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Abstract. Solutions to the problem of deriving business processes from goals
are critical in addressing a variety of challenges facing the services and business
process management community, and in particular, the challenge of quickly gen-
erating large numbers of effective process designs (often a bottleneck in industry-
scale deployment of BPM). The problem is similar to the planning problem that
has been extensively studied in the artificial intelligence (AI) community. How-
ever, the direct application of AI planning techniques places an onerous burden
on the analyst, and has proven to be difficult in practice. We propose a practi-
cal yet rigorous (semi-automated) algorithm for business process derivation from
goals. Our approach relies on being able to decompose process goals to a more
refined collection of sub-goals whose ontology is aligned with that of the effects
of available tasks which can be used to construct the business process. Once pro-
cess goals are refined to this level, we are able to generate a process design using
a procedure that leverages our earlier work on semantic effect annotation of pro-
cess designs. We illustrate our ideas throughout this paper with a real-life running
example, and also present a proof-of-concept prototype implementation.
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1 Introduction

One of the most crucial (and difficult) tasks in enterprises today is the derivation of
business processes to meet stated business goals. Poor process derivation could result
in wasteful and/or wrong tasks, and would require significant and costly rework to en-
sure that business process executions are able to adhere to their goals. Additionally, the
requirement of business process compliance [1–3] - over and above the basic business
goals - adds further complexity and difficulty.

Traditional approaches towards business process derivation from goals have focused
on modeling this problem as an artificial intelligence (AI) planning problem [4], e.g., ci-
tations such as [5–7]. While such methods undoubtedly produce accurate solutions, they
require specialist knowledge of planning and formal knowledge representation tech-
niques that business analysts typically do not possess.
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Therefore, in this paper, we take a different approach. We assume the following in-
puts: (a) a set of process goals represented as a collection of boolean conditions in
conjunctive normal form (CNF); (b) a capability library of existing tasks that can be
used to satisfy the goals, with each annotated via its effects [8]; (c) a set of domain con-
straints that impose restrictions on how task execution in the business process should
be sequenced. Given these inputs, the salient contribution of our paper is an algorithm
for deriving a business process design from these inputs.

Our algorithm works as follows. First, the goals are successively refined using goal
refinement strategies leveraged from the KAOS methodology [9, 10]. This refinement
continues until there is an ontological match with the effects of the tasks in the capabil-
ity library. Second, using the capability library, tasks are identified for each leaf-level
goal. Third, precedence constraints among the tasks are derived from the given domain
constraints. Finally, the business process design is generated from the goals and prece-
dence constraints. Our approach also does not require the use of preconditions, which
we show can be encoded via domain constraints.

2 Running Example

Our running example is a simplified version of an incident management process. In-
cidents are customer initiated calls based on service issues. The mission of incident
management process is to handle all requests for problem solving and support in a con-
sistent, timely and cost-effective manner. Typically, the process begins with a request
from a client or with a problem statement highlighting the concerns of the client. It
concludes with the client being satisfied with the response and the solution provided to
solve the problem.

The goals and derived sub-goals of this process are depicted in Fig. 1. An AND
link in Fig. 1 specifies that all sub-goals of a goal need to be satisfied for the goal
to be satisfied; an XOR link specifies that the sub-goals are mutually exclusive, and
only one is needed to satisfy the goal. For example, the goal of Incident and Problem
management fulfills the goals Fix Problem, Detect Problem and Verify Problem, viz., a
case of AND relationship. If we consider the goals Isolate Problem or Escalate Problem
they share an XOR Relationship as in any given situation only one of the goals can be
fulfilled and they are mutually exclusive in nature.

Some of the applicable domain constraints for this business process are: whether to
escalate the problem to the next level, and whether a new incident should be linked to a
previous incident in order to enhance reuse of earlier solutions.

3 Background

A business process is a sequence of tasks, with each task producing an effect. The
accumulated effects of all task executions is the overall effect of the business process.
The effect is the result of an activity executed by a cause or agent. Effects can be viewed
as both: normative - as they state required outcomes (i.e., goals); and descriptive in that
they describe the normal, and predicted, subset of all possible outcomes. We formally
represent effect annotations using first-order logic. For simplicity, our business process
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Fig. 1. Goals & Sub-Goals

does not contain loops; they can be incorporated into our business process model by
abstracting them into single tasks.

We define a process for pair-wise effect accumulation [8, 11], which, given an or-
dered pair of tasks with effect annotations, determines the cumulative effect after both
tasks have been executed in contiguous sequence. The procedure serves as an easily
understandable yet rigorous methodology for analysts to follow. We assume that the ef-
fect annotations have been represented in conjunctive normal form (CNF) [12]. Simple
techniques (e.g., [12]) exist for translating arbitrary sentences into CNF.

Let < ti, tj > be the ordered pair of tasks, and let ei and ej be the corresponding
pair of effect annotations. Let ei = {ci1, ci2, ..., cim} and ej = {cj1, cj2, ..., cjn} (we
can view CNF sentences as sets of clauses, without loss of generality). If ei ∪ ej is
consistent, then the resulting cumulative effect is ei ∪ ej . Else, we define e′i = {ck|ck ∈
ei and {ck} ∪ ej is consistent} and the resulting cumulative effect to be e′i ∪ ej . In
other words, the cumulative effect of the two tasks consists of the effects of the second
task plus as many of the effects of the first task as can be consistently included. We
remove those clauses in the effect annotation of the first task that contradict the effects
of the second task. The remaining clauses are undone, i.e., these effects are overridden
by the second task. In the following, we shall use acc(e1, e2) to denote the result of
pair-wise effect accumulation of two contiguous tasks t1 and t2 with effects e1 and e2.

In addition to the effect annotation of each task, we annotate each task t with a cumu-
lative effect Et. Et is defined as a set {es1, es2, ..., esp} of alternative effect scenarios.
Alternative effect scenarios are introduced by OR-joins or XOR-joins, as we shall see
below. Cumulative effect annotation involves a left-to-right pass through a sequence of
tasks. Tasks which are not connected to any preceding task via a control flow link are
annotated with the cumulative effect {e} where e is the immediate effect of the task
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in question. We accumulate effects through a left-to-right pass of a sequence, applying
the pair-wise effect accumulation procedure on contiguous pairs of tasks. The process
continues without modification over splits. Joins require special consideration. In the
following, we describe the procedure to be followed in the case of 2-way joins only, for
brevity. The procedure generalizes in a straightforward manner for n-way joins.

AND-joins: Let t1 and t2 be the two tasks immediately preceding an AND-join.
Let their cumulative effect annotations be E1 = {ec11, ec12, ..., ec1m} and E2 =
{ec21, ec22, ..., ec2n} respectively (where ecsc denotes an effect clause within an ef-
fect scenario). Let e be the immediate effect annotation, and E the cumulative ef-
fect annotation of a task t immediately following the AND-join. We define E =
{acc(ec1i, e)∪acc(ec2j , e)|ec1i ∈ E1andec2j ∈ E2}. Note that we do not consider the
possibility of a pair of effect scenarios ec1i and ec2j being inconsistent, since this would
only happen in the case of intrinsically and obviously erroneously constructed process
models. The result of effect accumulation in the setting described here is denoted by
ANDacc(E1, E2, e).

XOR-joins: Let t1 and t2 be the two tasks immediately preceding an XOR-join.
Let their cumulative effect annotations be E1 = {ec11, ec12, ..., ec1m} and E2 =
{ec21, ec22, ..., ec2n} respectively. Let e be the immediate effect annotation, and E the
cumulative effect annotation of a task t immediately following the XOR-join. We de-
fine E = {acc(eci, e)|eci ∈ E1oreci ∈ E2}. The result of effect accumulation in the
setting described here is denoted by XORacc(E1, E2, e).

OR-joins: Let t1 and t2 be the two tasks immediately preceding an OR-join. Let
their cumulative effect annotations be E1 = {ec11, ec12, ..., ec1m} and E2 =
{ec21, ec22, ..., ec2n} respectively. Let e be the immediate effect annotation, and E the
cumulative effect annotation of a task t immediately following the OR-join. The result
of effect accumulation in the setting described here is denoted by ORacc(E1, E2, e) =
ANDacc(E1, E2, e) ∧ XORacc(E1, E2, e). Henceforth in our paper, for simplicity,
we consider that OR-joins can be represented via XOR-joins themselves.

Pair-wise effect accumulation as described above will form the basis of our busi-
ness process derivation algorithm, and will enable our algorithm to verify whether the
derived business process design does meet the stated goals.

4 Goal Refinement and Constraint Specification

4.1 Goal Refinement

We define the goals of a business process as a combinationG1∧G2∧. . .∧Gn of boolean
conditions in CNF, all of which need to be satisfied at the end of the process execution.
For example, the goal ’Link to Existing problem’ of our running example in Fig. 1 can
be represented as follows: Goal: Achieve[LinkIncidentToProblemTicket] (∀ i: incident,
pt: problem ticket, p: problem, it: incident ticket) IsCausedBy(p,i) ⇒ link(it, pt).

Each boolean condition Gi can itself be broken down into a (conjunctive as well
as disjunctive) combination of clauses, each of which is a sub-goal of Gi. The case of
conjunction is best illustrated by the goal ’Incident and Problem Management’ as it is
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a combination of sub goals ’Fix Problem’, ’Diagnose Problem’ and ’Verify Problem’
and we expect all these sub goals to be realized in conjunction. Similarly the disjunctive
case is illustrated again by the goal ’Diagnose Problem’ as realizing this goal can satisfy
one of the goals ’Link to existing problem’ or ’Enrich Problem’.

Our goal refinement procedure is based on the KAOS methodology [9]. For a goal
Gi, let it be expressed as Gi1 ∧ Gi2 . . . ∧ Gim, where each sub-goal Gij is of the
form Gij1 ∨ Gij2 . . . ∨ Gijl. That is, each clause Gij is a purely disjunctive clause. In
accordance with [9], we say that the sub-goals refine Gi if the following hold:

1. Gi1 ∧ Gi2 . . . ∧ Gim � Gi (entailment)
2. ∀i : ∧j �=iGij 	� Gi (minimality)
3. Gi1 ∧ Gi2 . . . ∧ Gim 	� false (consistency)

That is, the set of sub-goals for a goal will achieve the goal (entailment); it will be the
smallest set of sub-goals to achieve the goal (minimality); and it will never be incorrect
(consistency).

In its turn, each disjunctive clause can itself be refined into a collection of one or
more conjunctive clauses, each of which could themselves possess a collection of two
or more disjunctive clauses, and so on. Indeed, the presence of a disjunctive clause
signifies a set of mutually exclusive options by which the particular sub-goal is to be
satisfied. Later in Section 5, we will show how these clauses can be used to design
XOR-splits and joins.

Our goal refinement procedure, therefore, refines the overall goals of a business pro-
cess alternatively using conjunctive and disjunctive clauses, until all sub-goals have
been completely specified to the user’s satisfaction. The goal model that we presented
in Fig. 1, is the outcome of such an exercise.

We define a singleton clause in a (refined) goal specification as a clause that is a sin-
gle literal. In contrast, a non-singleton clause is a disjunctive combination L1∨L2 . . .∨
Ln of literals. The relevance of this distinction will become clear in Section 5.1, when
we present our business process derivation algorithm.

4.2 Domain Constraint Specification

As we have seen, a goal is merely a collection of boolean conditions, without any spe-
cific ordering on how they have to be fulfilled in the business process. In case the analyst
desires to impose an ordering, he/she can specify them in the form of what we call do-
main constraints, which are restrictions on the way in which the goal conditions are
to be achieved. Business compliance constraints [1–3] can also be specified using our
domain constraint formalism.

Formally, we define a domain constraint as a tuple < Ci, Cj , rel >; where Ci and Cj

are boolean conditions; and rel is one of the following relations - IMM standing for
immediately, EV E standing for eventually. This is to be interpreted as: the condition
Ci has to be realized in the business process before the condition Cj can be realized.
The operator rel qualifies this constraint by specifying how soon Cj should be realized
after Ci. Please note that our domain constraints are at a higher level of abstraction
than task precedence constraints expressible in languages such as concurrent transaction
logic (see [7] and the citations contained therein); indeed, later in Section 5.1 we will
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show how these constraints are used to create precedence constraints among the derived
business process steps.

From the above formulation of domain constraints, the following proposition can be
stated.

Proposition 1. Any precondition can be represented via a domain constraint.

Proof: If a task Ti has no predecessors, then it is the starting task of a busi-
ness process, and its precondition can be represented via the domain constraint <
precondition(Ti), effect(Ti), IMM >. If Ti has at least one predecessor, then its
precondition can be represented as a boolean condition C1 ∧C2 ∧ . . .∧Cn, where each
Ck is an effect of a predecessor. If the effect of Ti is effect(Ti), then the precondition
of Ti can be represented via the set of domain constraints {< Ck, effect(Ti), IMM >
}, 0 ≤ k ≤ n. QED

In our running example, considering the goal ’Try Potential Fixes’, we can construct the
domain constraint as: < IsProblemIsolated(it) ∧ AreKnownFixesAvaliable(it),
TryPotentialF ixes(it), EV E >, where it denotes the incident ticket,
IsProblemIsolated(it) and AreKnownFixesAvailable(it) as boolean condi-
tions share the relation EV E with TryPotentialF ixes(it), again another boolean
condition. Similarly the condition ’CanCreateNewProblem’ has to be realized after the
condition ’CannotEscalate’ in realizing the goal ’CreateNewProblem’ and they share
the relation IMM .

5 Process Derivation from Goals

For deriving a business process design from goals and constraints, we assume the fol-
lowing inputs: a set of effect-annotated tasks in a capability library; a set of goals and
sub-goals, refined until the level of an ontological match with the effects of the tasks in
the capability library; and a set of domain constraints.

5.1 Process Derivation Algorithm

Our process derivation algorithm takes as input the refined (i.e., ontologically match-
ing with effects) goals G & domain constraints DC, and effect-annotated tasks in the
capability library, and produces a set of effect-annotated process steps PS and a set of
precedence constraints PREC among the process steps. A precedence constraint among

two process tasks Ti
rel→ Tj specifies the order in which each task should execute vis-a-

vis the other, and where rel ∈ {IMM, EV E}, with IMM standing for immediately
and EV E standing for eventually. The former type of precedence specifies that Tj

must execute immediately after Ti has executed, whereas the latter specifies that Tj can
executed any time after Ti has executed.

Our algorithm consists of the following steps. First, it distinguishes between single-
ton and non-singleton clauses; for each singleton clause, it identifies the appropriate
task in the capability library whose effect entails the clause, and adds that task to the set
of process steps PS. For each non-singleton clause, however, the algorithm determines a
collection of tasks whose collective effects entail the clause. It then adds the tasks to PS,
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along with an appropriate XOR gateway. Second, the algorithm generates precedence
constraints from the domain constraints. Third, the algorithm evaluates the generated
precedence constraints for inconsistencies and alerts the user in case it discovers any, so
that the user can resolve the inconsistencies. Finally, the algorithm generates a business
process design from the (user-resolved) precedence constraints.

Precedence Constraint Generation: For now, we consider the sub-case when both Ci

and Cj can be fulfilled by single tasks; the sub-case when either Ci or Cj is fulfilled by
a disjunctive combination of tasks, is dealt with under XOR gateways.

Hence our algorithm for generating precedence constraints from the domain con-
straint < Ci, Cj , rel >, with each condition represented by a single task, works as
follows. First, each condition Ci and Cj is analyzed, and the appropriate process tasks
that fulfil the condition, are identified. Second, for each pair of tasks Ti, Tj , with Ti

(resp. Tj) pertaining to Ci (resp. Cj), the precedence constraint Ti
rel→ Tj is generated,

where rel is represented by EV E or IMM .

XOR Gateway Generation: We represent a disjunctive clause via an XOR gateway. In
addition, we also need to accommodate domain constraints of the form < Ci, Cj , rel >,
where either Ci or Cj is a disjunctive clause, and where one of either Ci or Cj is a
non-singleton clause. This is needed in order to generate the appropriate precedence
constraints from these domain constraints. Hence if such a domain constraint exists, we
have three sub-cases:

1. Only Ci is a disjunctive clause: Ci would be represented via an XOR gateway Ti1 ∨
Ti2 . . . Tim, by tasks Ti1 . . . Tim that collectively fulfill condition Ci; and Cj by the
single task Tj that fulfills condition Cj . For this sub-case, we create a “dummy”
XOR-join node Ti,m+1, whose effect is Ci; and we create the following precedence

constraints: Tik
IMM→ Ti,m+1, k = 1, . . . , m, and Ti,m+1

rel→ Tj .
2. Only Cj is a disjunctive clause: this is the reverse of the above sub-case; if Cj is

represented via the XOR gateway Tj1 ∨Tj2 . . . Tjm, and Ci by the task Ti, then the

precedence constraints, Ti
rel→ Tjk, k = 1, . . . , m, are generated.

3. Both Ci and Cj are disjunctive clauses: Let Ci be represented by an XOR gateway
with pi paths, and Cj be represented by an XOR gateway with pj paths. Then, as
in the first sub-case above, a “dummy” XOR-join node Ti,m+1, is first generated,
whose effect is Ci. Next, for each node Tik, 0 ≤ k ≤ j on the XOR gateway

whose effect is Cj , the following precedence constraint is generated: Ti,m+1
rel→ Tik,

0 ≤ k ≤ j.

For instance, our running example shows different types of problems based on their
escalation support; escalation/Non-escalation cases would therefore differ. Hence there
are 4 possible branches in the above scenario just based on the support for escalation at
a given level. The user can later tweak the XOR gateway by pruning the variables, and
thereby, the number of branches. However, that is beyond the scope of this algorithm.

Inconsistency Resolution & Business Process Design Generation: Once the prece-
dence constraints are generated, inconsistencies could arise. For any pair of tasks Ti

and Tj , we define an inconsistency as the existence of two precedence constraints that
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are mutually conflicting. That is, if there are two precedence constraints Ti
rel→ Tj and

Tj
rel→ Ti, where rel ∈ {IMM, EV E}, then this is an inconsistency. For each prece-

dence constraint Ti
rel→ Tj , our inconsistency detection procedure checks whether there

exists a (direct or transitively obtained) constraint Tj
rel→ Ti. Inconsistencies are flagged

to the user, who will then need to resolve them manually. (We will be investigating
automated inconsistency resolution for future work.)

The actual generation of the business process design, assumes that all inconsisten-
cies have been resolved by the user. It basically consists of adding edges between tasks
Ti and Tj based on the derived precedence constraints, whether ti is supposed to im-
mediately or eventually precede Tj . For the former case, the edge between two tasks
is added right away. For the latter, on the other hand, we first check whether a chain
of immediately-type constraints already exists on a path between the tasks. If so, then
the last task on this chain is made the predecessor of Tj . If not, then Ti itself is made
Tj’s predecessor. While doing so, the algorithm also uses the effect accumulation pro-
cedure described in Section 3 to verify the compatibility of the business process under
generation with the refined goals.

6 Prototype Implementation

Our prototype implementation is built as a plugin on IBM’s Rational Software Architect
(RSA) tool, and is depicted in Fig. 2. It was tested on a PC with 3.2 GHz processor
speed and 3 GB of RAM. For our running example, once the user recorded the goals
and domain constraints, the business process was generated within one minute.

The plugin provides the business analyst with various views that help define the in-
puts to business process derivation. The Goal Modeling view provides options to define
the goals and sub-goals. Expected effect outcomes can be added as annotations for the
respective goals and sub-goals that are represented in the AND/XOR logic. The domain
constraints are defined in the Constraint Modeling view, which also helps generate the
precedence constraints. The Capability Modeling view helps add various capabilities
that can be used in order to fulfill the goals. Based on the capability availability and
matching of capability effects with that of the specific goal/sub-goal in question, the
goal-capability matching is arrived at. This helps in derivation of the incident manage-
ment business process in BPMN format, which is also depicted in Fig. 2.

7 Related Work

Planning-based Business Process Derivation: The work reported in this paper is in-
spired in part by planning techniques from AI [4], in particular, partial-order planning.
However, as we have already shown, such techniques require non-trivial adjustments in
order to make them usable for business process derivation. Our business process deriva-
tion technique is also inspired in part by our earlier work [13], where we proposed a
technique to map user’s process goals into scenario descriptions described in the form
of sequence diagrams. Appropriate composition of the sequence diagrams yields the
final business process design.
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Fig. 2. Prototype Implementation

The citations [14–16] describe techniques for semantic annoations of business pro-
cesses using mining techniques, with applications such as adaptation and token analysis
to identify components in business processes. While undoubtedly powerful, these tech-
niques lack the simplicity of our semantic annotation approach. However, we will be
investigating the adaptation application from [15] for future work.

Goal Modeling and Decomposition: The primary goal decomposition methodology
that we have leveraged in this paper is KAOS [9], which provides a language and
method for goal-driven requirements elaboration.

Business Process Compliance: Business process compliance management [2, 3] in-
volves several aspects, of which the following are relevant for this paper, viz., verifying
process compliance against compliance requirements, and business process derivation
to ensure adherence to compliance requirements. For the former aspect, various frame-
works [2, 11] have been developed to manage and check the violation of compliance
policies by a given business process at design time, in order to minimize the cost of non-
compliance. The citation [3] presents a semi-automated approach to synthesize business
process templates out of compliance requirements expressed in linear temporal logic;
however, that paper only focuses on compliance requirements, whereas our approach
also considers functional requirements expressed as goals.
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8 Future Work

Future work will involve testing our approach on larger case studies, and incorporating
automated inconsistency resolution, process adaptation and incremental redesign.
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