Skip to main content

SPAD-Based Sensors

  • Chapter
  • First Online:

Abstract

3D imaging and multi-pixel rangefinding constitute one of the most important and innovative fields of research in image sensor science and engineering in the past years. In rangefinding, one computes the Time-Of-Flight of a ray of light, generated by a mono-chromatic or wide-spectral source, from the source through the reflection of a target object and to a detector. There exist at least two techniques to measure the Time-Of-Flight (TOF): a direct and an indirect technique. In direct techniques (D-TOF), the time difference between a START pulse, synchronized with the light source, and a STOP signal generated by the detector is evaluated. In indirect techniques (I-TOF), a continuous sinusoidal light wave is emitted and the phase difference between outgoing and incoming signals is measured. From the phase difference, the time difference is derived using well-known formulae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The preposition “above” is used because researchers working with APDs consider the cathode to be the terminal with the higher voltage.

  2. 2.

    Termed after the similarity to a Geiger counter.

  3. 3.

    PDE is defined as the multiplication of fill facto and PDP.

References

  1. S. Cova, A. Longoni, A. Andreoni, Towards picosecond resolution with single-photon avalanche diodes. Rev. Sci. Instr. 52(3), 408–412 (1981)

    Article  Google Scholar 

  2. R.J. McIntyre, Recent developments in silicon avalanche photodiodes. Measurement 3(4), 146–152 (1985)

    Article  Google Scholar 

  3. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley-Interscience, New York, 1981)

    Google Scholar 

  4. A. Spinelli, A. Lacaita, Physics and numerical simulation of single photon avalanche diodes. IEEE Trans. Electron Devices 44, 1931–1943 (1997)

    Article  Google Scholar 

  5. G. Ripamonti, S. Cova, Carrier diffusion effects in the time-response of a fast photodiode. Solid-State Electron. 28(9), 925–931 (1985)

    Article  Google Scholar 

  6. M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R.K. Henderson, L. Grant, E. Charbon, A low-noise single-photon detector implemented in a 130 nm CMOS imaging process. Solid-State Electron. 53(7), 803–808 (2009)

    Article  Google Scholar 

  7. J. Richardson, L. Grant, R. Henderson, A low-dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology, International Image Sensor Workshop (2009)

    Google Scholar 

  8. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Avalanche photodiodes and quenching circuits for single-photon detection. Appl. Opt. 35(12), 1956–1976 (1996)

    Article  Google Scholar 

  9. A. Rochas et al., Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology. Rev. Sci. Instr. 74(7), 3263–3270 (2003)

    Article  Google Scholar 

  10. C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array. IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008)

    Article  Google Scholar 

  11. C. Niclass, M. Sergio, and E. Charbon, A single photon avalanche diode array fabricated in deep-submicron CMOS technology, IEEE Design, Automation and Test in Europe, 1–6 (2006)

    Google Scholar 

  12. H. Finkelstein, M.J. Hsu, S.C. Esener, STI-Bounded single-photon avalanche diode in a deep-submicrometer CMOS technology. IEEE Electron Device Lett. 27(11), 887–889 (2006)

    Google Scholar 

  13. C. Niclass, M. Sergio, E. Charbon, A Single Photon Avalanche Diode Array Fabricated in 0.35μm CMOS and based on an Event-Driven Readout for TCSPC Experiments (SPIE Optics East, Boston, 2006)

    Google Scholar 

  14. D. Stoppa, L. Pacheri, M. Scandiuzzo, L. Gonzo, G.-F. Della Betta, A. Simoni, A CMOS 3-D imager based on single photon avalanche diode. IEEE Trans. Circuits Syst. 54(1), 4–12 (2007)

    Google Scholar 

  15. L. Pancheri, D. Stoppa, Low-noise CMOS Single-photon Avalanche Diodes with 32 ns Dead Time, in IEEE European Solid-State Device Conference (2007)

    Google Scholar 

  16. N. Faramarzpour, M.J. Deen, S. Shirani, Q. Fang, Fully integrated single photon avalanche diode detector in standard CMOS 0.18-um technology. IEEE Trans. Electron Devices 55(3), 760–767 (2008)

    Article  Google Scholar 

  17. C. Niclass, M. Sergio, E. Charbon, A CMOS 64x48 single photon avalanche diode array with event-driven readout, in IEEE European Solid-State Circuit Conference (2006)

    Google Scholar 

  18. J.S. Massa, G.S. Buller, A.C. Walker, S. Cova, M. Umasuthan, A.M. Wallace, Time-pf-flight optical ranging system based on time-correlated single-photon counting. App. Opt. 37(31), 7298–7304 (1998)

    Article  Google Scholar 

  19. M.A. Albota et al., Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays. Lincoln Labs J. 13(2) (2002)

    Google Scholar 

  20. C. Niclass, A. Rochas, P.A. Besse, E. Charbon, Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes. IEEE J. Solid-State Circuits 40(9), 1847–1854 (2005)

    Article  Google Scholar 

  21. M. Sergio, C. Niclass, E. Charbon, A 128x2 CMOS single photon streak camera with timing-preserving latchless pipeline readout, in IEEE International Solid-State Circuits Conference (2007), pp. 120–121

    Google Scholar 

  22. J.M. Pavia, C. Niclass, C. Favi, M. Wolf, E. Charbon, 3D near-infrared imaging based on a SPAD image sensor, International Image Sensor Workshop (2011)

    Google Scholar 

  23. J.-P. Jansson et al., A CMOS time-to-digital converter with better than 10 ps single-shot precision. IEEE J. Solid-State Circuits 41(6), 1286–1296 (2006)

    Article  Google Scholar 

  24. A.S. Yousif et al., A fine resolution TDC architecture for next generation PET imaging. IEEE Trans. Nucl. Sci. 54(5), 1574–1582 (2007)

    Article  Google Scholar 

  25. M. Lee, et al., A 9b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm cmos that amplifies a time residue, in IEEE Symposium on VLSI Circuits (2007), pp. 168–169

    Google Scholar 

  26. P. Chen et al., A low-cost low-power CMOS time-to-digital converter based on pulse stretching. IEEE Trans. Nucl. Sci. 53(4), 2215–2220 (2006)

    Article  Google Scholar 

  27. J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, R.K. Henderson, A 32x32 50 ps resolution 10 bit time to digital converter array in 130 nm CMOS for time correlated imaging, in IEEE Custom Integrated Circuits Conference (2009), pp. 77–80

    Google Scholar 

  28. M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R.K. Henderson, F. Borghetti, D. Stoppa, E. Charbon, A Parallel 32x32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology, in IEEE European Solid-State Device Conference (2009)

    Google Scholar 

  29. C. Veerappan, J. Richardson, R. Walker, D.U. Li, M.W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R.K. Henderson, E. Charbon, A 160x128 single-photon image sensor with on-pixel, 55 ps 10b time-to-digital converter,in IEEE International Solid-State Circuits Conference (2011), pp. 312–314

    Google Scholar 

  30. D. Stoppa, F. Borghetti, J. Richardson, R. Walker, L. Grant, R.K. Henderson, M. Gersbach, E. Charbon, A 32x32-pixel array with in-pixel photon counting and arrival time measurement in the analog domain, in IEEE European Solid-State Device Conference (2009), pp. 204–207

    Google Scholar 

  31. R.J. Walker, J.R. Richardson, R.K. Henderson; A 128 × 96 pixel event-driven phase-domain ΔΣ-Based fully digital 3D camera in 0.13 μm CMOS imaging technology”, in IEEE International Solid-State Circuits Conference (2011), pp. 410–412

    Google Scholar 

  32. M.A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, Geiger-mode avalanche photodiode focal plane arrays for three-dimensional imaging LADAR, in SPIE Infrared Remote Sensing and Instrumentation (2010), p. 7808

    Google Scholar 

  33. B. Aull, J. Burns, C. Chenson, B. Felton, H. Hanson, C. Keast, J. Knecht, A. Loomis, M. Renzi, A. Soares, S. Vyshnavi, K. Warner, D. Wolfson, D. Yost, D. Young, Laser radar imager based on 3D integration of Geiger-Mode avalanche photodiodes with two SOI timing circuit layers, in Proceedings of the IEEE International Solid-State Circuits (2006), 304–305

    Google Scholar 

  34. T. Spirig, P. Seitz, O. Vietze, F. Heitger, The lock-in CCD-two-dimensional synchronous detection of light. IEEE J. Quantum Electron. 31(9), 1705–1708 (1995)

    Article  Google Scholar 

  35. R. Miyagawa, T. Kanade, CCD-based range-finding sensor. IEEE Trans. Electron Devices 41(10), 1648–1652 (1997)

    Article  Google Scholar 

  36. R. Lange, P. Seitz, Solid-state Time-Of-Flight range camera. IEEE J. Quantum Electron. 37(3), 390–397 (2001)

    Article  Google Scholar 

  37. R. Schwarte, Z. Xu, H. Heinol, J. Olk, B. Buxbaum, New optical four-quadrant phase detector integrated into a photogate array for small and precise 3D cameras. SPIE Three-Dimensional Image Capture 3023, 119–128 (1997)

    Article  Google Scholar 

  38. C. Bamji, E. Charbon, Systems for CMOS-compatible three-dimensional image sensing using quantum efficiency modulation, US Patent 6,580,496 (2003)

    Google Scholar 

  39. C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, Single-photon synchronous detection. IEEE J. Solid-State Circuits 44(7), 1977–1989 (2009)

    Article  Google Scholar 

  40. S. Donati, G. Martini, M. Norgia, Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits. Opt. Express 15(26), 18066–18075 (2007)

    Article  Google Scholar 

  41. S. Kawahito, A. Yamasawa, S. Koga, Y. Tadokoro, K. Mizuno, O. Tabata; Digital interface circuits using sigma-delta modulation for integrated micro-fluxgate magnetic sensors, in IEEE International Symposium on Circuits and Systems, vol. 4 (1996), pp. 340–343

    Google Scholar 

  42. C. van Vroonhoven, K. Makinwa, A CMOS temperature-to-digital converter with an inaccuracy of ± 0.5°C (3σ) from −55 to 125°C, in IEEE International Solid-State Circuits Conference (2008), pp. 576–637

    Google Scholar 

  43. S. Kawahito, I.A. Halin, T. Ushinaga, T. Sawada, M. Homma, Y. Maeda, A CMOS Time-Of-Flight range image sensor with gates-on-field-oxide structure. IEEE Sens. J. 7(12), 1578–1586 (2007)

    Article  Google Scholar 

  44. C. Niclass, M. Soga, S. Kato, A 0.18 μm CMOS single-photon sensor for coaxial laser rangefinders, in Asian Solid-State Circuits Conference (2010)

    Google Scholar 

  45. M. Karami, M. Gersbach, E. Charbon, A new single-photon avalanche diode in 90 nm standard CMOS technology, SPIE Optics + Photonics, NanoScience Engineering, Single-Photon Imaging (2010)

    Google Scholar 

  46. R.K. Henderson, E. Webster, R. Walker, J.A. Richardson, L.A. Grant, A 3x3, 5um Pitch, 3-transistor single photon avalanche diode array with integrated 11 V bias generation in 90 nm CMOS technology, in IEEE International Electron Device Meeting (2010), pp. 1421–1424

    Google Scholar 

  47. E.A.G.Webster, J.A. Richardson, L.A. Grant, D. Renshaw, R.K. Henderson, An infra-red sensitive, low noise, single-photon avalanche diode in 90 nm CMOS. International Image Sensor Workshop (IISW), Hokkaido, 8–11 June 2011

    Google Scholar 

  48. L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, A 32x32 SPAD pixel array with nanosecond gating and analog readout. International Image Sensor Workshop (IISW), Hokkaido, 8–11 June 2011

    Google Scholar 

  49. A. Sammak, M. Aminian, L. Qi, W.D. de Boer, E. Charbon, L. Nanver, A CMOS Compatible Ge-on-Si APD Operating in Proportional and Geiger Modes at Infrared Wavelengths, in International Electron Device Meeting (2011)

    Google Scholar 

  50. Z. Lu, Y. Kang, C. Hu, Q. Zhou, H.-D. Liu, J.C. Campbell, Geiger-mode operation of Ge-on-Si avalanche photodiodes. IEEE J. Quantum Electron. 47(5), 731–735 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Swiss National Science Foundation, the Swiss Government sponsored Nano-Tera and MICS grants, and Xilinx Inc.’s University Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Charbon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Charbon, E., Fishburn, M., Walker, R., Henderson, R.K., Niclass, C. (2013). SPAD-Based Sensors. In: Remondino, F., Stoppa, D. (eds) TOF Range-Imaging Cameras. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27523-4_2

Download citation

Publish with us

Policies and ethics