Skip to main content

Laboratory Investigation of the Child with Suspected Renal Disease

  • Living reference work entry
  • First Online:
Pediatric Nephrology

Abstract

The kidney can be injured by a variety of different mechanisms. Investigating the type and assessing the degree of injury and its progression involves laboratory assessment and often tissue sampling. This chapter will discuss laboratory assessment and investigation with emphasis on the use of blood and urine samples to investigate renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children and adults. J Pediatr. 1978;93:62–6.

    Article  CAS  PubMed  Google Scholar 

  2. Guignard JP, Santos F. Laboratory investigations. In: Avner ED, Harmon WE, Niaudet P, editors. Pediatric nephrology. 5th ed. Philadelphia: Lippincott Williams Wilkins; 2004. p. 349–424.

    Google Scholar 

  3. Durand E, Prigent A. The basics of renal imaging and function studies. J Nucl Med. 2002;46:249–67.

    CAS  Google Scholar 

  4. Odlund B, Hällgren R, Sohtell M, Lindström B. Is 125I-iothalamate an ideal marker for glomerular filtration? Kidney Int. 1985;27:9–16.

    Article  Google Scholar 

  5. Bhatt MK, Bartlett ML, Mallitt KA, McTaggart S, Ravi Kumar AS. Correlation of various published radionuclide glomerular filtration rate estimation techniques and proposed paediatric normative data. Nucl Med Commun. 2011;32(11):1088–94.

    Article  PubMed  Google Scholar 

  6. Nilsson-Ehle P, Grubb A. New markers for determination of GFR: iohexol clearance and cystatin C serum concentration. Kidney Int. 1994;46:S17–19.

    Google Scholar 

  7. Krustzen E, Back SE, Nilsson-Ehle P. Determination of glomerular filtration rate using iohexol clearance and capillary sampling. Scand J Clin Lab Invest. 1990;50:279–83.

    Article  Google Scholar 

  8. Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, Daina E, Remuzzi G. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol. 1995;6:257–63.

    CAS  PubMed  Google Scholar 

  9. Colantonio DA, Kyriakopoulou L, Chan MK, Daly CH, Brinc D, Venner AA, Pasic MD, Armbruster D, Adeli K. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem. 2012;58(5):854–68.

    Article  CAS  PubMed  Google Scholar 

  10. Namnum P, Insogna K, Baggish D, Hayslett JP. Evidence for bidirectional net movement of creatinine in the rat kidney. Am J Physiol. 1983;244:F719–23.

    CAS  PubMed  Google Scholar 

  11. Sjöstrom PA, Odlind BG, Wolgast M. Extensive tubular secretion and reabsorption of creatinine in humans. Scand J Urol Nephrol. 1988;22:129–31.

    Article  PubMed  Google Scholar 

  12. Vieux R, Hascoet JM, Merdariu D, Fresson J, Guillemin F. Glomerular filtration rate reference values in very preterm infants. Pediatrics. 2010;125(5):1186–92.

    Article  Google Scholar 

  13. Piepsz A, Tondeur M, Ham H. Revisiting normal (51)Cr-ethylenediaminetetraacetic acid clearance values in children. Eur J Nucl Med Mol Imaging. 2006;33(12):1477–82.

    Article  CAS  PubMed  Google Scholar 

  14. Doolan PD, Alpen EL, Theil GB. A clinical appraisal of the plasma concentration and endogenous clearance of creatinine. Am J Med. 1962;32:65–79.

    Article  CAS  PubMed  Google Scholar 

  15. Fong J, Johnston S, Valentino T, Notterman D. Length/serum creatinine ratio does not predict measured creatinine clearance in critically ill children. Clin Pharmacol Ther. 1995;58:192–1977.

    Article  CAS  PubMed  Google Scholar 

  16. Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, Hostetter T, Levey AS, Panteghini M, Welch M, Eckfeldt JH, National Kidney Disease Education Program Laboratory Working Group. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem. 2006;52(1):5–18.

    Article  CAS  PubMed  Google Scholar 

  17. Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, Van Lente F, Chronic Kidney Disease Epidemiology Collaboration. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem. 2007;53(4):766–72.

    Article  CAS  PubMed  Google Scholar 

  18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro 3rd AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Greenberg N, Roberts WL, Bachmann LM, Wright EC, Dalton RN, Zakowski JJ, Miller WG. Specificity characteristics of seven commercial creatinine measurement procedures using enzymatic and Jaffe method principles. Clin Chem. 2012;58:391–401.

    Article  CAS  PubMed  Google Scholar 

  21. Finney H, Newman DJ, Thakkar H, Fell JM, Price CP. Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates and older children. Arch Dis Child. 2000;82:71–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tenstad O, Roald AB, Grubb A, Aukland K. Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest. 1996;56:409–14; Keevil BG, Kilpatrick ES, Nichols SP, Maylor PW. Biological variation of cystatin C: implications for the assessment of glomerular filtration rate. Clin Chem 1998;44:1535–1539.

    Article  CAS  PubMed  Google Scholar 

  23. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS, CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367:20–9.

    Article  CAS  PubMed  Google Scholar 

  24. Inker LA, Eckfeldt J, Levey AS, Leiendecker-Foster C, Rynders G, Manzi J, Waheed S, Coresh J. Expressing the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) cystatin C equations for estimating GFR with standardized serum cystatin C values. Am J Kidney Dis. 2011;58(4):682–4.

    Article  PubMed  Google Scholar 

  25. Roos JF, Doust J, Tett SE, Kirkpatrick CM. Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children-a meta-analysis. Clin Biochem. 2007;40(5–6):383–91.

    Article  CAS  PubMed  Google Scholar 

  26. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  27. Grubb A, Horio M, Hansson LO, Björk J, Nyman U, Flodin M, Larsson A, Bökenkamp A, Yasuda Y, Blufpand H, Lindström V, Zegers I, Althaus H, Blirup-Jensen S, Itoh Y, Sjöström P, Nordin G, Christensson A, Klima H, Sunde K, Hjort-Christensen P, Armbruster D, Ferrero C. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin Chem. 2014;60(7):974–86.

    Article  CAS  PubMed  Google Scholar 

  28. Levey AS, Greene T, Schluchter MD, et al. Glomerular filtration rate measurements in clinical trials. modification of diet in renal disease study group and the diabetes control and complications trial research group. J Am Soc Nephrol. 1993;4(5):1159–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. De Sadeleer C, Van Laere K, Georges B, Piepsz A, Ham HR. Influence of time interval and number of blood samples on the error in renal clearance determination using a mono-exponential model: a monte carlo simulation. Nucl Med Commun. 2000;21(8):741–5.

    Article  PubMed  Google Scholar 

  30. Brochner-Mortensen J, Rodbro P. Selection of routine method for determination of glomerular filtration rate in adult patients. Scand J Clin Lab Invest. 1976;36(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  31. Fahey FH, Treves ST, Adelstein SJ. Minimizing and communicating radiation risk in pediatric nuclear medicine. J Nucl Med. 2011;52(8):1240–51.

    PubMed  Google Scholar 

  32. Rehling M, Nielsen LE, Marqversen J. Protein binding of 99Tcm-DTPA compared with other GFR tracers. Nucl Med Commun. 2001;22(6):617–23.

    Article  CAS  PubMed  Google Scholar 

  33. Gordon I, Piepsz A, Sixt R, Auspices of Paediatric Committee of European Association of Nuclear Medicine. Guidelines for standard and diuretic renogram in children. Eur J Nucl Med Mol Imaging. 2011;38(6):1175–88.

    Article  PubMed  Google Scholar 

  34. Fleming JS. An improved equation for correcting slope-intercept measurements of glomerular filtration rate for the single exponential approximation. Nucl Med Commun. 2007;28(4):315–20.

    Article  PubMed  Google Scholar 

  35. Jodal L, Brochner-Mortensen J. Reassessment of a classical single injection 51Cr-EDTA clearance method for determination of renal function in children and adults. Part I: analytically correct relationship between total and one-pool clearance. Scand J Clin Lab Invest. 2009;69(3):305–13.

    Article  PubMed  Google Scholar 

  36. Ham HR, Piepsz A. Estimation of glomerular filtration rate in infants and in children using a single-plasma sample method. J Nucl Med. 1991;32(6):1294–7.

    CAS  PubMed  Google Scholar 

  37. Ham HR, De Sadeleer C, Hall M, Piepsz A. Which single blood sample method should be used to estimate 51Cr-EDTA clearance in adolescents? Nucl Med Commun. 2004;25(2):155–7.

    Article  PubMed  Google Scholar 

  38. Staples A, LeBlond R, Watkins S, Wong C, Brandt J. Validation of the revised Schwartz estimating equation in a predominantly non-CKD population. Pediatr Nephrol. 2010;25(11):2321–6.

    Article  PubMed  Google Scholar 

  39. Ng DK, Schwartz GJ, Jacobson LP, Palella FJ, Margolick JB, Warady BA, Furth SL, Muñoz A. Universal GFR determination based on two time points during plasma iohexol disappearance. Kidney Int. 2011;80(4):423–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hogg RJ, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, Balk E, Lau J, Levin A, Kausz AT, Eknoyan G, Levey AS. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics. 2003;111:1416–21.

    Article  PubMed  Google Scholar 

  41. Hogg RJ, Portman RJ, Milliner D, Lemley KV, Eddy A, Ingelfinger J. Evaluation and management of proteinuria and nephrotic syndrome in children: recommendations from a pediatric nephrology panel established at the National Kidney Foundation conference on proteinuria, albuminuria, risk, assessment, detection, and elimination (PARADE). Pediatrics. 2000;105:1242–9.

    Article  CAS  PubMed  Google Scholar 

  42. Houser MT, Jahn MF, Kobayashi A, Walburn J. Assessment of urinary protein excretion in the adolescent: effect of body position and exercise. J Pediatr. 1986;109:556–61.

    Article  CAS  PubMed  Google Scholar 

  43. Morcos SK, el-Nahas AM, Brown P, Haylor J. Effect of iodinated water soluble contrast media on urinary protein assays. BMJ. 1992;305:29.1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Trachtenberg F, Barregard L. The effect of age, sex, and race on urinary markers of kidney damage in children. Am J Kidney Dis. 2007;50:938–45.

    Article  CAS  PubMed  Google Scholar 

  45. Goldstein SL. Acute kidney injury biomarkers: renal angina and the need for a renal troponin I. BMC Med. 2011;9:135.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Ronco C, Legrand M, Goldstein SL, Hur M, Tran N, Howell EC, Cantaluppi V, Cruz DN, Damman K, Bagshaw SM, Di Somma S, Lewington A. Neutrophil gelatinase-associated lipocalin: ready for routine clinical use? An international perspective. Blood Purif. 2014;37(4):271–85.

    Article  CAS  PubMed  Google Scholar 

  47. Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R, Syed H, Ali S, Barasch J, Devarajan P. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol. 2008;3(3):665–73.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, Bennett M, Devarajan P. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kovesdy CP, Quarles LD. Fibroblast growth factor-23: what we know, what we don’t know, and what we need to know. Nephrol Dial Transplant. 2013;28(9):2228–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Friedman AL. Urinalysis: oft obtained, oft ignored. Contemp Pediatr. 1991;8:31–51.

    PubMed  Google Scholar 

  51. Huicho L, Campos-Sanchez M, Alano C. Meta-analysis of urine screening tests for determining the risk of urinary tract infection in children. Pediatr Infect Dis J. 2002;21:1–7.

    Article  PubMed  Google Scholar 

  52. Linshaw MA, Gruskin AB. The routine urinalysis: to keep or not to keep: that is the question. Pediatrics. 1997;100:1031–2.

    Article  CAS  PubMed  Google Scholar 

  53. Fassett RG, Horgan B, Mathew TH. The detection of glomerular bleeding by phase contrast microscopy. Lancet. 1982;1:1432–4.

    Article  CAS  PubMed  Google Scholar 

  54. Arvind B, Anurag B, Shina M. Approach to renal tubular disorders. Indian J Pediatr. 2005;72(9):771–6.

    Article  Google Scholar 

  55. Delaney MP, Price CP, Lamb EJ. Kidney disease. In: Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. 5th ed. London: Elsevier/Saunders; 2012. p. 1523–607.

    Chapter  Google Scholar 

  56. Fahimi D, Mohajeri S, Hajizadeh N, et al. Comparison between fractional excretions of urea and sodium in children with acute kidney injury. Pediatr Nephrol. 2009;24(12):2409–12.

    Article  PubMed  Google Scholar 

  57. Gotfried J, Wiesen J, Raina R, Nally Jr JV. Finding the cause of acute kidney injury: which index of fractional excretion is better? Cleve Clin J Med. 2012;79(2):121–6.

    Article  PubMed  Google Scholar 

  58. Srivastava T, Schwaderer A. Diagnosis and management of hypercalciuria in children. Curr Opin Pediatr. 2009;21(2):214–19.

    Article  PubMed  Google Scholar 

  59. Alconcher LF, Castro C, Quintana D, et al. Urinary calcium excretion in healthy school children. Pediatr Nephrol. 1997;11:186–8.

    Article  CAS  PubMed  Google Scholar 

  60. Foley KF, Boccuzzi L. Urine calcium: laboratory measurement and clinical utility. Lab Med. 2010;41(11):683–6.

    Article  Google Scholar 

  61. Escobar L, Mejía N, Gil H, Santos F. Distal renal tubular acidosis: a hereditary disease with an inadequate urinary H+ excretion. Nefrologia. 2013;33(3):289–96.

    PubMed  Google Scholar 

  62. Sevgi M, Erkin S. Quantification of hypercalciuria with the urine calcium osmolality ratio in children. Pediatr Nephrol. 2005;20(11):1562–5.

    Article  Google Scholar 

  63. Cole DEC, Quamme GA. Inherited disorders of renal magnesium handling. J Am Soc Nephrol. 2000;11:1937–47.

    CAS  PubMed  Google Scholar 

  64. Bangert SK, Lapsley M. Renal tubular disorders and renal stone disease. In: Marshall W, Bangert SK, editors. Clinical biochemistry-metabolic and clinical aspects. 2nd ed. London: Churchill/Livingston; 2008. p. 174–85.

    Google Scholar 

  65. Singh J, Moghal N, Pearce SH, Cheetham T. The investigation of hypocalcaemia and rickets. Arch Dis Child. 2003;88(5):403–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Shaw N, Wheeldon J, Brocklebank J. Indices of intact serum parathyroid hormone and renal excretion of calcium, phosphate and magnesium. Arch Dis Child. 1990;65:1208–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Calado J, Santer R, Rueff J. Effect of kidney disease on glucose handling (including genetic defects). Kidney Int Suppl. 2011;120:S7–13.

    Article  CAS  PubMed  Google Scholar 

  68. Bökenkamp A, Ludwig M. Disorders of the renal proximal tubule. Nephron Physiol. 2011;118(1):1–6.

    Article  Google Scholar 

  69. Sirac C, Bridoux F, Essig M, Devuyst O, Touchard G, Cogné M. Toward understanding renal Fanconi syndrome: step by step advances through experimental models. Contrib Nephrol. 2011;169:247–61.

    Article  CAS  PubMed  Google Scholar 

  70. Duran N. Amino acids. In: Blau N, Duran M, Gibson KM, editors. Laboratory guide to the methods in biochemical genetics. Berlin: Springer; 2008. p. 53–89.

    Chapter  Google Scholar 

  71. Choi MJ, Ziyadeh FN. The utility of the transtubular potassium gradient in the evaluation of hyperkalemia. J Am Soc Nephrol. 2008;19(3):424–6.

    Article  CAS  PubMed  Google Scholar 

  72. West ML, Marsden PA, Richardson RM, Zettle RM, Halperin ML. New clinical approach to evaluate disorders of potassium excretion. Miner Electrolyte Metab. 1986;12(4):234–8.

    CAS  PubMed  Google Scholar 

  73. Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant. 2012;27:4273–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Meerkin M, et al. Section II general clinical tests. In: Wu AHB, editor. Tietz clinical guide to laboratory tests. 4th ed. St. Louis: Saunders/Elsevier; 2006. p. 32–1202.

    Google Scholar 

  75. Sulyok E, Guignard JP. Relationship of urinary anion gap to urinary ammonium excretion in the neonate. Biol Neonate. 1990;57:98–106.

    Article  CAS  PubMed  Google Scholar 

  76. Kim GH, Han JS, Kim YS, Joo KW, Kim S, Lee JS. Evaluation of urine acidification by urine anion gap and urine osmolal gap in chronic metabolic acidosis. Am J Kidney Dis. 1996;27(1):42–7.

    Article  CAS  PubMed  Google Scholar 

  77. Halperin ML, Kamel KS, Goldstein MB. Tools to use to diagnose acid-base disorders. In: Halperin ML, Kamel KS, Goldstein MB, editors. Fluid, electrolyte, and acid-base physiology-a problem-based approach. 4th ed. Philadelphia: Saunders; 2010. p. 39–59.

    Chapter  Google Scholar 

  78. García Nieto V, Monge M, Hernández Hernández L, Callejón A, Yanes MI, García Rodríguez VE. Study of the renal acidification capacity in children diagnosed of idiopathic hypercalciuria. Nefrologia. 2003;23:219–24.

    PubMed  Google Scholar 

  79. Batlle DC. Segmental characterization of defects in collecting tubule acidification. Kidney Int. 1986;30:546–54.

    Article  CAS  PubMed  Google Scholar 

  80. Viljoen A, Norden AGW, Karet FE. Replacing the short ammonium chloride test. Kidney Int. 2007;72:1163.

    Article  CAS  PubMed  Google Scholar 

  81. Walsh SB, Shirley DG, Wrong OM, Unwin RJ. Urinary acidification assessed by simultaneous furosemide and fludrocortisone treatment: an alternative to ammonium chloride. Kidney Int. 2007;71:1310–16.

    Article  CAS  PubMed  Google Scholar 

  82. Lamb E, Newman DJ, Price CP. Kidney function tests. In: Burtis A, Ashwood ER, Bruns D, editors. Tietz textbook of clinical chemistry and molecular diagnostics. 4th ed. St. Louis: Elsevier/Saunders; 2006. p. 805–7.

    Google Scholar 

  83. Stiburkova B, Bleyer AJ. Changes in serum urate and urate excretion with age. Adv Chronic Kidney Dis. 2012;19(6):372–6.

    Article  PubMed  Google Scholar 

  84. Stapleton FB, Linshaw MA, Hassanein K, et al. Uric acid excretion in normal children. J Pediatr. 1978;92:911–14.

    Article  CAS  PubMed  Google Scholar 

  85. DeSanto NG, Di Iorio B, Capasso G, et al. Population based data on urinary excretion of calcium, magnesium, oxalate, phosphate and uric acid in children from Cimitile (Southern Italy). Pediatr Nephrol. 1992;6:149–57.

    Article  CAS  Google Scholar 

  86. Norman ME, Feldman NI, Cohn RM, et al. Urinary citrate excretion in the diagnosis of distal tubular acidosis. J Pediatr. 1978;82:394–400.

    Article  Google Scholar 

  87. Saborio P, Tipton GA, Chan JC. Diabetes insipidus. Pediatr Rev. 2000;21:122–9.

    Article  CAS  PubMed  Google Scholar 

  88. Mishra G, Chandrashekhar SR. Management of diabetes insipidus in children. Indian J Endocrinol Metab. 2011;15(7):180–7.

    Article  Google Scholar 

  89. Fenske W, Allolio B. Current state and future perspectives in the diagnosis of diabetes insipidus: a clinical review. J Clin Endocrinol Metab. 2012;97(10):3426–37.

    Article  CAS  PubMed  Google Scholar 

  90. Shimura N. Urinary arginine vasopressin (AVP) measurement in children: water deprivation test incorporating urinary AVP. Acta Paediatr Jpn. 1993;35(4):320–4.

    Article  CAS  PubMed  Google Scholar 

  91. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52:112–19.

    Article  CAS  PubMed  Google Scholar 

  92. Fenske W, Quinkler M, Lorenz D, Zopf K, Haagen U, Papassotiriou J, Pfeiffer AF, Fassnacht M, Störk S, Allolio B. Copeptin in the differential diagnosis of the polydipsia-polyuria syndrome – revisiting the direct and indirect water deprivation tests. J Clin Endocrinol Metab. 2011;96:1506–15.

    Article  CAS  PubMed  Google Scholar 

  93. Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr Rev. 2005;26:78–113.

    Article  CAS  PubMed  Google Scholar 

  94. Lepage R, Roy L, Brossard JH, Rousseau L, Dorais C, Lazure C, D’Amour P. A non-(1-84) circulating parathyroid hormone (PTH) fragment interferes significantly with intact PTH commercial assay measurements in uremic samples. Clin Chem. 1998;44:805–9.

    CAS  PubMed  Google Scholar 

  95. Savoca R, Bock A, Kraenzlin ME, Schmid HR, Huber AR. An automated ‘bio-intact’ PTH assay: a step towards standardisation and improved correlation with parathyroid function in renal disease. Clin Chim Acta. 2004;343:167–71.

    Article  CAS  PubMed  Google Scholar 

  96. Gao P, Scheibel S, D’Amour P, John MR, Rao SD, Schmidt-Gayk H, Cantor TL. Development of a novel immunoradiometric assay exclusively for biologically active whole parathyroid hormone 1-84: implications for improvement of accurate assessment of parathyroid function. J Bone Miner Res. 2001;16:605–14.

    Article  CAS  PubMed  Google Scholar 

  97. Piepsz A, Ham HR. Pediatric applications of renal nuclear medicine. Semin Nucl Med. 2006;36(1):16–35.

    Article  PubMed  Google Scholar 

  98. Winter EW. Urine protein electrophoresis. In: Harris NS, Winter EW, editors. Multiple myeloma and relate serum protein disorders – an electrophoretic guide. 1st ed. New York: DemosMedical; 2012. p. 83–116.

    Google Scholar 

  99. Piepsz A, Colarinha P, Gordon I, Hahn K, Olivier P, Sixt R, van Velzen J; Paediatric Committee of the European Association of Nuclear Medicine. Guidelines for glomerular filtration rate determination in children. Eur J Nucl Med. 2001;28(3):BP31–6.

    CAS  Google Scholar 

  100. Cavalier E, Daly AF, Betea D, Pruteanu-Apetrii PN, Delanaye P, Stubbs P, Bradwell AR, Chapelle JP, Beckers A. The ratio of parathyroid hormone as measured by third- and second-generation assays as a marker for parathyroid carcinoma. J Clin Endocrinol Metab. 2010; 95(8):3745–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George van der Watt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

van der Watt, G., Omar, F., Brink, A., McCulloch, M. (2014). Laboratory Investigation of the Child with Suspected Renal Disease. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics