Skip to main content

Changes in the Composition of the Cornified Envelope During Skin Aging: A Calcium Centric Point of View

  • Living reference work entry
  • First Online:

Abstract

Aging is a complex process that involves a variety of very different factors. Although oxidative stress plays a major role in skin aging, there are many more factors contributing to aging in the skin. In the epidermis, the cornified envelope an extremely complex protein–lipid network provides the barrier function of our skin. It has therefore a crucial function in protecting our body against many hazardous influences from the environment. During aging, the composition of the cornified envelope changes dramatically due to altered expression patterns of genes coding for major components of the cornified envelope. Accordingly, the barrier function of the skin is reduced, leading to an increased susceptibility to mechanical insults. An increased epidermal water loss is prevented by increasing the thickness of the stratum corneum. Many of these genes are calcium regulated. In young epidermis, there exists a calcium gradient showing a peak in the stratum granulosum. This calcium gradient collapses during aging providing an explanation for the altered gene expression patterns. The reason for the collapse of the calcium gradient is however not known presently and needs further investigation. A rebuilding of the cornified envelope is not specific for aging but can also be observed in. Epidermolysis bullosa, psoriasis, atopic dermatitis, lamellar ichthyosis, ichthyosis vulgaris, bathing suit ichthyosis, Netherton syndrome and loricrin keratoderma

This is a preview of subscription content, log in via an institution.

References

  1. Medvedev ZA. An attempt at a rational classification of theories of aging. Biol Rev. 1990;65:375–98.

    Article  CAS  PubMed  Google Scholar 

  2. Farage MA, Miller KW, Elsner P, Maibach HI. Characteristics of the aging skin. Adv Wound Care. 2013;2:5–10.

    Article  Google Scholar 

  3. Harman D. Aging – a theory based on free-radical and radiation-chemistry. J Gerontol. 1956;11:298–300.

    Article  CAS  PubMed  Google Scholar 

  4. Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5:545–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329:23–38.

    Article  CAS  PubMed  Google Scholar 

  6. Gray DA, Woulfe J. Lipofuscin and aging: a matter of toxic waste. Sci Aging Knowledge Environ. 2005;2005:Re 1.

    Google Scholar 

  7. Ahmed N. Advanced glycation endproducts–role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67:3–21.

    Article  CAS  PubMed  Google Scholar 

  8. Kasai H, Chung MH, Jones DS, Inoue H, Ishikawa H, Kamiya H, Ohtsuka E, Nishimura S. 8-hydroxyguanine, a DNA adduct formed by oxygen radicals: its implication on oxygen radical-involved mutagenesis/carcinogenesis. J Toxicol Sci. 1991;16 Suppl 1:95–105.

    Article  CAS  PubMed  Google Scholar 

  9. Prasad A, Pospisil P. Ultraweak photon emission induced by visible light and ultraviolet a radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. J Biomed Opt. 2012;17:085004.

    Article  PubMed  Google Scholar 

  10. Gilchrest BA. Skin aging and photoaging: an overview. J Am Acad Dermatol. 1989;21:610–3.

    Article  CAS  PubMed  Google Scholar 

  11. Talwar HS, Griffiths CE, Fisher GJ, Hamilton TA, Voorhees JJ. Reduced type i and type iii procollagens in photodamaged adult human skin. J Invest Dermatol. 1995;105:285–90.

    Article  CAS  PubMed  Google Scholar 

  12. Craven NM, Watson RE, Jones CJ, Shuttleworth CA, Kielty CM, Griffiths CE. Clinical features of photodamaged human skin are associated with a reduction in collagen vii. Br J Dermatol. 1997;137:344–50.

    Article  CAS  PubMed  Google Scholar 

  13. Naylor EC, Watson RE, Sherratt MJ. Molecular aspects of skin ageing. Maturitas. 2011;69:249–56.

    Article  CAS  PubMed  Google Scholar 

  14. Labat-Robert J, Fourtanier A, Boyer-Lafargue B, Robert L. Age dependent increase of elastase type protease activity in mouse skin. Effect of uv-irradiation. J Photochem Photobiol B. 2000;57:113–8.

    Article  CAS  PubMed  Google Scholar 

  15. Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4:197–250.

    CAS  PubMed  Google Scholar 

  16. Quan T, Qin Z, Xia W, Shao Y, Voorhees JJ, Fisher GJ. Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc. 2009;14:20–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273:59–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Millis AJ, Hoyle M, McCue HM, Martini H. Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts. Exp Cell Res. 1992;201:373–9.

    Article  CAS  PubMed  Google Scholar 

  19. Jenkins G. Molecular mechanisms of skin ageing. Mech Ageing Dev. 2002;123:801–10.

    Article  CAS  PubMed  Google Scholar 

  20. Menon GK. New insights into skin structure: scratching the surface. Adv Drug Deliv Rev. 2002;54 Suppl 1:S3–17.

    Article  CAS  PubMed  Google Scholar 

  21. Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72.

    Article  PubMed  Google Scholar 

  22. Gilbert SF. Developmental biology, vol. 8. Sunderland: Sinauer Associates; 2006. p. xviii. 817 p.

    Google Scholar 

  23. Segre JA. Epidermal barrier formation and recovery in skin disorders. J Clin Invest. 2006;116:1150–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Madison KC. Barrier function of the skin: “La raison d’etre” of the epidermis. J Invest Dermatol. 2003;121:231–41.

    Article  CAS  PubMed  Google Scholar 

  25. Denecker G, Ovaere P, Vandenabeele P, Declercq W. Caspase-14 reveals its secrets. J Cell Biol. 2008;180:451–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Leak B, Wei JT, Gabel M, Peabody JO, Menon M, Demers R, Tewari A. Relevant patient and tumor considerations for early prostate cancer treatment. Semin Urol Oncol. 2002;20:39–44.

    Article  PubMed  Google Scholar 

  27. Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol. 2005;6:328–40.

    Article  CAS  PubMed  Google Scholar 

  28. Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim Biophys Acta. 2006;2080–2095:1758.

    Google Scholar 

  29. Lippens S, Denecker G, Ovaere P, Vandenabeele P, Declercq W. Death penalty for keratinocytes: apoptosis versus cornification. Cell Death Differ. 2005;12 Suppl 2:1497–508.

    Article  CAS  PubMed  Google Scholar 

  30. Watt FM, Green H. Involucrin synthesis is correlated with cell size in human epidermal cultures. J Cell Biol. 1981;90:738–42.

    Article  CAS  PubMed  Google Scholar 

  31. Ruhrberg C, Hajibagheri MA, Parry DA, Watt FM. Periplakin, a novel component of cornified envelopes and desmosomes that belongs to the plakin family and forms complexes with envoplakin. J Cell Biol. 1997;139:1835–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ruhrberg C, Hajibagheri MA, Simon M, Dooley TP, Watt FM. Envoplakin, a novel precursor of the cornified envelope that has homology to desmoplakin. J Cell Biol. 1996;134:715–29.

    Article  CAS  PubMed  Google Scholar 

  33. Kalinin AE, Idler WW, Marekov LN, McPhie P, Bowers B, Steinert PM, Steven AC. Co-assembly of envoplakin and periplakin into oligomers and ca(2+)-dependent vesicle binding: implications for cornified cell envelope formation in stratified squamous epithelia. J Biol Chem. 2004;279:22773–80.

    Article  CAS  PubMed  Google Scholar 

  34. Marekov LN, Steinert PM. Ceramides are bound to structural proteins of the human foreskin epidermal cornified cell envelope. J Biol Chem. 1998;273:17763–70.

    Article  CAS  PubMed  Google Scholar 

  35. DiColandrea T, Karashima T, Maatta A, Watt FM. Subcellular distribution of envoplakin and periplakin: insights into their role as precursors of the epidermal cornified envelope. J Cell Biol. 2000;151:573–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sevilla LM, Nachat R, Groot KR, Klement JF, Uitto J, Djian P, Maatta A, Watt FM. Mice deficient in involucrin, envoplakin, and periplakin have a defective epidermal barrier. J Cell Biol. 2007;179:1599–612.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kalinin A, Marekov LN, Steinert PM. Assembly of the epidermal cornified cell envelope. J Cell Sci. 2001;114:3069–70.

    CAS  PubMed  Google Scholar 

  38. Chapman SJ, Walsh A. Membrane-coating granules are acidic organelles which possess proton pumps. J Invest Dermatol. 1989;93:466–70.

    Article  CAS  PubMed  Google Scholar 

  39. Grayson S, Johnson-Winegar AG, Wintroub BU, Isseroff RR, Epstein Jr EH, Elias PM. Lamellar body-enriched fractions from neonatal mice: preparative techniques and partial characterization. J Invest Dermatol. 1985;85:289–94.

    Article  CAS  PubMed  Google Scholar 

  40. Raymond AA, Gonzalez de Peredo A, Stella A, Ishida-Yamamoto A, Bouyssie D, Serre G, Monsarrat B, Simon M. Lamellar bodies of human epidermis: proteomics characterization by high throughput mass spectrometry and possible involvement of clip-170 in their trafficking/secretion. Mol Cell Proteomics. 2008;7:2151–75.

    Article  CAS  PubMed  Google Scholar 

  41. Madison KC, Sando GN, Howard EJ, True CA, Gilbert D, Swartzendruber DC, Wertz PW. Lamellar granule biogenesis: a role for ceramide glucosyltransferase, lysosomal enzyme transport, and the golgi. J Investig Dermatol Symp Proc. 1998;3:80–6.

    Article  CAS  PubMed  Google Scholar 

  42. Mauro T, Grayson S, Gao WN, Man MQ, Kriehuber E, Behne M, Feingold KR, Elias PM. Barrier recovery is impeded at neutral ph, independent of ionic effects: implications for extracellular lipid processing. Arch Dermatol Res. 1998;290:215–22.

    Article  CAS  PubMed  Google Scholar 

  43. Oren A, Ganz T, Liu L, Meerloo T. In human epidermis, beta-defensin 2 is packaged in lamellar bodies. Exp Mol Pathol. 2003;74:180–2.

    Article  CAS  PubMed  Google Scholar 

  44. Braff MH, Di Nardo A, Gallo RL. Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J Invest Dermatol. 2005;124:394–400.

    Article  CAS  PubMed  Google Scholar 

  45. Galliano MF, Toulza E, Gallinaro H, Jonca N, Ishida-Yamamoto A, Serre G, Guerrin M. A novel protease inhibitor of the alpha2-macroglobulin family expressed in the human epidermis. J Biol Chem. 2006;281:5780–9.

    Article  CAS  PubMed  Google Scholar 

  46. Serre G, Mils V, Haftek M, Vincent C, Croute F, Reano A, Ouhayoun JP, Bettinger S, Soleilhavoup JP. Identification of late differentiation antigens of human cornified epithelia, expressed in re-organized desmosomes and bound to cross-linked envelope. J Invest Dermatol. 1991;97:1061–72.

    Article  CAS  PubMed  Google Scholar 

  47. Jonca N, Guerrin M, Hadjiolova K, Caubet C, Gallinaro H, Simon M, Serre G. Corneodesmosin, a component of epidermal corneocyte desmosomes, displays homophilic adhesive properties. J Biol Chem. 2002;277:5024–9.

    Article  CAS  PubMed  Google Scholar 

  48. Denda M, Fuziwara S, Inoue K. Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis. J Invest Dermatol. 2003;121:362–7.

    Article  CAS  PubMed  Google Scholar 

  49. Ishida-Yamamoto A, Eady RA, Watt FM, Roop DR, Hohl D, Iizuka H. Immunoelectron microscopic analysis of cornified cell envelope formation in normal and psoriatic epidermis. J Histochem Cytochem. 1996;44:167–75.

    Article  CAS  PubMed  Google Scholar 

  50. Eckert RL, Sturniolo MT, Broome AM, Ruse M, Rorke EA. Transglutaminase function in epidermis. J Invest Dermatol. 2005;124:481–92.

    Article  CAS  PubMed  Google Scholar 

  51. Steinert PM, Marekov LN. Initiation of assembly of the cell envelope barrier structure of stratified squamous epithelia. Mol Biol Cell. 1999;10:4247–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wolf M, Muller KH, Skourski Y, Eckert D, Georgi P, Krause M, Dunsch L. Magnetic moments of the endohedral cluster fullerenes ho3n@c80 and tb3n@c80: the role of ligand fields. Angew Chem Int Ed Engl. 2005;44:3306–9.

    Article  CAS  PubMed  Google Scholar 

  53. Ahvazi B, Boeshans KM, Idler W, Baxa U, Steinert PM. Roles of calcium ions in the activation and activity of the transglutaminase 3 enzyme. J Biol Chem. 2003;278:23834–41.

    Article  CAS  PubMed  Google Scholar 

  54. Hohl D, Lichti U, Breitkreutz D, Steinert PM, Roop DR. Transcription of the human loricrin gene in vitro is induced by calcium and cell density and suppressed by retinoic acid. J Invest Dermatol. 1991;96:414–8.

    Article  CAS  PubMed  Google Scholar 

  55. Robinson NA, Lapic S, Welter JF, Eckert RL. S100a11, s100a10, annexin i, desmosomal proteins, small proline-rich proteins, plasminogen activator inhibitor-2, and involucrin are components of the cornified envelope of cultured human epidermal keratinocytes. J Biol Chem. 1997;272:12035–46.

    Article  CAS  PubMed  Google Scholar 

  56. Marshall D, Hardman MJ, Nield KM, Byrne C. Differentially expressed late constituents of the epidermal cornified envelope. Proc Natl Acad Sci U S A. 2001;98:13031–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Jackson B, Tilli CM, Hardman MJ, Avilion AA, MacLeod MC, Ashcroft GS, Byrne C. Late cornified envelope family in differentiating epithelia–response to calcium and ultraviolet irradiation. J Invest Dermatol. 2005;124:1062–70.

    Article  CAS  PubMed  Google Scholar 

  58. Eckhart L, Declercq W, Ban J, Rendl M, Lengauer B, Mayer C, Lippens S, Vandenabeele P, Tschachler E. Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J Invest Dermatol. 2000;115:1148–51.

    Article  CAS  PubMed  Google Scholar 

  59. Rinnerthaler M, Duschl J, Steinbacher P, Salzmann M, Bischof J, Schuller M, Wimmer H, Peer T, Bauer JW, Richter K. Age-related changes in the composition of the cornified envelope in human skin. Exp Dermatol. 2013;22:329–35.

    Article  CAS  PubMed  Google Scholar 

  60. Grove GL, Kligman AM. Age-associated changes in human epidermal-cell renewal. J Gerontol. 1983;38:137–42.

    Article  CAS  PubMed  Google Scholar 

  61. Kohl E, Steinbauer J, Landthaler M, Szeimies RM. Skin ageing. J Eur Acad Dermatol. 2011;25:873–84.

    Article  CAS  Google Scholar 

  62. Rinnerthaler M, Streubel MK, Bischof J, Richter K. Skin aging, gene expression and calcium. Exp Gerontol. 2015;68:59–65.

    Article  CAS  PubMed  Google Scholar 

  63. Vermeij WP, Alia A, Backendorf C. Ros quenching potential of the epidermal cornified cell envelope. J Invest Dermatol. 2011;131:1435–41.

    Article  CAS  PubMed  Google Scholar 

  64. Vermeij WP, Backendorf C. Skin cornification proteins provide global link between ros detoxification and cell migration during wound healing. PLoS One. 2010;5(8):e11957.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Takahashi M, Tezuka T. The content of free amino acids in the stratum corneum is increased in senile xerosis. Arch Dermatol Res. 2004;295:448–52.

    Article  CAS  PubMed  Google Scholar 

  66. Tagami H. Functional characteristics of the stratum corneum in photoaged skin in comparison with those found in intrinsic aging. Arch Dermatol Res. 2008;300 Suppl 1:S1–6.

    Article  PubMed  Google Scholar 

  67. Scott IR, Harding CR. Filaggrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment. Dev Biol. 1986;115:84–92.

    Article  CAS  PubMed  Google Scholar 

  68. Sandilands A, Sutherland C, Irvine AD, McLean WH. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci. 2009;122:1285–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Luebberding S, Krueger N, Kerscher M. Age-related changes in skin barrier function quantitative evaluation of 150 female subjects. Int J Cosmetic Sci. 2013;35:183–90.

    Article  CAS  Google Scholar 

  70. Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest. 1995;95:2281–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Hirao T, Takahashi M. Carbonylation of cornified envelopes in the stratum corneum. FEBS Lett. 2005;579:6870–4.

    Article  CAS  PubMed  Google Scholar 

  72. Iwai I, Hirao T. Protein carbonyls damage the water-holding capacity of the stratum corneum. Skin Pharmacol Physiol. 2008;21:269–73.

    Article  CAS  PubMed  Google Scholar 

  73. Breitenbach JS, Rinnerthaler M, Trost A, Weber M, Klausegger A, Gruber C, Bruckner D, Reitsamer HA, Bauer JW, Breitenbach M. Transcriptome and ultrastructural changes in dystrophic epidermolysis bullosa resemble skin aging. Aging. 2015;7:389–411.

    PubMed Central  PubMed  Google Scholar 

  74. de Cid R, Riveira-Munoz E, Zeeuwen PLJM, Robarge J, Liao W, Dannhauser EN, Giardina E, Stuart PE, Nair R, Helms C, et al. Deletion of the late cornified envelope lce3b and lce3c genes as a susceptibility factor for psoriasis. Nat Genet. 2009;41:211–5.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Guttman-Yassky E, Suarez-Farinas M, Chiricozzi A, Nograles KE, Shemer A, Fuentes-Duculan J, Cardinale I, Lin P, Bergman R, Bowcock AM, et al. Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J Allergy Clin Immun. 2009;124:1235–44.

    Article  CAS  PubMed  Google Scholar 

  76. Molin S, Vollmer S, Weiss EH, Weisenseel P, Ruzicka T, Prinz JC. Deletion of the late cornified envelope genes lce3b and lce3c may promote chronic hand eczema with allergic contact dermatitis. J Investig Allergol Clin Immunol. 2011;21:472–9.

    CAS  PubMed  Google Scholar 

  77. McAleer MA, Irvine AD. The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol. 2013;131:280–91.

    Article  CAS  PubMed  Google Scholar 

  78. Huber M, Rettler I, Bernasconi K, Frenk E, Lavrijsen SPM, Ponec M, Bon A, Lautenschlager S, Schorderet DF, Hohl D. Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science. 1995;267:525–8.

    Article  CAS  PubMed  Google Scholar 

  79. Benmously-Mlika R, Zaouak A, Mrad R, Laaroussi N, Abdelhak S, Hovnanian A, Mokhtar I. Bathing suit ichthyosis caused by a tgm1 mutation in a tunisian child. Int J Dermatol. 2014;53:1478–80.

    Article  PubMed  Google Scholar 

  80. Thyssen JP, Godoy-Gijon E, Elias PM. Ichthyosis vulgaris: the filaggrin mutation disease. Br J Dermatol. 2013;168:1155–66.

    Article  CAS  PubMed  Google Scholar 

  81. Scott CA, Rajpopat S, Di WL. Harlequin ichthyosis: Abca12 mutations underlie defective lipid transport, reduced protease regulation and skin-barrier dysfunction. Cell Tissue Res. 2013;351:281–8.

    Article  CAS  PubMed  Google Scholar 

  82. Sun JD, Linden KG. Netherton syndrome: a case report and review of the literature. Int J Dermatol. 2006;45:693–7.

    Article  PubMed  Google Scholar 

  83. De Benedetto A, Kubo A, Beck LA. Skin barrier disruption: a requirement for allergen sensitization? J Invest Dermatol. 2012;132:949–63.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Telem DF, Israeli S, Sarig O, Sprecher E. Inflammatory peeling skin syndrome caused a novel mutation in cdsn. Arch Dermatol Res. 2012;304:251–5.

    Article  CAS  PubMed  Google Scholar 

  85. Schmuth M, Fluhr JW, Crumrine DC, Uchida Y, Hachem JP, Behne M, Moskowitz DG, Christiano AM, Feingold KR, Elias PM. Structural and functional consequences of loricrin mutations in human loricrin keratoderma (vohwinkel syndrome with ichthyosis). J Invest Dermatol. 2004;122:909–22.

    Article  CAS  PubMed  Google Scholar 

  86. Bikle DD, Ng D, Tu CL, Oda Y, Xie Z. Calcium- and vitamin d-regulated keratinocyte differentiation. Mol Cell Endocrinol. 2001;177:161–71.

    Article  CAS  PubMed  Google Scholar 

  87. Hennings H, Holbrook KA. Calcium regulation of cell-cell contact and differentiation of epidermal-cells in culture – an ultrastructural-study. Exp Cell Res. 1983;143:127–42.

    Article  CAS  PubMed  Google Scholar 

  88. LaCelle PT, Lambert A, Ekambaram MC, Robinson NA, Eckert RL. In vitro cross-linking of recombinant human involucrin. Skin Pharmacol Appl Skin Physiol. 1998;11:214–26.

    Article  CAS  PubMed  Google Scholar 

  89. Deucher A, Efimova T, Eckert RL. Calcium-dependent involucrin expression is inversely regulated by protein kinase c (pkc)alpha and pkcdelta. J Biol Chem. 2002;277:17032–40.

    Article  CAS  PubMed  Google Scholar 

  90. Sevilla LM, Nachat R, Groot KR, Watt FM. Kazrin regulates keratinocyte cytoskeletal networks, intercellular junctions and differentiation. J Cell Sci. 2008;121:3561–9.

    Article  CAS  PubMed  Google Scholar 

  91. Hitomi K. Transglutaminases in skin epidermis. Eur J Dermatol. 2005;15:313–9.

    CAS  PubMed  Google Scholar 

  92. Ahvazi B, Boeshans KM, Idler W, Baxa U, Steinert PM. Roles of calcium ions in the activation and activity of the transglutaminase 3 enzyme. J Biol Chem. 2003;278:23834–41.

    Article  CAS  PubMed  Google Scholar 

  93. Hohl D, Lichti U, Breitkreutz D, Steinert PM, Roop DR. Transcription of the human loricrin gene in vitro is induced by calcium and cell density and suppressed by retinoic acid. J Invest Dermatol. 1991;96:414–8.

    Article  CAS  PubMed  Google Scholar 

  94. Kim SA, Tai CY, Mok LP, Mosser EA, Schuman EM. Calcium-dependent dynamics of cadherin interactions at cell-cell junctions. Proc Natl Acad Sci U S A. 2011;108:9857–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Mauro T, Bench G, Sidderas-Haddad E, Feingold K, Elias P, Cullander C. Acute barrier perturbation abolishes the ca2+ and k+ gradients in murine epidermis: quantitative measurement using pixe. J Invest Dermatol. 1998;111:1198–201.

    Article  CAS  PubMed  Google Scholar 

  96. Menon GK, Elias PM, Lee SH, Feingold KR. Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell Tissue Res. 1992;270:503–12.

    Article  CAS  PubMed  Google Scholar 

  97. Celli A, Sanchez S, Behne M, Hazlett T, Gratton E, Mauro T. The epidermal ca2+ gradient: measurement using the phasor representation of fluorescent lifetime imaging. Biophys J. 2010;98:911–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Denda M, Tomitaka A, Akamatsu H, Matsunaga K. Altered distribution of calcium in facial epidermis of aged adults. J Invest Dermatol. 2003;121:1557–8.

    Article  CAS  PubMed  Google Scholar 

  99. Tu CL, Bikle DD. Role of the calcium-sensing receptor in calcium regulation of epidermal differentiation and function. Best Pract Res Clin Endocrinol Metab. 2013;27:415–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Lener T, Moll PR, Rinnerthaler M, Bauer J, Aberger F, Richter K. Expression profiling of aging in the human skin. Exp Gerontol. 2006;41:387–97.

    Article  CAS  PubMed  Google Scholar 

  101. Makrantonaki E, Brink TC, Zampeli V, Elewa RM, Mlody B, Hossini AM, Hermes B, Krause U, Knolle J, Abdallah M, et al. Identification of biomarkers of human skin ageing in both genders. Wnt signalling – a label of skin ageing? PLoS One. 2012;7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Streubel, M.K., Rinnerthaler, M., Bischof, J., Richter, K. (2015). Changes in the Composition of the Cornified Envelope During Skin Aging: A Calcium Centric Point of View. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_112-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_112-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics