Skip to main content

The Use of Lunar Resources for Energy Generation on the Moon

  • Chapter
Moon

Introduction

Energy is fundamental to nearly everything that humans would like to do in space, whether it is science, commercial development, or human exploration. If indigenous energy sources can be developed, a wide range of possibilities emerges for subsequent development. Some of these will lower the cost of future exploration, others will expand the range of activities that can be carried out, and some will reduce the risks of further exploration and development. This picture is particularly true for the Moon where significant electrical energy will be required for a number of lunar development scenarios; including science stations, lunar resource processing, and tourism. As example, the presence of water in the permanently shadowed craters at the poles of the Moon (Colparete et al. 2010; Heldman et al. 2011) will allow for propellant production: oxygen and hydrogen through electrolysis which will require significant amounts of electrical energy. Further, proposed large radio telescopes on the back side of the Moon would require over 1 MW of power for echo microwave astronomy. The availability of solar cell raw materials in the surface regolith of the Moon, e.g., silicon, and the fact that the surface of the Moon is an ultra-high vacuum (1 x 10− 10 Torr) environment allows for the direct fabrication of thin film solar cells directly on the surface of the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Briggs, R.A., Sacco Jr., A.: Hydrogen reduction mechanism of ilmenite between 823 and 1353 K. J. Mater. Res. 6(3), 574–584 (1990)

    Article  Google Scholar 

  2. Burt, D.M.: Lunar Mining of Oxygen Using Fluorine. Amer. Sci. 77, 574–579 (1989)

    Google Scholar 

  3. Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R.C., Goldstein, D., Summy, D., Bart, G.D., Asphaug, E., Korycansky, D., Landis, D., Sollitt, L.: Detection of Water in the LCROSS Ejecta Plume. Science 22, 463–468 (2010)

    Article  Google Scholar 

  4. Eagle Engineering, Conceptual Design of a Luna Oxygen Pilot Plant Lunar Base Study, NASA-JSC NAS9-17878, Task 4.2(1988)

    Google Scholar 

  5. Filsinger, D.H., Bourrie, D.B.: Silica to Silicon: Key Carbothermic Reactions and Kinetics. J. Am. Ceram. Soc. 73(6), 1726–1732 (1990)

    Article  Google Scholar 

  6. Heldman, J., et al.: LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned, Space Science Reviews (2011), doi:10.1007/s11214-011-9759-y

    Google Scholar 

  7. Ignatiev, A., Kubricht, T., Freundlich, A.: Solar Cell Development on the Surface of the Moon. In: Proc. 49th International Astronautical Congress, IAA-98-IAA. 13.2.03 (1998)

    Google Scholar 

  8. Ignatiev, A., Freundlich, A.: Lunar Regolith Thin Films: Vacuum Evaporation and Properties. In: AIP Proceedings, vol. 420, p. 660 (1998)

    Google Scholar 

  9. Keller, R.: Lunar Production of Aluminum, Silicon and Oxygen. In: Sohn, H.Y., Geskin, E.S. (eds.) Metallurgical Process for the Year 2000 and Beyond, pp. 551–562. Mineral, Metal and Materials Soc., Warrendale, PA (1988)

    Google Scholar 

  10. Knudsen, C., Gibson, M.: Development of the Carbotek ProcessTM for Lunar Oxygen Production. Engineering, Construction and Operations in Space II, American Society of Civil Engineers, p. 357 (1990)

    Google Scholar 

  11. Lin, H.Y., Chen, Y.W., Li, C.: The mechanism of reduction of iron oxide by hydrogen. Thermochimica Acta 400, 61–67 (2003)

    Article  Google Scholar 

  12. Nakamura, T., Van Pelt, A.D., Smith, B.K.: Solar Thermal System for Oxygen Production from Lunar Regolith. In: 47th AIAA Aerospace Sciences Meeting, AIAA-2009-0660, Orlando, January 5-8 (2009)

    Google Scholar 

  13. Rao, D.B.: Extraction Processes for the Production of Aluminum, Titanium, Iron, Magnesium and Oxygen from Non-terrestrial Sources. Space Resources and Space Settlements, NASA SP-428 (1979)

    Google Scholar 

  14. Rosenberg, S.D., Guter, G.A., Miller, F.R.: The On-Site manufacture of Propellant Oxygen Utilizing Lunar Resources. Chem. Engr. Prog. 62, 228 (1964)

    Google Scholar 

  15. Rosenberg, S.D., Hermes, P., Rice, E.E.: Carbothermal Reduction of Lunar Materials for Oxygen Production on the Moon. Final Report, In Space Propulsion, Ltd., Contract NAS 9-19080 (1996)

    Google Scholar 

  16. SBIR Final Report, Lunar In-Situ Fabrication: The Manufacturing of Thin Film Solar Cells on the Surface of the Moon. NASA #NNM04AA65C (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Ignatiev, A., Freundlich, A. (2012). The Use of Lunar Resources for Energy Generation on the Moon. In: Badescu, V. (eds) Moon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27969-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27969-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27968-3

  • Online ISBN: 978-3-642-27969-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics