ,EmulG(1k, desc(Ck))

)
G←G

= neg(k),

where C
G,ForgerG
k denotes the output of Ck given access to G and ForgerG,

and desc(Ck) denotes the description of Ck.

It is easy to see that the non-uniform lemma above yields the uniform Lemma 1.
In Section 3.1 we define the family of oracles Forger and the efficient algorithm
F that uses Forger to break any RSA-FDH scheme, in Section 3.3 we define the
emulator Emul, where in Section 3.4 we put things together to prove Lemma 2.

3.1 The Forger

Recall (see Section 1.2) that Forger has to abort on “degenerated queries” —
essentially those queries that are easy to produce over any group in Π(Z∗n). To
determine whether a query (n, e, h, {σi}i∈[t]) is degenerated, we measure the com-
plexity of the values {h(i)}i∈[t],8 as a function of the group queries done through

8 We actually mean {hG(i)}i∈[t], but for notational convenience we will sometimes
omit the superscript G from h.

On the Instantiability of Hash-and-Sign RSA Signatures 125

their evaluations. Since the actual representation of these values is meaningless,
we only focus on their representation as functions of the “hardwired terms” —
the values used in the evaluation of {h(i)} that first appear as an input to a group
oracle call. Note that any group element used in the evaluation of {h(i)}, can be
expressed using (only) these hardwired terms. To formally carry the above dis-
cussion, we describe the evaluation of {h(i)} as a computation over the following
group.

Definition 4 (The group Symb). The elements of Symb are equivalence
classes over the set of all finite strings “ua1

1 , · · · , uak

k ”, where the ui’s are in N

and the ai’s are in Z. The strings c = “ua1
1 ·...·uak

k ” and c′ = “u′1
a′
1 ·...·u′k′

a′
k′ ” are

in the same equivalence class, if for every w ∈ N it holds that
∑

i∈[k] : ui=w ai =∑
i∈[k′] : u′

i=w a′i. We identify a group element of Symb, with any string of its

equivalence class. The unit element of Symb is the class identified by the empty
string ε (or by “21 ·2−1” etc), where c ·c′ is the equivalence class identified by the
string “c ·c′” and finally c−1 is the class identified by the string “u−a1

1 · ... ·u−ak

k ”.

We naturally identify an element “ua1
1 · ... · uak

k ” ∈ Symb with an element of
a given group V that contains {ui}i∈[k], by identifying it with the result of

the sequence of operations it induces over V (i.e., “u1 · u−12 ” with respect to
V = Z

∗
n, is identified with u1 · u−12 mod n). To avoid confusion over which

group a sequence of operations is taken, we typically suffix the sequence with
the term [V], indicating that it is done over the group V . It is clear that for
any two strings u and u′ that identify the same element of Symb (i.e., belong to
the same equivalence class), it holds that u ≡ u′ [V] for any Abelian group V
containing u and u′.

Next we use the above terminology to syntactically describe the computation
of an oracle-aided circuit C, where we start by defining the hardwired terms deter-
mined by C’s computation. To simplify notations, we assume that a circuit evalu-
ates its gates one-by-one, and that its description determines this evaluation order.

Definition 5 (hardwired terms). Let C be an oracle-aided circuit, G ∈ G
and n ∈ N. The terms of C with respect to Gn, denoted TermsC,G,n, are those
values that appear either as input or as the answers to non-bottom queries of
C to Gn (i.e., Gn returns a non-bottom value). The hardwired terms of C with
respect to Gn, denoted HardWiredC,G,n are those element inside TermsC,G,n that
first appear as inputs to non-bottom queries to Gn. Finally, the answer terms
are those terms that appear as answers to non-bottom queries (might intersect
HardWiredC,G,n). We assume that the elements of each of the above sets are
ordered according to the evaluation order.

We next use the syntax of the group Symb, to present any term as an expression
of the hardwired terms.

Definition 6 (canonical form). Let C, G and n be as in Definition 5. The
canonical form of u ∈ TermsC,G,n with respect to (C,G, n), denoted CanC,G,n(u),
is recursively defined as follows:

126 Y. Dodis, I. Haitner, and A. Tentes

– if u ∈ HardWiredC,G,n, let CanC,G,n(u) be the element “u1” ∈ Symb.

– If u first appears as an output of a query Gn(u
′, u′′), let CanC,G,n(u) =

CanC,G,n(u
′) · CanC,G,n(u

′′) [Symb].

– Similarly, if u first appears as an output of Gn(u
′), we let CanC,G,n(u) =

CanC,G,n(u
′)−1 [Symb].

Let {vi}i∈[�] = HardWiredC,G,n. Note that the canonical form of any
u ∈ TermsC,G,n with respect to (C,G, n), can be uniquely written as∏

i∈[�] v
ai

i [Symb], where ai might be non zero, only if the hardwired term vi

appears before u does (in the evaluation order of CG). Finally, the canonical
forms of a set of terms, with respect to (C,G, n), is compactly represented using
the following matrix.

Definition 7 (canonical-form matrix). Let C, G and n be as in Definition 5,
let {vi}i∈[�] = HardWiredC,G,n and let W = {ui}i∈[t] ⊆ TermsC,G,n. The matrix
MG,n,C(W) ∈ Zt×� is defined as {aij}i∈[t],j∈[�], assuming that CanC,G,n(ui) =∏

j∈[�] v
aij

j [Symb] for every i ∈ [t].

We actually care for the rank of the canonical-form matrix of the terms output
by a circuit C, which shows if there exists an output term which can be expressed
as a product of powers of the other output terms. This would imply that if we
know the e-th roots of the latter then we can compute the e-th root of the former.
Jumping forward, we will exploit this property of the canonical-form matrix to
see if a query is degenerated.

We are finally ready to define ForgerG.

Algorithm 4 (ForgerG)
Input: q = (n, e, h, {σi}i∈[t]), where n, e and {σi}i∈[t] are integers, and h is an
oracle-aided circuit.

Operation:

1. If e /∈ P, |h| (= |desc(h)|) > t or for some i ∈ [t] hG(i) /∈ Z
∗
n or

hG(i)�≡σe
i [Gn], return ⊥.

2. Let M = MG,n,H({h(i)}i∈[t]) according to Definition 7, where H is the
oracle-aided circuit that first evaluates hG(1), . . . , hG(t) and then queries Gn

on the answers (say asking for their inverses).

If rankeM < t, return ⊥.
3. Return (hG(0))d [Gn], where d = e−1 mod φ(n).
. .

That is, ForgerG first checks that {σi}i∈[t] are valid signatures for the messages
{1, . . . , t} (with respect to G and the public key (n, e, h)) and that forging a
signature for this public key is not easy (reflected by rankeM = t). If satisfied,
ForgerG forges a signature for 0.

Below we describe the ppt F that uses ForgerG for breaking the security
of ΣG.

On the Instantiability of Hash-and-Sign RSA Signatures 127

3.2 The Breaker F

The strategy of the algorithm F that uses Forger for breaking the security of
ΣG is simple: on input (n, e, h) it would like to use Forger on (n, e, h, {σi =
SignG(n, e, i)}i∈[t]) to forge the signature of 0. It might be the case, however,
that Forger returns bottom on such input. Hence, F first checks by himself
(without using Sign or Forger) whether Forger will return bottom on this input.
If positive, it uses a straightforward approach (see below) for forging a message
k ∈ [t], without using Forger at all.

Algorithm 5 (F)
Input: pk = (n, e, h)
Oracles: G ∈ Gn, SignG(sk, pk, ·) and ForgerG.
Operation:

1. Let t = |h| and let M = MG,n,H({hG(i)}i∈[t]) according to Definition 7,
where H is as in Algorithm 4 (with respect to this h and t).

2. If ranke(M) = t, return ForgerG(n, e, h, {SignG(sk, pk, i)}i∈[t]).
Otherwise,
(a) Using Gaussian Elimination find k ∈ [t] and a set {λi ∈ [e]}i∈[t]\{k},

such that for every j ∈ [�] it holds that Mkj ≡
∑

i∈[t]\{k} λi ·Mij mod e.

(b) Let γ =
∏

j∈[�] v
(Mkj−

∑
i∈[t]\{k} λi·Mij)/e

j [Gn], where {vi}i∈[�] =

HardWiredH,G,n (see Definition 5).

(c) For every i ∈ [t] \ {k}, let σi = SignG(sk, pk, i) (≡ hG(i)d [Gn]).
(d) Return σk = γ ·∏i∈[t]\{k} σ

λi

i [Gn].
. .

The following lemma is immediate, but its proof is omitted and can be found
in the full version of this paper [14].

Lemma 3. For every G ∈ G, FG,ForgerG breaks the security of ΣG.

3.3 The Emulator

Our task is to emulate a family of circuits {Ck} with oracle access to G ∈ G
and ForgerG, using only oracle access to G. We assume without loss of generality
that |Ck| ≥ k (otherwise we emulate a padded version of this family) and omit
k from the input parameter list of the emulator. We also assume without loss of
generality that before calling ForgerG on input (n, e, h, {σi}i∈[t]), Ck first query
G on {σi} (otherwise, we will emulate the circuit C′k that does so).

Given a circuit C, EmulG(desc(C)) emulates the execution of a circuit
CG,ForgerG by forwarding the G-calls to G, and answering the ForgerG-calls us-
ing the following method: let q = (n, e, h, {σi}i∈[t]) be a query that C makes to
ForgerG, Emul first checks whether ForgerG returns bottom on this call (which
it can do efficiently), and if positive returns bottom to C as well. Otherwise,
Emul uses the query q and the description of C to factor n, and then uses this
factorization to answer the query efficiently.

128 Y. Dodis, I. Haitner, and A. Tentes

The interesting question is how can Emul use such a pair (C, q) to factor n ef-
ficiently? Let H and MH = MG,n,H({h(i)}i∈[t]) as computed by ForgerG(q), and

let M (H;C) = MG,n,(H;C)({σi}i∈[t]) ∈ Zt×�′ , where the circuit (H ;C) first eval-
uates H and then C.9 Namely, MH represents the canonical form of {h(i)}i∈[t]
induced by the (stand alone) computation of H , where M (H;C) represents the
canonical form of the “signatures” {σi}i∈[t] induced by the computation of
(H ;C). Since (H ;C) first starts by computing H , it follows that every hard-
wired term u ∈ HardWiredH,G,n ∩HardWired(H;C),G,n has the same index with
respect to both ordered sets HardWiredH,G,n and HardWired(H;C),G,n. Hence,
the promise that σe

i ≡ h(i) [Gn] for every i ∈ [t], yields the following with
respect to {vi}i∈[�′] = HardWired(H;C),G,n :

∏
j∈[�]

v
MH

ij

j ≡
∏
j∈[�′]

(v
M

(H;C)
ij

j)e [Gn],

for every i ∈ [t]. Since Gn is selected at random, (at least intuitively) C could
have satisfied the above equations only if they hold regardless of the choice of
Gn. Namely, it is the case that

∑
j∈[�]

MH
ij ≡ e ·

∑
j∈[�′]

M
(H;C)
ij mod φ(n) (1)

for every i ∈ [t]. On the other hand, the assumption that ForgerG(q) �=⊥ yields
that rankeM

H = t. Therefore, Equation (1) is “far” from being satisfied modulo
e. In our proof we show how to use this inconsistency to find a multiple of φ(n),
and thus to factor n.

The following description of Emul realizes the above discussion. We start by
recalling the following known factoring algorithms. The first one is useful for
small n’s (for which the above discussion does not hold), and the second one
factors arbitrary larger n, given a multiple of φ(n) as an advice.

Theorem 6 (factoring small numbers, [11,34]). There exists a procedure

Sef that on input n ∈ N, runs in time 2O(
√
logn log logn) and factors n with con-

stant probability.

Lemma 4 (factoring using multiple of φ(n)). We say that z = (z1, z2) ∈
Z×N is a factoring advice for n ∈ N, if z

�logn	
1 ·∏p∈P: p<z2

p�logn	 is a non-zero
multiple of φ(n).

There exists a procedure Factor that on input (n, z1, z2), runs in time
poly(z2) · poly(log |nz1|), and factors n with constant probability, assuming that
z = (z1, z2) is a factoring advice for n.

Proof. We use the following known algorithm due to Miller, [24].

Theorem 7 (Miller’s algorithm [24,34]). There exists a procedure that on
input n ∈ N and μ ∈ Z, runs in time poly(log |nμ|), and if μ is a non-zero
multiple of φ(n), it factors n with constant probability.

9 Recall that we allow circuits to have a predetermined evaluating order.

On the Instantiability of Hash-and-Sign RSA Signatures 129

By definition μ = z
�logn	
1 ·∏p∈P: p<z2

p�logn	 is a non-zero multiple of φ(n). Thus,
Miller’s algorithm on input (n, μ), runs in time poly(log |nμ|) = poly(z2·log |nz1|)
and factors n with constant probability. Finally, note that μ is easily computable
in time poly(z2, logn).

We are now finally ready to define Emul.

Algorithm 8 (Emul)
Input: The description of an oracle-aided circuit C.
Oracle: G ∈ G.
Operation:
Emulate CG while on every query q = (n, e, h, {σi}i∈[t]) to ForgerG, return the
following value to C:

1. If ForgerG would return ⊥ on q, return ⊥ as well (and continue to the next
query). Else,

2. Try to factor n by doing the following for |C| times:

If n ≤ |C| log |C|
log log |C| , execute Sef(n).

Otherwise, execute Factor(n, det(QC,G,q), |C|4), where QC,G,q is according to
Definition 8.

3. If factoring of n is successful, return hG(0)d [Gn], where d = e−1

mod φ(n).
Otherwise, abort.

. .

The matrix QC,G,q is defined as follows:

Definition 8 (query matrix). Let C be an oracle-aided circuit, G ∈ G and
let q = (n, e, h, {σi}i∈[t]) be the query asked by CG,ForgerG to ForgerG. The matrix
QC,G,q ∈ Zt×t is defined as follows:

1. If ForgerG(q) =⊥, set QC,G,q = 0t×t.
Otherwise:

2. Let MH = MG,n,H({h(i)}i∈[t]) according to Definition 7, where H is as in
Algorithm 4 with respect to this h and t. (Since ForgerG(q) �=⊥, the matrix
MH is well defined and of rank t.)

3. Let I ⊆ [�] be the first subset of size t (from hereafter we assume some
arbitrary order on such sets) with ranke(M

H
I) = t.10

4. Let M (H;C) ∈ Zt×�′ be the matrix MG,n,(H;C)({σi}i∈[t]) according to Defini-
tion 7, where (H ;C) is the circuit that first evaluates H and then evaluates
C.

5. Set QC,G,q = MH
I − e ·M (H;C)

I .

Note that in the code of Emul if Sef is called, and thus n is small, then it runs
in time poly(|C|). In addition, the running time of Factor, if called, is also in
poly(|C|). Thus, Emul runs in polynomial time.

10 Remember that MH
I ∈ Zt×t is the restriction of MH to the columns in I.

130 Y. Dodis, I. Haitner, and A. Tentes

Moreover, it is clear that the only case where the output of EmulG(desc(C))
differs from the output of CG is when the former aborts. This means that for
some query of C to Forger, the latter would not return ⊥, but either (1) Sef
failed, or (2) z was a factoring advice but Factor failed, or (3) z was not a
factoring advice for n. As the first two cases happen with negligible probability
(by Theorem 6 and Lemma 4), we only have to prove that the latter happens
with negligible probability.

This is formally done in the following lemma, whose proof (done via the ”short
description paradigm”) can be found in the full version of this paper [14].

Lemma 5. A query q = (n, ·) to Forger made by CG∈G,ForgerG is unexpected, if

– ForgerG(q) �=⊥,
– n > |C| log |C|

log log |C| , and
– (det(QC,G,q), |C|4) is not a factoring advice for n, where QC,G,q is according

to Definition 8.

The following holds for any oracle-aided circuit C:

PrG←G [CG,ForgerG asks Forger an unexpected query] ≤ δ(|C|),

where δ(|C|) = 2− log2 |C|.

3.4 Putting It Together

Proof (of Lemma 2). Lemma 3 yields that FG,ForgerG breaks the security of ΣG

with respect to every G ∈ G, so it is left to prove that EmulG(Ck) emulates

C
G,ForgerG
k well.
Recall that |Ck| ∈ poly(k), and that we assume without loss of generality that

|Ck| ≥ k. Theorem 6 and Lemma 4 yield that Emul(Ck) answers all “expected”
queries of Ck to Forger with probability 1 − |Ck| · 2−Ω(k) = 1 − neg(k), where
Lemma 5 yields that Ck asks unexpected queries with only negligible probability
over the choice of G ∈ G. Hence, with save but negligible probability, EmulG(Ck)

emulates C
G,ForgerG
k correctly.

Acknowledgments. We thank Nir Bitansky, Thomas Holenstein and Ilya
Mironov for very helpful conversations.

References

1. Aggarwal, D., Maurer, U.: Breaking RSA Generically Is Equivalent to Factoring.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 36–53. Springer,
Heidelberg (2009)

2. Bellare, M., Boldyreva, A., Palacio, A.: An Uninstantiable Random-Oracle-Model
Scheme for a Hybrid-Encryption Problem. In: Cachin, C., Camenisch, J. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

On the Instantiability of Hash-and-Sign RSA Signatures 131

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

4. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

5. Boldyreva, A., Fischlin, M.: Analysis of Random Oracle Instantiation Scenarios for
OAEP and Other Practical Schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 412–429. Springer, Heidelberg (2005)

6. Brown, J., González Nieto, J.M., Boyd, C.: Efficient CCA-Secure Public-Key En-
cryption Schemes from RSA-Related Assumptions. In: Barua, R., Lange, T. (eds.)
INDOCRYPT 2006. LNCS, vol. 4329, pp. 176–190. Springer, Heidelberg (2006)

7. Canetti, R., Goldreich, O., Halevi, S.: On the Random-Oracle Methodology as
Applied to Length-Restricted Signature Schemes. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 40–57. Springer, Heidelberg (2004)

8. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
JACM: Journal of the ACM, 51 (2004)

9. Coron, J.-S.: On the Exact Security of Full Domain Hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

10. Cramer, R., Shoup, V.: Signature schemes based on the strong rsa assumption.
ACM Trans. Inf. Syst. Secur. 3(3), 161–185 (2000)

11. Dixon, J.D.: Asymptotically fast factorization of integers. Mathematics of Compu-
tation 36, 255–260 (1981)

12. Dodis, Y., Oliveira, R., Pietrzak, K.: On the Generic Insecurity of the Full Domain
Hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

13. Dodis, Y., Reyzin, L.: On the Power of Claw-Free Permutations. In: Cimato, S.,
Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 55–73. Springer,
Heidelberg (2003)

14. Dodis, Y., Haitner, I., Tentes, A.: On the instantiability of hash-and-sign rsa sig-
natures. ePrint, http://eprint.iacr.org/2011/087

15. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM Journal on Computing 35(1), 217–246 (2005)

16. Gennaro, R., Halevi, S., Rabin, T.: Secure Hash-and-Sign Signatures without
the Random Oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 123–139. Springer, Heidelberg (1999)

17. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, pp. 305–313. IEEE Computer Society (2000)

18. Goldwasser, S., Tauman-Kalai, Y.: On the (in)security of the fiat-shamir paradigm.
In: Proceedings of the 44th Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pp. 102–113. IEEE Computer Society (2003)

19. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols – A tight lower bound on the round complexity of statistically-hiding
commitments. In: Proceedings of the 48th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 669–679. IEEE Computer Society (2007)

20. Haitner, I., Holenstein, T.: On the (Im)Possibility of Key Dependent Encryption.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidel-
berg (2009)

21. Hofheinz, D., Jager, T., Kiltz, E.: Short Signatures From Weaker Assumptions.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666.
Springer, Heidelberg (2011)

http://eprint.iacr.org/2011/087

132 Y. Dodis, I. Haitner, and A. Tentes

22. Hohenberger, S., Waters, B.: Short and Stateless Signatures from the RSA Assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

23. Maurer, U.M.: Abstract models of computation in cryptography. In: IMA Int.
Conf., pp. 1–12 (2005)

24. Miller, G.L.: Riemann’s hypothesis and tests for primality. Journal of Computer
and System Sciences 13(3), 300–317 (1976)

25. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
MATHNASUSSR: Mathematical Notes of the Academy of Sciences of the USSR,
55 (1994)

26. Nielsen, J.B.: Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-committing Encryption Case. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

27. Paillier, P.: Impossibility Proofs for RSA Signatures in the Standard Model. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 31–48. Springer, Heidelberg
(2006)

28. Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equiv-
alent to Discrete Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788,
pp. 1–20. Springer, Heidelberg (2005)

29. Paillier, P., Villar, J.L.: Trading One-Wayness Against Chosen-Ciphertext Security
in Factoring-Based Encryption. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 252–266. Springer, Heidelberg (2006)

30. Pietrzak, K.: Compression from Collisions, or Why CRHF Combiners Have a
Long Output. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 413–432.
Springer, Heidelberg (2008)

31. Rivest, R.L., Shamir, A., Adelman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

32. RSA Laboratories, Redwood City, California. PKCS #1: RSA Encryption Stan-
dard (November 1993)

33. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

34. Shoup, V.: Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press (2005)

35. Wee, H.: One-Way Permutations, Interactive Hashing and Statistically Hiding
Commitments. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 419–433.
Springer, Heidelberg (2007)

	On the Instantiability of Hash-and-Sign RSA
Signatures
	Introduction
	Our Results
	Our Technique
	Other Related Work

	RSA-FDH in the Generic Group Model
	The Generic Group Model
	RSA-FDH Signature Schemes in the Generic Group Model
	Weakly Black-Box Proofs of Security

	There Exists No RSA-FDH with a Weakly Black-Box Proof
	The Forger
	The Breaker F
	The Emulator
	Putting It Together

	References

