Skip to main content

DNA Damage and Repair in Skin Aging

  • 489 Accesses

Abstract

Skin aging reflects the accumulation of damage to DNA from both internal and environmental sources. While solar UV induces the most frequent modifications of DNA, air pollution and tobacco smoke have also been demonstrated to induce the cascade of repair responses triggered by DNA damage. Cells use complexes of proteins to remove or reverse DNA damage, but if the lesions are not repaired, a sequence of proteins is activated that invokes wound-healing reactions or cell death. If these reactions are not sufficient to control the DNA damage, the skin risks immunosuppression, destruction of the collagen support structure, and even cancer. Genetic mutations in DNA repair genes can cause hereditary cancer diseases, while simple polymorphisms in some DNA repair genes in apparently healthy people may also predispose them to cancer. Methods to defend against DNA damage include melanin, sunscreens, antioxidants, and administration of DNA repair enzymes.

This is a preview of subscription content, log in via an institution.

References

  1. Freitas A, de Magalhaes J. A review and appraisal of the DNA damage theory of ageing. Mutat Res. 2011;728:12–22.

    Article  CAS  PubMed  Google Scholar 

  2. Rogers H, et al. Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol. 2010;146:283–7.

    Article  PubMed  Google Scholar 

  3. Jou P, Tomecki K. Sunscreens in the United States: current status and future outlook. Adv Exp Med Biol. 2014;810:464–84.

    PubMed  Google Scholar 

  4. Brash D. Sunlight and the onset of skin cancer. Trends Genet. 1997;13:410–4.

    Article  CAS  PubMed  Google Scholar 

  5. Irie M, et al. Occupational and lifestyle factors and urinary 8-hydroxydeoxyguanosine. Cancer Sci. 2005;96:600–6.

    Article  CAS  PubMed  Google Scholar 

  6. Kettner NM, Katchy CA, Fu L. Circadian gene variants in cancer. Ann Med. 2014;46:208–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Yarr M, et al. Photoageing: mechanism, prevention and therapy. Br J Dermatol. 2007;157:874–87.

    Article  Google Scholar 

  8. Cadet J, et al. Ultraviolet radiation –mediated damage to cellular DNA. Mutat Res. 2005;571:3–7.

    Article  CAS  PubMed  Google Scholar 

  9. Mahmoud BH, et al. Effects of visible light on the skin. Photochem Photobiol. 2008;84:450–62.

    Article  CAS  PubMed  Google Scholar 

  10. Schreier W, et al. Thymine dimerization in DNA is an ultrafast photoreaction. Science. 2007;315:625–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yoon J-H, et al. The DNA damage spectrum produced by simulated sunlight. J Mol Biol. 2000;299:681–93.

    Article  CAS  PubMed  Google Scholar 

  12. Courdavault S, et al. Larger yield of cyclobutane dimers than 8-oxo-7, 8-dihydroguanine in the DNA of UVA-irradiated human skin cells. Mutat Res. 2004;556:135–42.

    Article  CAS  PubMed  Google Scholar 

  13. Premis S, et al. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science. 2015;347:842–7.

    Article  Google Scholar 

  14. Huang HB, et al. Traffic-related air pollution and DNA damage: a longitudinal study. PLoS One. 2012;7:e37412.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. McCarthy JT, et al. Effects of ozone in normal human epidermal keratinocytes. Exp Dermatol. 2013;22:360–1.

    Article  CAS  PubMed  Google Scholar 

  16. Sancar A, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Ann Rev Biochem. 2004;73:39–85.

    Article  CAS  PubMed  Google Scholar 

  17. Christmann M, et al. Mechanisms of human DNA repair: an update. Toxicology. 2003;193:3–34.

    Article  CAS  PubMed  Google Scholar 

  18. Bykov VJ, et al. In situ repair of cyclobutane pyrimidine dimers and 6-4 photoproducts in human skin exposed to solar simulating radiation. J Invest Dermatol. 1999;112:326–31.

    Article  CAS  PubMed  Google Scholar 

  19. Yarosh D, et al. After sun reversal of DNA damage: enhancing skin repair. Mutat Res. 2005;571:57–64.

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka K, et al. Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus). Proc Natl Acad Sci U S A. 1975;72:4071–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Carell T, et al. The mechanism of action of DNA photolyases. Curr Opin Chem Biol. 2001;5:491–8.

    Article  CAS  PubMed  Google Scholar 

  22. Stege H, et al. Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc Natl Acad Sci U S A. 2000;97:1790–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Cleaver J. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev. 2005;5:564–73.

    Article  CAS  Google Scholar 

  24. Randle H. The historical link between solid-organ transplantation, immunosuppression, and skin cancer. Dermatol Surg. 2004;30:595–7.

    PubMed  Google Scholar 

  25. Yarosh D, et al. Calcineurin inhibitors decrease DNA repair and apoptosis in human keratinocytes following ultraviolet B irradiation. J Invest Dermatol. 2005;125:1020–5.

    Article  CAS  PubMed  Google Scholar 

  26. Wheless L, et al. Skin cancer in organ transplant recipients: more than the immune system. J Am Acad Dermatol. 2014;71:359–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Au W, Navasumrit P, et al. Use of biomarkers to characterize functions of polymorphic DNA repair genotypes. Int J Hyg Environ Health. 2004;207:301–4.

    Article  CAS  PubMed  Google Scholar 

  28. Wilson D, et al. Variation in base excision repair capacity. Mutat Res. 2011;711:100–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Goode E, Ulrich C, Potter J. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11:1513–30.

    CAS  PubMed  Google Scholar 

  30. Kohno T, et al. Genetic polymorphisms and alternative splicing of the hOOG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene. 1988;16:3219–25.

    Article  Google Scholar 

  31. Dherin C, et al. Excision of oxidatively damaged DNA bases by the human α-hOGG1 protein and the polymorphic α-hOGG1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res. 1999;27:4001–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Janssen K, et al. DNA repair activity of 8-oxoguanine DNA glycosylase I (OGG1) in human lymphocytes is not dependent on genetic polymorphism Ser326/Cys326. Mutat Res. 2001;486:207–16.

    Article  CAS  PubMed  Google Scholar 

  33. Yarosh D, et al. DNA repair gene polymorphisms affect cytotoxicity in the National Cancer Institute Human Tumour Cell Line Screening Panel. Biomarkers. 2005;10:188–202.

    Article  CAS  PubMed  Google Scholar 

  34. Mahroos AI, et al. Effect of sunscreen application on UV-induced thymine dimers. Arch Dermatol. 2002;138:1480–5.

    Article  PubMed  Google Scholar 

  35. Funk JO. Cell cycle checkpoint genes and cancer. Encyclopedia of Life Sciences. John Wiley & Sons Ltd 2005. pp. 1–5.

    Google Scholar 

  36. Harper JW, et al. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45.

    Article  CAS  PubMed  Google Scholar 

  37. Strozyk E, Kulms D. The role of AKT/mTOR pathway in stress response to UV-irradiation: implication in skin carcinogenesis by regulation of apoptosis, autophagy and senescence. Int J Mol Sci. 2013;14:15260–85.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Guzman E, et al. Mad dogs, Englishmen and apoptosis: the role of cell death in UV-induced skin cancer. Apoptosis. 2003;8:315–25.

    Article  CAS  PubMed  Google Scholar 

  39. Lu Y-P, et al. Effect of caffeine on the ATR/Chk1 pathway in the epidermis of UVB-irradiated mice. Cancer Res. 2008;68:2523–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Loftfield E, et al. Coffee drinking and cutaneous melanoma risk in the NIH-AARP diet and health study. J Natl Cancer Inst. 2015;107:dju421.

    Article  PubMed  Google Scholar 

  41. Ferrucci L, et al. Tea, coffee, and caffeine and early-onset basal cell carcinoma in case–control study. Eur J Cancer Prev. 2014;23:296–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhou BB, et al. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408:433–9.

    Article  CAS  PubMed  Google Scholar 

  43. Unsal-Kacmaz K, et al. Preferential binding of ATR protein to UV-damaged DNA. Proc Natl Acad Sci U S A. 2002;99:6673–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kondo S. The roles of keratinocyte-derived cytokines in the epidermis and their possible responses to UVA-irradiation. J Investig Dermatol Symp Proc. 1999;4:177–83.

    Article  CAS  PubMed  Google Scholar 

  45. Ansel J, et al. Cytokine modulation of keratinocyte cytokines. J Invest Dermatol. 1990;94:101S–7.

    Article  CAS  PubMed  Google Scholar 

  46. Luger TA, et al. Evidence for an epidermal cytokine network. J Invest Dermatol. 1990;95:100S–4.

    Article  CAS  PubMed  Google Scholar 

  47. Enk A, et al. Early molecular events in the induction phase of contact sensitivity. Proc Natl Acad Sci U S A. 1992;89:1398–402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Heck DE, et al. Solar ultraviolet radiation as a trigger of cell signal transduction. Toxicol Appl Pharmacol. 2004;195:288–97.

    Article  CAS  PubMed  Google Scholar 

  49. Barr R, et al. Suppressed alloantigen presentation, increased TNF-α, IL-1, IL-1RA, IL-10, and modulation of TNF-R in UV-irradiated human skin. J Invest Dermatol. 1999;112:692–8.

    Article  CAS  PubMed  Google Scholar 

  50. Schwarz A, et al. Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nat Cell Biol. 2002;4:26–31.

    Article  CAS  PubMed  Google Scholar 

  51. Kripke M. Immunologic unresponsiveness induced by ultraviolet radiation. Immunol Rev. 1984;80:87–102.

    Article  CAS  PubMed  Google Scholar 

  52. Streilein J. Immunogenetic factors in skin cancer. N Engl J Med. 1991;325:884–7.

    Article  CAS  PubMed  Google Scholar 

  53. Vink A, et al. The inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers. Proc Natl Acad Sci U S A. 1997;94:5255–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Kuchel J, et al. Cyclobutane pyrimidine dimer formation is a molecular trigger for solar-simulated ultraviolet radiation-induced suppression of memory immunity in humans. Photochem Photobiol Sci. 2005;4:577–82.

    Article  CAS  PubMed  Google Scholar 

  55. Brennan M, et al. Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem Photobiol. 2003;78:43–8.

    Article  CAS  PubMed  Google Scholar 

  56. Wlaschek M, et al. UVA-induced autocrine stimulation of fibroblast-derived collagenase/MMP-1 by interrelated loops of interleukin-1 and interleukin-6. Photochem Photobiol. 1994;59:550–6.

    Article  CAS  PubMed  Google Scholar 

  57. Dong K, et al. UV-Induced DNA damage initiates release of MMP-1 in human skin. Exp Dermatol. 2008;17:1037–44.

    Article  CAS  PubMed  Google Scholar 

  58. Fisher GJ, et al. Looking older. Fibroblast collapse and therapeutic implications. Arch Dermatol. 2008;144:666–72.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Leveque J-C, et al. Aging skin: properties and functional changes. Aulnoy-sous Bois, France: Informa Health Care; 1993.

    Google Scholar 

  60. Ryan T. The ageing of the blood supply and the lymphatic drainage of the skin. Micron. 2004;35:161–71.

    Article  CAS  PubMed  Google Scholar 

  61. High W, et al. Genetic mutations involved in melanoma: a summary of our current understanding. Adv Dermatol. 2007;23:61–79.

    Article  PubMed  Google Scholar 

  62. Berneburg M, et al. Induction of the photoaging-associated mitochondrial common deletion in vivo in normal human skin. J Invest Dermatol. 2004;122:1277–83.

    Article  CAS  PubMed  Google Scholar 

  63. Yarosh D, et al. Localization of liposomes containing a DNA repair enzyme in murine skin. J Invest Dermatol. 1994;103:461–8.

    Article  CAS  PubMed  Google Scholar 

  64. Wolf P, et al. Topical treatment with liposomes containing T4 endonuclease V protects human skin in vivo from ultraviolet-induced upregulation of interleukin-10 and tumor necrosis factor-α. J Invest Dermatol. 2000;114:149–56.

    Article  CAS  PubMed  Google Scholar 

  65. Yarosh D, et al. Effect of topically applied T4 endonuclease V in liposomes on skin cancer in xeroderma pigmentosum: a randomized study. Lancet. 2001;357:926–9.

    Article  CAS  PubMed  Google Scholar 

  66. Lahmann C, et al. Matrix metalloproteinase-1 and skin ageing in smokers. Lancet. 2001;357:935–6.

    Article  CAS  PubMed  Google Scholar 

  67. Vierkotter A, et al. Airborne particle exposure and extrinsic skin aging. J Invest Dermatol. 2010;130:2719–26.

    Article  PubMed  Google Scholar 

  68. Pan TL, et al. The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci. 2015;78:51–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel B. Yarosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Yarosh, D.B. (2015). DNA Damage and Repair in Skin Aging. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_31-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_31-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    DNA Damage and Repair in Skin Aging
    Published:
    27 April 2016

    DOI: https://doi.org/10.1007/978-3-642-27814-3_31-3

  2. Original

    DNA Damage and Repair in Skin Aging
    Published:
    14 July 2015

    DOI: https://doi.org/10.1007/978-3-642-27814-3_31-2