Skip to main content

Elastic and Viscoelastic Response of the Lithosphere to Surface Loading

  • Living reference work entry
  • First Online:
Book cover Handbook of Geomathematics

Abstract

This chapter presents the main rheological features of the lithosphere and of the upper mantle with respect to deformations of the solid Earth in response to time-varying surface loading. Rheological aspects as numerical modeling are discussed in view of the general strategies applied in geophysics, which are perturbations of a self-gravitating, non-rotating, linearly viscoelastic, isostatically pre-stressed Earth (SNRVEI) in a spherical geometry. Based on this model, limits of present modeling and future directions are discussed.

Dedicated to Prof. Dr. Detlef Wolf, who passed away unexpectedly in 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson DL, Minster B (1979) The frequency dependence of Q in the earth and implications for mantle rheology and Chandler Wobble. Geophys J R Astr Soc 58:431–440. doi:10.1111/j.1365-246X.1979.tb01033.x

    Article  Google Scholar 

  • Blewitt G (2009) GPS and space-based geodetic methods. In: Herring T (ed) Geodesy: treatise on geophysics. Elsevier, Amsterdam, pp 351–390. doi:10.1016/B978-044452748-6.00058-4

    Google Scholar 

  • Bürgmann R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Ann Rev Earth Planet Sci 36:531–567. doi:10.1146/annurev.earth.36.031207.124326

    Article  Google Scholar 

  • Byerlee J (1978) Friction of rocks. Pure Appl Geophys 116:615–626. doi:10.1007/BF00876528

    Article  Google Scholar 

  • Cambiotti G, Sabadini R (2010) The compressional and compositional stratifications in maxwell earth models: the gravitational overturning and the long-period tangential flux. Geophys J Int 180:475–500. doi:10.1111/j.1365-246X.2009.04434.x

    Article  Google Scholar 

  • Cambiotti G, Klemann V, Sabadini R (2013) Compressible viscoelastodynamics of a spherical body at long time scales and its isostatic equilibrium. Geophys J Int 193:1071–1082. doi:10.1093/gji/ggt026

    Article  Google Scholar 

  • Cathles LM (1975) The viscosity of the Earth’s mantle. Princeton University Press, Princeton, p 386

    Google Scholar 

  • Dahlen FA (1974) On the static deformations of an earth model with a fluid core. Geophys J R Astr Soc 36:461–485. doi:10.1111/j.1365-246X.1974.tb03649.x

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356. doi:10.1016/0031-9201(81)90046-7

    Article  Google Scholar 

  • Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys 10:761–797. doi:10.1029/RG010i003p00761

    Article  Google Scholar 

  • Freeden W, Schreiner M (2010) Special functions in mathematical geosciences: an attempt at a categorization. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics. Springer, Berlin/Heidelberg, pp 925–949. doi:10.1007/978-3-642-01546-5˙8

    Chapter  Google Scholar 

  • Gasperini P, Yuen DA, Sabadini R (1992) Postglacial rebound with a non-Newtonian upper mantle and a Newtonian lower mantle rheology. Geophys Res Lett 19:1711–1714. doi:10.1029/92GL01456

    Article  Google Scholar 

  • Gasperini P, Da Forno G, Boschi E (2004) Linear or non-linear rheology in the Earth’s mantle: the prevalence of power-law creep in the postglacial isostatic readjustment of Laurentia. Geophys J Int 157:1297–1302. doi:10.1111/j.1365-246X.2004.02319.x

    Article  Google Scholar 

  • Gomez N, Pollard D, Mitrovica JX, Huybers P, Clark PU (2012) Evolution of a coupled marine ice sheet–sea level model. J Geophys Res 117. doi:10.1029/2011JF002128

    Google Scholar 

  • Gurtin ME, Sternberg E (1962) On the linear theory of viscoelasticity. Arch Ration Mech Anal 11:291–356

    Article  MathSciNet  MATH  Google Scholar 

  • Han D, Wahr J (1995) The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound. Geophys J Int 120:287–311. doi:10.1111/j.1365-246X.1995.tb01819.x

    Article  Google Scholar 

  • Hanyk L, Matyska C, Yuen DA (1999) Secular gravitational instability of a compressible viscoelastic sphere. Geophys Res Lett 26:557–560. doi:10.1029/1999GL900024

    Article  Google Scholar 

  • Haskell NA (1935) The motion of a viscous fluid under a surface load. Physics 6, 265–369. doi:10.1063/1.1745329

    Article  MATH  Google Scholar 

  • Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jevrejeva S, Pugh J (2013) New data systems and products at the permanent service for mean sea level. J Coast Res 288:493–504. doi:10.2112/JCOASTRES-D-12-00175.1

    Article  Google Scholar 

  • Johnston AC (1989) The effect of large ice sheets on earthquake genesis. In: Gregersen S, Basham PW (eds) Earthquakes at North-Atlantic passive margins: neotectonics and postglacial rebound. Kluwer Academic, Dordrecht, pp 581–599

    Chapter  Google Scholar 

  • Kanamori H, Anderson DL (1977) Importance of physical dispersion in surface wave and free oscillation problems: review. Rev Geophys Space Phys 15:105–112. doi:10.1029/RG015i001p00105

    Article  Google Scholar 

  • Karato S (2008) Deformation of Earth materials: an introduction to the rheology of the solid Earth. Cambridge University Press, Cambridge, p 463

    Book  Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the earth from traveltimes. Geophys J Int 122:108–124. doi:10.1111/j.1365-246X.1995.tb03540.x

    Article  Google Scholar 

  • Klemann V, Ivins E, Martinec Z, Wolf D (2007) Models of active glacial isostasy roofing warm subduction: case of the South Patagonian Ice Field. J Geophys Res 112:B09405. doi:10.1029/2006JB004,818

    Google Scholar 

  • Klemann V, Martinec Z, Ivins ER (2008) Glacial isostasy and plate motions. J Geodyn 46:95–103. doi:10.1016/j.jog.2008.04.005

    Article  Google Scholar 

  • Kuhlmann J, Thomas M, Schuh H (2014) Self-attraction and loading of oceanic masses. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of Geomathematics. Springer, Berlin/Heidelberg, pp xxyy

    Google Scholar 

  • Kusche J (2010) Time-variable gravity field and global deformation of the Earth. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics. Springer, Berlin/Heidelberg, pp 253–268. doi:10.1007/978-3-642-01546-5˙8

    Chapter  Google Scholar 

  • Kusche J, Klemann V, Bosch W (2012) Mass distribution and mass transport in the Earth system. J Geodyn 59–60:1–8. doi:10.1016/j.jog.2012.03.003

    Article  Google Scholar 

  • Lambert A, Courtier N, James T (2006) Long-term monitoring by absolute gravimetry: tides to postglacial rebound. J Geodyn 41:307–317. doi:10.1016/j.jog.2005.08.032

    Article  Google Scholar 

  • Lapwood ER, Usami T (1981) Free oscillations of the Earth. Cambridge Unversity Press, Cambridge, p 243

    MATH  Google Scholar 

  • Laske G, Masters G, Reif C (2012) A new global crustal model at 2 ×2 degrees. http://igppweb.ucsd.edu/~gabi/crust2.html

  • Longman IM (1963) A Green’s function for determining the deformation of the earth under surface mass loads – 2. Computations and numerical results. J Geophys Res 68:485–496. doi:10.1029/JZ068i002p00485

    Article  MATH  Google Scholar 

  • Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Dover, New York, p 555

    MATH  Google Scholar 

  • Martinec Z (1999) Spectral, initial value approach for viscoelastic relaxation of a spherical earth with a three-dimensional viscosity—I. Theory. Geophys J Int 137:469–488. doi:10.1046/j.1365-246X.1999.00803.x

    Article  Google Scholar 

  • Martinec Z (2000) Spectral–finite element approach for three-dimensional viscoelastic relaxation in a spherical earth. Geophys J Int 142:117–141. doi:10.1046/j.1365-246x.2000.00138.x

    Article  Google Scholar 

  • Martinec Z (2007) Propagator-matrix technique for the viscoelastic response of a multi-layered sphere to surface toroidal traction. Pure Appl Geophys 164:663–681. doi:10.1007/s00024-007-0188-5

    Article  Google Scholar 

  • Martinec Z, Thoma M, Wolf D (2001) Material versus local incompressibility and its influence on glacial-isostatic adjustment. Geophys J Int 144:136–156. doi:10.1046/j.1365-246x.2001.00324.x

    Article  Google Scholar 

  • Peltier WR (1976) Glacial–isostatic adjustment—II. The inverse problem. Geophys J R Astr Soc 46:669–705. doi:10.1111/j.1365-246X.1976.tb01253.x

    Article  Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE5G (VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149. doi:10.1146/annurev.earth.32.082503.144359

    Article  Google Scholar 

  • Plag H-P, Jüttner H-U (1995) Rayleigh-Taylor instabilities of a self-gravitating earth. J Geodyn 20:267–288. doi:10.1016/0264-3707(95)00008-W

    Article  Google Scholar 

  • Ranalli G (1987) Rheology of the Earth, deformation and flow processes in geophysics and geodynamics. Allan & Unwin, Boston, p 366

    Google Scholar 

  • Rümpker G, Wolf D (1996) Viscoelastic relaxation of a Burgers half-space: implications for the interpretation of the Fennoscandian uplift. Geophys J Int 124:541–555. doi:10.1111/j.1365-246X.1996.tb07036.x

    Article  Google Scholar 

  • Sabadini R, Vermeersen B (2004) Global dynamics of the Earth—applications of normal mode relaxation theory to solid-Earth geophysics. Kluwer Academic, Dordrecht, p 329

    Google Scholar 

  • Schmeling H (1987) On the interaction between small- and large-scale convection and postglacial rebound flow in a power-law mantle. Earth Planet Sci Lett 84:254–262. doi:10.1016/0012-821X(87)90090-2

    Article  Google Scholar 

  • Schuh H, Behrend D (2012) Vlbi: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80. doi:10.1016/j.jog.2012.07.007

    Article  Google Scholar 

  • Simons FJ, Olhede SC (2013) Maximum-likelihood estimation of lithospheric flexural rigidity, initial-loading fraction and load correlation, under isotropy. Geophys J Int 193:1300–1342. doi:10.1093/gji/ggt056

    Article  Google Scholar 

  • Spada G, Boschi L (2006) Using the Post–Widder formula to compute the Earth’s viscoelastic Love numbers. Geophys J Int 166:309–321. doi:10.1111/j.1365-246X.2006.02995.x

    Article  Google Scholar 

  • Spada G, Barletta VR, Klemann V, Riva REM, Martinec Z, Gasperini P, Lund B, Wolf D, Vermeersen LLA, King MA, (2011) A benchmark study for glacial isostatic adjustment codes. Geophys J Int 185:106–132. doi:10.1111/j.1365-246X.2011.04952.x

    Article  Google Scholar 

  • Stacey FD (1969) Physcis of the Earth. Wiley, New York, p 414

    Google Scholar 

  • Tanaka Y, Okuno J, Okubo S (2006) A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model (I)—vertical displacement and gravity variation. Geophys J Int 164:273–289. doi:10.1111/j.1365-246X.2005.02821.x

    Article  Google Scholar 

  • Tanaka Y, Klemann V, Martinec Z, Riva REM (2011) Spectral-finite element approach to viscoelastic relaxation in a spherical compressible earth: application to gia modelling. Geophys J Int 184:220–234. doi:10.1111/j.1365-246X.2010.04854.x

    Article  Google Scholar 

  • Tromp J, Mitrovica JX (1999) Surface loading of a viscoelastic earth—I. General theory. Geophys J Int 137:847–855. doi:10.1046/j.1365-246x.1999.00838.x

    Article  Google Scholar 

  • van den Berg AP, van Keken PE, Yuen DA (1993) The effects of a composite non-Newtonian and Newtonian rheology on mantle convection. Geophys J Int 115:62–78. doi:10.1111/j.1365-246X.1993.tb05588.x

    Article  Google Scholar 

  • van den Berg J, van de Wal R, Oerlemans J (2006) Recovering lateral variations in lithospheric strenght from bedrock motion data using a coupled ice sheet–lithosphere model. J Geophys Res 111:B05409. doi:10.1029/2005JB003790

    Google Scholar 

  • van den Berg J, van de Wal R, Milne GA, Oerlemans J (2008) Effect of isostasy on dynamical ice sheet modelling: a csae study for Eurasia. J Geophys Res 113:B05412. doi:10.1029/2007JB004994

    Google Scholar 

  • van der Wal W, Wu P, Wang H, Sideris MG (2010) Sea levels and uplift rate from composite rheology in glacial isostatic adjustment modeling. J Geodyn 50:38–48. doi:dx.doi.org/10.1016/j.jog.2010.01.006

    Google Scholar 

  • van der Wal W, Barnhoorn A, Stocchi P, Gradmann S, Wu P, Drury M, Vermeersen B (2013) Glacial isostatic adjustment model with composite 3-d earth rheology for Fennoscandia. Geophys J Int 194:61–77. doi:10.1093/gji/ggt099,pdf

    Google Scholar 

  • Vermeersen LLA, Mitrovica JX (2000) Gravitational stability of spherical self-gravitating relaxation models. Geophys J Int 142:351–360. doi:10.1046/j.1365-246x.2000.00159.x

    Article  Google Scholar 

  • Vermeersen LLA, Sabadini R, Spada G (1996) Compressible rotational deformation. Geophys J Int 126:735–761. doi:10.1111/j.1365-246X.1996.tb04700.x

    Article  Google Scholar 

  • Wang H, Xiang L, Jia L, Jiang L, Wang Z, Hu B, Gao P (2012) Load love numbers and Green’s functions for elastic earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Comput Geosci 49:190–199. doi:10.1016/j.cageo.2012.06.022

    Article  Google Scholar 

  • Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge, p 458

    Google Scholar 

  • Wolf D (2010) Gravitational viscoelastodynamics. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics. Springer, Berlin/Heidelberg, pp 304–330. doi:10.1007/978-3-642-01546-5˙10

    Google Scholar 

  • Wolf D, Kaufmann G (2000) Effects due to compressional and compositional density stratification on load-induced Maxwell-viscoelastic perturbations. Geophys J Int 140:51–62. doi:10.1046/j.1365-246x.2000.00984.x

    Article  Google Scholar 

  • Wolf D, Li G (2002) Compressible viscoelastic earth models based on Darwin’s law. In: Mitrovica JX, Vermeersen LLA (eds) Glacial isostatic adjustment and the Earth system: sea-level, crustal deformation, gravity and rotation. American Geophysical Union, Washington, DC, pp 275–292

    Google Scholar 

  • Wu P (2002) Effects of nonlinear rheology on degree 2 harmonic deformation in a spherical self-gravitating earth. Geophys Res Lett 29. doi:10.1029/2001GL014109

    Google Scholar 

  • Wu P, Hasegawa HS (1996) Induced stresses and fault potential in eastern Canada due to a disc load: a preliminary analysis. Geophys J Int 125:415–430. doi:10.1111/j.1365-246X.1996.tb00008.x

    Article  Google Scholar 

  • Wu P, Peltier WR (1982) Viscous gravitational relaxation. Geophys J R Astr Soc 70:435–485. doi:10.1111/j.1365-246X.1982.tb04976.x

    Article  MATH  Google Scholar 

  • Wu P, Wang H (2008) Postglacial isostatic adjustment in a self-gravitating spherical Earth with power-law rheology. J Geodyn 46:118–130. doi:10.1016/j.jog.2008.03.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Klemanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Klemanna, V., Thomasa, M., Schuha, H. (2013). Elastic and Viscoelastic Response of the Lithosphere to Surface Loading. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_90-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_90-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics