Skip to main content

Modelling of Pedestrian and Evacuation Dynamics

  • Living reference work entry
  • First Online:

Glossary

Pedestrian:

A pedestrian is a person travelling on foot. In this article, other characterizations are used, depending on the context, e.g., agent or particle.

Crowd:

A large group of pedestrians who have gathered together. Depending on the perspective, more specific definitions exist.

Microscopic models:

Microscopic models represent each pedestrian separately with individual properties (e.g., walking velocity or route choice behavior) and his/her interactions with other individuals. Typical models that belong to this class are cellular automata and the force-based models.

Macroscopic models:

Macroscopic models do not distinguish individuals. The description is based on aggregate quantities, e.g., appropriate densities. Typical models belonging to this class are fluid-dynamic approaches.

Acceleration-based models:

Acceleration-based models are microscopic models defined by a system of second-order ordinary differential equations. The resulting acceleration is integrated twice...

This is a preview of subscription content, log in via an institution.

Bibliography

Primary Literature

  • Alahi A, Goel K, Ramanathan V, Robicquet A, Fei-Fei L, Savarese S (2016) Social lstm: human trajectory prediction in crowded spaces. In: 2016 I.E. conference on computer vision and pattern recognition (CVPR), p 961971

    Google Scholar 

  • Ali S, Nishino K, Manocha D, Shah M (eds) (2013) Modeling, simulation and visual analysis of crowds a multidisciplinary perspective. Springer, New York

    Google Scholar 

  • Andresen E, Chraibi M, Seyfried A (2018) A representation of partial spatial knowledge: a cognitive map approach for evacuation simulations. Transportmetrica/A n/a:1–34. online first

    Google Scholar 

  • Bellomo N, Piccoli B, Tosin A (2012) Modeling crowd dynamics from a complex system viewpoint. Math Models Methods Appl Sci 22(Suppl 2):123004

    MathSciNet  MATH  Google Scholar 

  • Ben-Jacob E (1997) From snowflake formation to growth of bacterial colonies. Part II. Cooperative formation of complex colonial patterns. Contemp Phys 38:205

    Article  ADS  Google Scholar 

  • Biham O, Middleton AA, Levine D (1992) Self-organization and a dynamical transition in traffic-flow models. Phys Rev A 46:R6124

    Article  ADS  Google Scholar 

  • Blue VJ, Adler JL (2000) Cellular automata microsimulation of bi-directional pedestrian flows. J Transp Res Board 1678:135–141

    Article  Google Scholar 

  • Blue VJ, Adler JL (2002) Flow capacities from cellular automata modeling of proportional spilts of pedestrians by direction. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg

    Google Scholar 

  • Blythe R, Evans MR (2007) Nonequilibrium steady states of matrix product form: a solver’s guide. J Phys A 40:R333

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Boltes M, Zhang J, Tordeux A, Schadschneider A, Seyfried A (2018) Pedestrian and evacuation dynamics: empirical results. In: Encyclopedia of complexity and system science. Springer

    Google Scholar 

  • Bouzat S, Kuperman MN (2014) Game theory in models of pedestrian room evacuation. Phys Rev E 89:032806

    Article  ADS  Google Scholar 

  • Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295:507–525

    Article  ADS  MATH  Google Scholar 

  • Burstedde C, Kirchner A, Klauck K, Schadschneider A, Zittartz J (2002) Cellular automaton approach to pedestrian dynamics – applications. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 87–98

    Google Scholar 

  • Chen Y, Everett M, Liu M, How JP (2017) Socially aware motion planning with deep reinforcement learning. In: Proceedings of the 2017 I.E. international conference on intelligent robots and systems (IROS), Vancouver, British Columbia, Canada, pp 1343–1350

    Google Scholar 

  • Chen X, Treiber M, Kanagaraj V, Li H (2018) Social force models for pedestrian traffic – state of the art. Transp Rev 38(5):625-653

    Article  Google Scholar 

  • Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329(4–6):199–329

    Article  ADS  MathSciNet  Google Scholar 

  • Chraibi M, Seyfried A, Schadschneider A (2010) Generalized centrifugal force model for pedestrian dynamics. Phys Rev E 82:046111

    Article  ADS  Google Scholar 

  • Chrastil ER, Warren WH (2015) Active and passive spatial learning in human navigation: Acquisition of graph knowledge. J Exp Psychol Learn Mem Cogn 41:1162

    Article  Google Scholar 

  • Crociani L, Lämmel G, Vizzari G (2016) Multi-scale simulation for crowd management: A case study in an urban scenario. In: Autonomous agents and multiagent systems. Springer International Publishing, Cham pp 147–162

    Chapter  Google Scholar 

  • Curtis S, Best A, Manocha D (2016) Menge: a modular framework for simulating crowd movement. Collective Dyn 1(0):1–40

    Google Scholar 

  • Daamen W (2004) Modelling passenger flows in public transport facilities. PhD thesis, Technical University of Delft

    Google Scholar 

  • Das P, Parida M, Katiyar VK (2015) Analysis of interrelationship between pedestrian flow parameters using artificial neural network. J Mod Transp 23(4):298–309

    Article  Google Scholar 

  • Derrida B (1998) An exactly soluble non-equilibrium system: The asymmetric simple exclusion process. Phys Rep 301:65

    Article  ADS  MathSciNet  Google Scholar 

  • Dietrich F, Köster G (2014) Gradient navigation model for pedestrian dynamics. Phys Rev E 89:062801

    Article  ADS  Google Scholar 

  • Dijkstra EW (1958) A note on two problems in connexion with graphs. Numer Math 1(1):269271

    MathSciNet  Google Scholar 

  • Ehtamo H, Heliövaara S, Korhonen T, Hostikka S (2010) Game theoretic best-response dynamics for evacuees’ exit selection. Adv Complex Syst 13(01):113–134

    Article  MathSciNet  MATH  Google Scholar 

  • El Yacoubi S, Chopard B, Bandini S (eds) (2006) Cellular automata -7th international conference on cellular automata for research and industry, ACRI 2006, Perpignan, France, 2006. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Filippidis L (2006) Representing the influence of signage on evacuation behavior within an evacuation model. J Fire Prot Eng 16(1):37–73

    Article  Google Scholar 

  • Fiorini P, Shiller Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Robot Res 17:760772

    Article  Google Scholar 

  • Fragkiadaki K, Levine S, Felsen P, Malik J. Recurrent network models for human dynamics. In: Proceedings of the 2015 I.E. international conference on computer vision (ICCV), ICCV ’15, Washington, DC, USA, 2015. IEEE Computer Society, pp 4346–4354

    Google Scholar 

  • Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56:1505

    Article  ADS  Google Scholar 

  • Fukui M, Ishibashi Y (1999a) Jamming transition in cellular automaton models for pedestrians on passageway. J Phys Soc Jpn 68:3738

    Article  ADS  Google Scholar 

  • Fukui M, Ishibashi Y (1999b) Self-organized phase transitions in cellular automaton models for pedestrians. J Phys Soc Jpn 68:2861

    Article  ADS  Google Scholar 

  • Galea ER (ed) (2003) Pedestrian and evacuation dynamics 2003. CMS Press, London

    Google Scholar 

  • Gipps PG, Marksjö B (1985) A micro-simulation model for pedestrian flows. Math Comput Simul 27:95–105

    Article  Google Scholar 

  • Guy S, Chhugani J, Kim C, Satish S, Lin M, Manocha D, Dubey P (2009) Clearpath: highly parallel collision avoidance for multi-agent simulation. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation 2009, New Orleans, LA, USA, pp 177–187

    Google Scholar 

  • Guy S, Chhugani J, Curtis S, Dubey P, Lin M, D Manocha. (2010a) PLEdestrians: a least-effort approach to crowd simulation. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation. Eurographics Association 2010, Madrid, Spain, pp 119–128

    Google Scholar 

  • Guy S, Lin M, Manocha D (2010b) Modeling collision avoidance behavior for virtual humans. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems, Toronto, ON, Canada, vol 2, pp 575–582

    Google Scholar 

  • Helbing D (1992) A fluid-dynamic model for the movement of pedestrians. Complex Syst 6:391–415

    MathSciNet  MATH  Google Scholar 

  • Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51:4282–4286

    Article  ADS  Google Scholar 

  • Helbing D, Farkas I, Molnár P, Vicsek T (2002) Simulation of pedestrian crowds in normal and evacuation situations. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 21–58

    Google Scholar 

  • Henderson LF (1971) The statistics of crowd fluids. Nature 229:381–383

    Article  ADS  Google Scholar 

  • Henderson LF (1974) On the fluid mechanics of human crowd motion. Transp Res 8:509–515

    Article  Google Scholar 

  • Hirai K, Tarui K (1975) A simulation of the behavior of a crowd in panic. In: Proceedings of the 1975 international conference on cybernetics and society, San Francisco, pp 409–411

    Google Scholar 

  • Höcker M (2010) Modellierung und Simulation von Fußgängerverkehr – Entwicklung mathematischer Ansätze für Soziale Kräfte und Navigationsgraphen. PhD thesis, Fakultät für Bauingenieurwesen und Geodäsie der Gottfried Wilhelm Leibniz Universität Hannover

    Google Scholar 

  • Höcker M, Berkhahn V, Kneidl A, Borrmann A, Klein W (2010) Graph-based approaches for simulating pedestrian dynamics in building models. In: Menze E, Scherer R (eds) ECPPM 2010 – eWork and eBusiness in Architecture, Engineering and Construction, pp 389–394

    Google Scholar 

  • Hoogendoorn SP, Bovy PHL, Daamen W (2002) Microscopic pedestrian wayfinding and dynamics modelling. In: Pedestrian and evacuation dynamics, pp 123–154

    Google Scholar 

  • Hughes RL (2000) The flow of large crowds of pedestrians. Math Comput Simul 53:367–370

    Article  Google Scholar 

  • Hughes RL (2002) A continuum theory for the flow of pedestrians. Transp Res B 36:507–535

    Article  Google Scholar 

  • Hughes RL (2003) The flow of human crowds. Annu Rev Fluid Mech 35:169

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jian L, Lizhong Y, Daoling Z (2005) Simulation of bi-direction pedestrian movement in corridor. Physica A 354:619

    Article  ADS  Google Scholar 

  • Kemloh Wagoum AU, Seyfried A, Holl S (2012) Modeling the dynamic route choice of pedestrians to assess the criticality of building evacuation. Adv Complex Syst 15:1250029

    Article  MathSciNet  Google Scholar 

  • Kemloh Wagoum AU, Chraibi M, Zhang J (2015) Jupedsim: an open framework for simulating and analyzing the dynamics of pedestrians. In: 3rd Conference of Transportation Research Group of India

    Google Scholar 

  • Kielar P, Biedermann D, Borrmann A (2016a) Momentumv2: a modular, extensible, and generic agent-based pedestrian behavior simulation framework. Technical report, Technical University Munich

    Google Scholar 

  • Kielar PM, Biedermann DH, Kneidl A, Borrmann A (2016b) A unified pedestrian routing model combining multiple graph-based navigation methods. In: Knoop VL, Daamen W (eds) Traffic and granular flow ’15. Springer International Publishing, Cham, pp 241–248

    Chapter  Google Scholar 

  • Kim S, Stephen G, Guy S, Liu W, Wilkie D, Lau R, Lin M, Manocha D (2014) Brvo: predicting pedestrian trajectories using velocity-space reasoning. Int J Rob Res 34:201–217

    Article  Google Scholar 

  • Kirchner A, Schadschneider A (2002) Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312:260–276

    Article  ADS  MATH  Google Scholar 

  • Kirchner A, Namazi A, Nishinari K, Schadschneider A (2003a) Role of conflicts in the floor field cellular automaton model for pedestrian dynamics. In: Galea (2003), p 51

    Google Scholar 

  • Kirchner A, Nishinari K, Schadschneider A (2003b) Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys Rev E 67:056122

    Article  ADS  Google Scholar 

  • Kirchner A, Klüpfel H, Nishinari K, Schadschneider A, Schreckenberg M (2004) Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J Stat Mech 2004(10):P10011

    Article  MATH  Google Scholar 

  • Klüpfel H, Meyer-König T, Wahle J, Schreckenberg M (2000) Microscopic simulation of evacuation processes on passenger ships. In: Bandini S, Worsch T (eds) Theory and practical issues on cellular automata. Springer, Berlin/Heidelberg

    Google Scholar 

  • Kneidl A (2013) Methoden zur Abbildung menschlichen Navigationsverhaltens bei der Modellierung von Fußgängerströmen. PhD thesis, Technische Universität München

    Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence – volume 2, IJCAI’95, San Francisco, CA, USA. Morgan Kaufmann Publishers, pp 1137–1143

    Google Scholar 

  • Korhonen T, Hostikka S, Heliövaara S, Ehtamo H (2010) Fds+evac: an agent based fire evacuation model. In: Klingsch WWF, Rogsch C, Schadschneider A, Schreckenberg M (eds) Pedestrian and evacuation dynamics 2008. Springer, Berlin/Heidelberg, pp 109–120

    Chapter  MATH  Google Scholar 

  • Köster G, Treml F, Gödel M (2013) Avoiding numerical pitfalls in social force models. Phys Rev E 87:063305

    Google Scholar 

  • Kretz T (2007) Pedestrian traffic – simulation and experiments. PhD thesis, Universität Duisburg-Essen

    Google Scholar 

  • Kretz T (2009) Pedestrian traffic: On the quickest path. J Stat Mech: Theory Exp 2009(03):P03012

    Article  Google Scholar 

  • Kretz T (2015) On oscillations in the social force model. Physica A 438:272–285

    Article  ADS  Google Scholar 

  • Kretz T, Schreckenberg M (2006) The F.A.S.T.-model. Lecture Notes in Computer Science 4173:712

    Google Scholar 

  • Kretz T, Lehmann K, Hofsäß I (2015) Pedestrian route choice by iterated equilibrium search. In: Chraibi M, Boltes M, Schadschneider A, Seyfried A (eds) Traffic and granular flow ’13. Springer International Publishing, Cham, pp 47–54

    Google Scholar 

  • Lämmel G, Klüpfel H, Nagel K (2009) Chapter 11. The MATSim network flow model for traffic simulation adapted to large-scale emergency egress and an application to the evacuation of the Indonesian City of Padang in Case of a Tsunami Warning. in Harry Timmermans (ed.) Pedestrian Behavior Emerald Publishing Limited, pp 245–265

    Google Scholar 

  • Lämmel G, Seyfried A, and B. Steffen (2014) Large-scale and microscopic: a fast simulation approach for urban areas. In: Transportation Research Board Annual Meeting, Washington DC, USA, pp 3814–3890

    Google Scholar 

  • Lo SM, Huang HC, Wang P, Yuen KK (2006) A game theory based exit selection model for evacuation. Fire Saf J 41:364

    Article  Google Scholar 

  • Lovas GG (1994) Modeling and simulation of pedestrian traffic flow. Transp Res B 28V:429

    Article  Google Scholar 

  • Løvs GG (1998) Models of wayfinding in emergency evacuations. Eur J Oper Res 105(3):371–389

    Article  MATH  Google Scholar 

  • Luo L, Fu Z, Cheng H, Yang L (2018) Update schemes of multi-velocity floor field cellular automaton for pedestrian dynamics. Physica A 491:946

    Article  ADS  Google Scholar 

  • Ma Y, Lee EWM, Yuen RKK (2016) An artificial intelligence-based approach for simulating pedestrian movement. IEEE Trans Intell Transp Syst 17(11):3159–3170

    Article  Google Scholar 

  • Maniccam S (2003) Traffic jamming on hexagonal lattice. Physica A 321:653

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Maniccam S (2005) Effects of back step and update rule on congestion of mobile objects. Physica A 346:631

    Article  ADS  Google Scholar 

  • Marconi S, Chopard B (2002) A multiparticle lattice gas automata model for a crowd. Lecture Notes in Computer Science, 2493, p 231, Springer, Berlin, Heidelberg

    Google Scholar 

  • Maury B, Venel J (2011) A discrete contact model for crowd motion. ESAIM: Math Model Numer Anal 45:145–168

    Article  MathSciNet  MATH  Google Scholar 

  • Maury B, Venel J, Olivier A-H, Donikian S (2008) A mathematical framework for a crowd motion model. Comptes Rendus de l’Académie des Sciences – Series I 346:1245–1250

    MathSciNet  MATH  Google Scholar 

  • Mordvintsev A, Krzhizhanovskaya V, Lees M, Sloot P (2014) Simulation of city evacuation coupled to flood dynamics. In: Pedestrian and evacuation dynamics 2012. Springer, Cham, pp 485–499

    Google Scholar 

  • Moussaïd M, Helbing D, Garnier S, Johansson A, Combe M, Theraulaz G (2009) Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc R Soc B 276(1668):2755–2762

    Article  Google Scholar 

  • Muramatsu M, Nagatani T (2000a) Jamming transition in two-dimensional pedestrian traffic. Physica A 275:281–291

    Article  ADS  MATH  Google Scholar 

  • Muramatsu M, Nagatani T (2000b) Jamming transition of pedestrian traffic at crossing with open boundary conditions. Physica A 286:377–390

    Article  ADS  MATH  Google Scholar 

  • Muramatsu M, Irie T, Nagatani T (1999) Jamming transition in pedestrian counter flow. Physica A 267:487–498

    Article  ADS  Google Scholar 

  • Nagai R, Nagatani T (2006) Jamming transition in counter flow of slender particles on square lattice. Physica A 366:503

    Article  ADS  Google Scholar 

  • Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I France 2:2221

    Article  ADS  Google Scholar 

  • Nassar K (2011) Sign visibility for pedestrians assessed with agent-based simulation. Transp Res Rec J Transp Res Board 2264:18–26

    Article  Google Scholar 

  • Nowak S, Schadschneider A (2012) Quantitative analysis of pedestrian counter-flow in a cellular automaton model. Phys Rev E 85:066128

    Article  ADS  Google Scholar 

  • Ondrej J, Pettré J (2010) A synthetic-vision based steering approach for crowd simulation. ACM Trans Graph 29:123

    Article  Google Scholar 

  • Paris S, Pettré J, Donikian S (2007) Pedestrian reactive navigation for crowd simulation: a predictive approach. Comput Graph Forum 26:665–674

    Article  Google Scholar 

  • Pipes LA (1953) An operational analysis of traffic dynamics. J Appl Phys 24(3):274–281

    Article  ADS  MathSciNet  Google Scholar 

  • Rickert M, Nagel K, Schreckenberg M, Latour A (1996) Two lane traffic simulations using cellular automata. Physica A 231:534

    Article  ADS  Google Scholar 

  • Rio KW, Rhea CK, Warren WH (2014) Follow the leader: visual control of speed in pedestrian following. J Vis 14(2):4

    Article  Google Scholar 

  • Schadschneider A (2002) Cellular automaton approach to pedestrian dynamics -theory. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 75–86

    Google Scholar 

  • Schreckenberg M, Sharma SD (eds) (2002) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Schultz M, Fricke H (2010) Stochastic transition model for discrete agent movements. Lecture Notes in Computer Science 6350:506

    Google Scholar 

  • Schütz GM (2001) Exactly solvable models for many-body systems. In: Domb C, Lebowitz JL (eds) Phase transitions and critical phenomena, vol 19. Academic, London

    Google Scholar 

  • Seitz M, Köster G (2012) Natural discretization of pedestrian movement in continuous space. Phys Rev E 86:046108

    Article  ADS  Google Scholar 

  • Seitz M, Dietrich F, Köster G, Bungartz H-J (2016) The superposition principle: a conceptual perspective on pedestrian stream simulations. Collective Dyn 1:1–19

    Google Scholar 

  • Seyfried A, Schadschneider A (2009) Validation of ca models of pedestrian dynamics with fundamental diagrams. Cybern Syst 40:367

    Article  MATH  Google Scholar 

  • Sieben A, Schumann J, Seyfried A (2017) Collective phenomena in crowds -where pedestrian dynamics need social psychology. PLoS One 12:1–19

    Article  Google Scholar 

  • Suma Y, Yanagisawa D, Nishinari K (2011) Anticipation effect in pedestrian dynamics: modeling and experiments. Physica A 391:248

    Article  ADS  Google Scholar 

  • Tajima Y, Nagatani T (2002) Clogging transition of pedestrian flow in t-shaped channel. Physica A 303:239–250

    Article  ADS  MATH  Google Scholar 

  • Templeton A, Drury J, Philippides A (2015) From mindless masses to small groups: conceptualizing collective behavior in crowd modeling. Rev Gen Psychol 19(3):215–229

    Article  Google Scholar 

  • Köster G et al. (2017). VADERE, http://www.vadere.org/

  • Tordeux A, Schadschneider A (2016) White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J Phys A Math Theor 49:185101

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tordeux A, Chraibi M, Seyfried A (2016) Collision-free speed model for pedestrian dynamics. In: Traffic and granular flow ’15, Springer, Cham pp 225–232

    Google Scholar 

  • Treuille A, Cooper S, Popovic Z (2006) Continuum crowds. ACM Trans Graph/SIGGRAPH 25(3):1160–1168

    Article  Google Scholar 

  • van den Berg J, Lin M, Manocha D (2008) Reciprocal velocity obstacles for realtime multi-agent navigation. In: 2008 I.E. international conference on robotics and automation, Pasadena, CA, USA, pp 1928–1935

    Google Scholar 

  • van den Berg J, Guy S, Lin M, Manocha D (2011) Reciprocal n-body collision avoidance. Robotics research: the 14th international symposium ISRR, Lucerne, Switzerland, pp 3–19

    Google Scholar 

  • von Sivers I, Seitz MJ, Köster G (2016) How do people search: a modelling perspective. Lecture notes in computer science. 9574:487–496

    Google Scholar 

  • Weidmann U. Transporttechnik der Fußgänger – Transporttechnische Eigenschaften des Fußgängerverkehrs (Literaturauswertung). Schriftenreihe des IVT 90, ETH Zürich, 3 1993. Zweite, ergänzte Auflage (in German)

    Google Scholar 

  • Fang W, Yang L, Fang W (2003) Simulation of bi-directional pedestrian movement using a cellular automata model. Physica A 321:633–640

    Google Scholar 

  • Xie H, Filippidis L, Gwynne S, Galea ER, Blackshields D, Lawrence PJ (2007) Signage legibility distances as a function of observation angle. J Fire Prot Eng 17(1):41–64

    Article  Google Scholar 

  • Yamamoto K, Kokubo S, Nishinari K (2007) Simulation for pedestrian dynamics by real-coded cellular automata (RCA). Physica A 379:654

    Article  ADS  Google Scholar 

Books and Reviews

  • Chopard B, Droz M (1998) Cellular automaton modeling of physical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Knoop VL, Daamen W (eds) (2016) Traffic and granular flow ’15. Springer, Cham (see also previous issues of this conference series)

    MATH  Google Scholar 

  • Schadschneider A, Pöschel T, Kühne R, Schreckenberg M, Wolf DE (eds) (2007) Traffic and granular flow ’05. Springer, Berlin

    Google Scholar 

  • Schadschneider A, Chowdhury D, Nishinari K (2010) Stochastic transport in complex systems: from molecules to vehicles. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Schreckenberg M, Sharma SD (eds) (2002) Pedestrian and evacuation dynamics. Springer, Berlin

    MATH  Google Scholar 

  • Song W, Ma J, Fu L (eds). Pedestrian and evacuation dynamics 2016. Available from http://collective-dynamics.eu/index.php/cod/article/view/A11

  • Still K (2013) Introduction to crowd science. CRC Press, Boca Raton

    Google Scholar 

  • Thalmann D, Raupp Musse S (2007) Crowd simulation. Springer, London

    Google Scholar 

  • Timmermans H (ed) (2009) Pedestrian behavior – models, data collection and applications. Emerald, Bingley

    Google Scholar 

  • Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) (2007) Pedestrian and evacuation dynamics ’05. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schadschneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chraibi, M., Tordeux, A., Schadschneider, A., Seyfried, A. (2018). Modelling of Pedestrian and Evacuation Dynamics. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_705-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_705-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics