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Abstract. The interest in post-quantum cryptography — classical sys-
tems that remain secure in the presence of a quantum adversary — has
generated elegant proposals for new cryptosystems. Some of these sys-
tems are set in the random oracle model and are proven secure relative
to adversaries that have classical access to the random oracle. We argue
that to prove post-quantum security one needs to prove security in the
quantum-accessible random oracle model where the adversary can query
the random oracle with quantum state.

We begin by separating the classical and quantum-accessible ran-
dom oracle models by presenting a scheme that is secure when the ad-
versary is given classical access to the random oracle, but is insecure
when the adversary can make quantum oracle queries. We then set out
to develop generic conditions under which a classical random oracle proof
implies security in the quantum-accessible random oracle model. We in-
troduce the concept of a history-free reduction which is a category of clas-
sical random oracle reductions that basically determine oracle answers
independently of the history of previous queries, and we prove that such
reductions imply security in the quantum model. We then show that
certain post-quantum proposals, including ones based on lattices, can
be proven secure using history-free reductions and are therefore post-
quantum secure. We conclude with a rich set of open problems in this
area.
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1 Introduction

The threat to existing public-key systems posed by quantum computation [Sho97]
has generated considerable interest in post-quantum cryptosystems, namely sys-
tems that remain secure in the presence of a quantum adversary. A promising
direction is lattice-based cryptography, where the underlying problems are re-
lated to finding short vectors in high dimensional lattices. These problems have
so far remained immune to quantum attacks and some evidence suggests that
they may be hard for quantum computers [Reg02].

As it is often the case, the most efficient constructions in lattice-based cryp-
tography are set in the random oracle (RO) model [BR93|. For example, Gentry,
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Peikert, and Vaikuntanathan [GPV0S] give elegant random oracle model con-
structions for existentially unforgeable signatures and for identity-based encryp-
tion. Gordon, Katz, and Vaikuntanathan [GKV10] construct a random oracle
model group signature scheme. Boneh and Freeman [BFT11] give a random or-
acle homomorphic signature scheme and Cayrel et al. [CLRS10] give a lattice-
based signature scheme using the Fiat-Shamir random oracle heuristic. Some of
these lattice constructions can now be realized without random oracles, but at
a significant cost in performance [CHKP10/ABB10alBoy10].

Modeling Random Oracles for Quantum Attackers. While quantum re-
sistance is good motivation for lattice-based constructions, most random oracle
systems to date are only proven secure relative to an adversary with classical
access to the random oracle. In this model the adversary is given oracle access
to a random hash function O : {0,1}* — {0,1}* and it can only “learn” a value
O(z) by querying the oracle O at the classical state x. However, to obtain a
concrete system, the random oracle is eventually replaced by a concrete hash
function thereby enabling a quantum attacker to evaluate this hash function on
quantum states. To capture this issue in the model, we allow the adversary to
evaluate the random oracle “in superposition”, that is, the adversary can submit
quantum states |¢) = > ay |x) to the oracle O and receives back the evaluated
state Y a, |O(x)) (appropriately encoded to make the transformation unitary).
We call this the quantum(-accessible) random oracle model. Tt complies with
similar efforts from learning theory [BJ99/SG04] and computational complex-
ity [BBBV97] where oracles are quantum-accessible, and from lower bounds for
quantum collision finders [AS04]. Still, since we are only interested in classical
cryptosystems, honest parties and the scheme’s algorithms can access O only
via classical bit strings.

Proving security in the quantum-accessible RO model is considerably harder
than in the classical model. As a simple example, consider the case of digital
signatures. A standard proof strategy in the classical settings is to choose ran-
domly one of the adversary’s RO queries and embed in the response a given
instance of a challenge problem. One then hopes that the adversary uses this re-
sponse in his signature forgery. If the adversary makes ¢ random oracle queries,
then this happens with probability 1/¢ and since ¢ is polynomial this success
probability is sufficiently high for the proof of security in the classical setting.
Unfortunately, this strategy fails completely in the quantum-accessible random
oracle model since every random oracle query potentially evaluates the random
oracle at exponentially many points. Therefore, embedding the challenge in one
response will be of no use to the reduction algorithm. This simple example shows
that proving security in the classical RO model does not necessarily prove post-
quantum security.

More abstractly, the following common classical proof techniques are not
known to carry over to the quantum settings offthand:

— Adaptive Programmability: The classical random oracle model allows a sim-
ulator to program the answers of the random oracle for an adversary, often
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adaptively. Since the quantum adversary can query the random oracle with
a state in superposition, the adversary may get some information about all
exponentially many values right at the beginning, thereby making it difficult
to program the oracle adaptively.

— Extractability/Preimage Awareness: Another application of the random ora-
cle model for classical adversaries is that the simulator learns the pre-images
the adversary is interested in. This is, for example, crucial to simulate de-
cryption queries in the security proof for OAEP [FOPSOI]. For quantum-
accessible oracles the actual query may be hidden in a superposition of ex-
ponentially many states, and it is unclear how to extract the right query.

— Efficient Simulation: In the classical world, we can simulate an exponential-
size random oracle efficiently via lazy sampling: simply pick random but
consistent answers “on the fly”. With quantum-accessible random oracles
the adversary can evaluate the random oracle on all inputs simultaneously,
making it harder to apply the on-demand strategy for classical oracles.

— Rewinding/Partial Consistency: Certain random oracle proofs [PS00] require
rewinding the adversary, replaying some hash values but changing at least a
single value. Beyond the usual problems of rewinding quantum adversaries,
we again encounter the fact that we may not be able to change hash values
unnoticed. We note that some form of rewinding is possible for quantum
zero-knowledge [Wat09].

We do not claim that these problems are insurmountable. In fact, we show how
to resolve the issue of efficient simulation by using (quantum-accessible) pseudo-
random functions. These are pseudorandom functions where the quantum dis-
tinguisher can submit quantum states to the pseudorandom or random oracle.
By this technique, we can efficiently simulate the quantum-accessible random or-
acle through the (efficient) pseudorandom function. While pseudorandom func-
tions where the distinguisher may use quantum power but only gets classical ac-
cess to the function can be derived from quantum-immune pseudorandom gener-
ators [GGMSG0], it is an open problem if the stronger quantum-accessible pseudo-
random functions exist.

Note, too, that we do not seek to solve the problems related to the random
oracle model which appear already in the classical settings [CGH9S]. Instead we
show that for post-quantum security one should allow for quantum access to
the random oracle in order to capture attacks that are available when the hash
function is eventually instantiated.

1.1 Owur Contributions

Separation. We begin with a separation between the classical and quantum-
accessible RO models by presenting a two-party protocol which is:

— secure in the classical random oracle model,

— secure against quantum attackers with classical access to the random oracle
model, but insecure under any implementation of the hash function, and

— insecure in the quantum-accessible random oracle model.
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The protocol itself assumes that (asymptotically) quantum computers are faster
than classical (parallel) machines and uses the quadratic gap due to Grover’s
algorithms and its application to collision search [BHT98] to separate secure
from insecure executions.

Constructions. Next, we set out to give general conditions under which a
classical RO proof implies security for a quantum RO. Our goal is to provide
generic tools by which authors can simply state that their classical proof has the
“right” structure and therefore their proof implies quantum security. We give
two flavors of results:

— For signatures, we define a proof structure we call a history-free reduction
which roughly says that the reduction answers oracle queries independently
of the history of queries. We prove that any classical proof that happens
to be a history-free reduction implies quantum existential unforgeability for
the signature scheme. We then show that the GPV random oracle signature
scheme [GPVO0S§] has a history-free reduction and is therefore secure in the
quantum settings.

Next, we consider signature schemes built from claw-free permutations. The
first is the Full Domain Hash (FDH) signature system of Bellare and Rog-
away [BR93|, for which we show that the classical proof technique due to
Coron [CorQ0] is history-free. We also prove the quantum security of a variant
of FDH due to Katz and Wang [KW03] which has a tight security reduction.
Lastly, we note that, as observed in [GPV08], claw-free permutations give rise
to preimage sampleable trapdoor functions, which gives another FDH-like
signature scheme with a tight security reduction. In all three cases the re-
ductions in the quantum-accessible random oracle model achieve essentially
the same tightness as their classical analogs.

Interestingly, we do not know of a history-free reduction for the generic Full
Domain Hash of Bellare and Rogaway [BR93]. One reason is that proofs
for generic FDH must somehow program the random oracle, as shown in
[FLR™10]. We leave the quantum security of generic FDH as an interest-
ing open problem. It is worth noting that at this time the quantum secu-
rity of FDH is somewhat theoretical since we have no candidate quantum-
secure trapdoor permutation to instantiate the FDH scheme, though this
may change once a candidate is proposed.

— For encryption we prove the quantum CPA security of an encryption scheme
due to Bellare and Rogaway [BR93] and the quantum CCA security of a
hybrid encryption variant of [BR93].

Many open problems remain in this space. For signatures, it is still open to prove
the quantum security of signatures that result from applying the Fiat-Shamir
heuristic to a X' identification protocol, for example, as suggested in [CLRS10].
Similarly, proving security of generic FDH is still open. For CCA-secure encryp-
tion, it is unknown if generic CPA to CCA transformations, such as [FO99,
are secure in the quantum settings. Similarly, it is not known if lattice-based
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identity-based encryption systems secure in the classical RO model (e.g. as
in [GPVOSJABBIOb]) are also secure in the quantum random oracle model.

Related Work. The quantum random oracle model has been used in a few
previous constructions. Aaronson [Aar09] uses quantum random oracles to con-
struct unclonable public-key quantum money. Brassard and Salvail [BS0§| give a
modified version of Merkle’s Puzzles, and show that any quantum attacker must
query the random (permutation) oracle asymptotically more times than honest
parties. Recently, a modified version was proposed that restores some level of se-
curity even in the presence of a quantum adversary [BHK™11]. Quantum random
oracles have also been used to prove impossibility results for quantum compu-
tation. For example, Bennett et al. [BBBV97] show that relative to a random
oracle, a quantum computer cannot solve all of NP.

Some progress toward identifying sufficient conditions under which classical
protocols are also quantum immune has been made by Unruh [Unrl(] and Hall-
gren et al. [HSSII]. These results show that, if a cryptographic protocol can
be shown to be (computationally [HSS11] resp. statistically [UnrlQ]) secure in
Canetti’s universal composition (UC) framework [Can0l] against classical ad-
versaries, then the protocol is also resistant against (computationally bounded
resp. unbounded) quantum adversaries. This, however, means that the underly-
ing protocol must already provide strong security guarantees in the first place,
namely, universal composition security, which is typically more than the afore-
mentioned schemes in the literature satisfy. This also applies to similar results
by Hallgren et al. [HSS11] for so-called simulation-based security notions for the
starting protocol. Furthermore, all these results do not seem to be applicable
immediately to the random oracle model where the quantum adversary now has
quantum access to the random function (but where the ideal functionality for the
random oracle in the UC framework would have only been defined for classical
access according to the classical protocol specification), and where the question
of instantiation is an integral step which needs to be considered.

2 Preliminaries

A non-negative function € = €(n) is negligible if, for all polynomials p(n) we have
that e(n) < p(n)~! for all sufficiently large n. The variational distance between
two distributions Dy and D5 over {2 is given by

|Dy — Da| = > [Prla| Dy] — Prlz|D]].
€

If the distance between two output distributions is €, the difference in probability
of the output satisfying a certain property is at most e.

A classical randomized algorithm A can be thought of in two ways. In the first,
A is given an input z, A makes some coin tosses during its computation, and
ultimately outputs some value y. We denote this action by A(z) where A(z) is a
random variable. Alternatively, we can give A both its input  and randomness r
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in which case we denote this action as A(x;r). For a classical algorithm, A(x;r)
is deterministic. An algorithm A runs is probabilistic polynomial-time (PPT) if
it runs in polynomial time in the security parameter (which we often omit from
the input for sake of simplicity).

2.1 Quantum Computation

We briefly give some background on quantum computation and refer to [NCO0]
for a more complete discussion. A quantum system A is associated to a (finite-
dimensional) complex Hilbert space H4 with an inner product (:|-). The state
of the system is described by a vector |p) € H4 such that the Euclidean norm
o) | = /{plp) is 1. Given quantum systems A and B over spaces H4 and
‘Hp, respectively, we define the joint or composite quantum system through the
tensor product Ha ® Hp. The product state of |pa) € Ha and |pp) € Hp
is denoted by |pa) ® |¢p) or simply |pa)|¢p). An n-qubit system lives in the
joint quantum system of n two-dimensional Hilbert spaces. The standard or-
thonormal computational basis |z) for such a system is given by |21) ® -+ ® |z,,)
for x = z1...x,. Any (classical) bit string x is encoded into a quantum state
as |z). An arbitrary pure n-qubit state |¢) can be expressed in the computa-
tional basis as [p) = >_, (0.1} Qa |2) where a, are complex amplitudes obeying

Zace{o,l}" |Oém|2 = ]_

Transformations. Evolutions of quantum systems are described by unitary trans-
formations with I4 being the identity transformation on register A. Given a joint
quantum system over Ha ® Hp and a transformation Uy acting only on H 4, it
is understood that Ua |¢4) |¢p) refers to (Ua @ Ip) |va) l¢B)-

Information can be extracted from a quantum state |p) by performing a
positive-operator valued measurement (POVM) M = {M,} with positive semi-
definite measurement operators M; that sum to the identity ), M; = I. Out-
come i is obtained with probability p; = (¢| M; |¢). A special case are projective
measurements such as the measurement in the computational basis of the state
lo) =Y, as |x) which yields outcome z with probability |a,|?*. We can also do a
partial measurement on some of the qubits. The probability of the partial mea-
surement resulting in a string « is the same as if we measured the whole state, and
ignored the rest of the qubits. In this case, the resulting state will be the same as
|¢), except that all the strings inconsistent with x are removed. This new state
will not have a norm of 1, so the actual superposition is obtained by dividing by
the norm. For example, if we measure the first n bits of |¢) = ny Qgylz, ),
we will obtain the measurement z with probability >, |,y |2, and in this case
the resulting state will be

Qg,y

|z) ly).
Zy: \/Zy’ |atg |2
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Following [BBC™98|, we model a quantum attacker Aq with access to (pos-
sibly identical) oracles O1,03,... by a sequence of unitary transformations
Uy,01,Us,...,

Or_1,Ur over k = poly(n) qubits. Here, oracle O; : {0,1}" — {0,1}" maps
the first » + m qubits from basis state |x) |y) to basis state |z) |y @ O;(z)) for
xz € {0,1}" and y € {0,1}™. If we require the access to O; to be classical instead
of quantum, the first n bits of the state are measured before applying the uni-
tary transformation corresponding to O;. Notice that any quantum-accessible
oracle can also be used as a classical oracle. Note that the algorithm Aq may
also receive some input |¢). Given an algorithm Ag as above, with access to

oracles O;, we sometimes write A‘Qol('))’loz('))"” to indicate that the oracle is
quantum-accessible (contrary to oracles which can only process classical bits).

To introduce asymptotics we assume that Aq is actually a sequence of such
transformation sequences, indexed by parameter n, and that each transformation
sequence is composed out of quantum systems for input, output, oracle calls, and
work space (of sufficiently many qubits). To measure polynomial running time,
we assume that each U; is approximated (to sufficient precision) by members
of a set of universal gates (say, Hadamard, phase, CNOT and 7/8; for sake of
concreteness [NC00]), where at most polynomially many gates are used. Fur-
thermore, T' = T'(n) is assumed to be polynomial, too. Note that T also bounds
the number of oracle queries.

We define the Euclidean distance ||¢) + [1)| between two states as the value

(Xs low = Bal?) * where |¢) = 3=, asle) and [¢) = 3=, Bal).

Define g (|¢+)) to be the magnitude squared of r in the superposition of query
t. We call this the query probability of r in query ¢. If we sum over all ¢, we get
the total query probability of r.

We will be using the following lemmas:

Lemma 1 ([BBBV97] Theorem 3.1). Let |¢) and |1)) be quantum states with
Euclidean distance at most €. Then, performing the same measurement on |p)
and |1) yields distributions with statistical distance at most 4e.

Lemma 2 ([BBBV97] Theorem 3.3). Let Ag be a quantum algorithm run-
ning in time T with oracle access to O. Let € > 0 and let S C [1,T] x {0,1}" be
a set of time-string pairs such that Z(m)es qr(|or)) < e. If we modify O into an
oracle O' which answers each query r at time t by providing the same string R
(which has been independently sampled at random), then the Euclidean distance
between the final states of Ag when invoking O and O’ is at most VTe.

2.2 Quantum-Accessible Random Oracles

In the classical random oracle model [BR93] all algorithms used in the system are
given access to the same random oracle. In the proof of security, the reduction
algorithm answers the adversary’s queries with consistent random answers.

In the quantum settings, a quantum attacker issues a random oracle query
which is itself a superposition of exponentially many states. The reduction al-
gorithm must evaluate the random oracle at all points in the superposition. To
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ensure that random oracle queries are answered consistently across queries, it
is convenient to assume that quantum-resistant pseudorandom functions exist,
and to implement this auxiliary random oracle with such a PRF.

Definition 1 (Pseudorandom Function). A quantum-accessible pseudoran-
dom function is an efficiently computable function PRF where, for all efficient
quantum algorithms D,

Pr[DPRF(ED) (17) = 1] — Pr[DOO(17) = 1]| < e

where € = €(n) is negligible in n, and where O is a random oracle, the first
probability is over the keys k of length n, and the second probability is over all
random oracles and the sampling of the result of D.

We note that, following Watrous [Wat09], indistinguishability as above should
still hold for any auxiliary quantum state o given as additional input to D (akin
to non-uniformity for classical algorithms). We do not include such auxiliary
information in our definition in order to simplify.

We say that an oracle O’ is computationally indistinguishable from a random
oracle if, for all polynomial time quantum algorithms with oracle access, the
variational distance of the output distributions when the oracle is O’ and when
the oracle is a truly random oracle O is negligible. Thus, simulating a random
oracle with a quantum-accessible pseudorandom function is computationally in-
distinguishable from a true random oracle.

We remark that, instead of assuming that quantum-accessible PRF's exist,
we can often carry out security reductions relative to a random oracle. Con-
sider, for example, a signature scheme (in the quantum-accessible random oracle
model) which we prove to be unforgeable for quantum adversaries, via a reduc-
tion to the one-wayness of a trapdoor permutation against quantum inverters.
We can then formally first claim that the scheme is unforgeable as long as in-
verting the trapdoor permutation is infeasible even when having the additional
power of a quantum-accessible random oracle; only in the next step we can
then conclude that this remains true in the standard model, if we assume that
quantum-accessible pseudorandom functions exist and let the inverter simulate
the random oracle with such a PRF. We thus still get a potentially reasonable
security claim even if such PRFs do not exist. This technique works whenever
we can determine the success of the adversary (as in case of inverting a one-way
function).

2.3 Hard Problems for Quantum Computers

We will use the following general notion of a hard problem.

Definition 2 (Problem). A problem is a pair P = (Gamep, ap) where Gamep
specifies a game that a (possibly quantum) adversary plays with a classical chal-
lenger. The game works as follows:
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e On input 17, the challenger computes a value x, which it sends to the ad-
versary as its input

o The adversary is then run on x, and is allowed to make classical queries to
the challenger.

o The adversary then outputs a value y, which it sends to the challenger.

e The challenger then looks at x, y, and the classical queries made by the
adversary, and outputs 1 or 0.

The value ap is a real number between 0 (inclusive) and 1 (exclusive). It may
also be a function of n, but for this paper, we only need constant ap, specifically
ap is always 0 or é

We say that an adversary A wins the game Gamep if the challenger outputs
1. We define the advantage Adv4 p of A in problem P as

Adva p = |Pr[A wins in Gamep| — ap|

Definition 3 (Hard Problem). A problem P = (Gamep,ap) is hard for
quantum computers if, for all polynomial time quantum adversaries A, Adva,p
1s megligible.

2.4 Cryptographic Primitives

For this paper, we define the security of standard cryptographic primitives in
terms of certain problems being hard for quantum computers. We give a brief
sketch here and refer to the full version [BDE™10]for supplementary details.

A trapdoor function F is secure if Inv(F) = (Gamerny(F), 0) is a hard prob-
lem for quantum computers, where in Gameyny, an adversary is given a random
element y and public key, and succeeds if it can output an inverse for y rela-
tive to the public key. A preimage sampleable trapdoor function, F, is secure
if Inv(F) as described above is hard, and if Col(F) = (Gamece(F),0) is hard
for quantum computers, where in Gamec,), an adversary is given a public key,
succeeds if it can output a collision relative to that public key. A signature
scheme S is secure if the game Sig-Forge(S) = (Games;g(S),0) is hard, where
Gameg;, is the standard existential unforgeability under a chosen message at-
tack game. Lastly, a private (resp. public) key encryption scheme & is secure if
Sym-CCA(&) = (Gamegym (£), ) (resp. Asym-CCA(E) = (Gameasym(E), 3)),
where Gamegymm is the standard private key CCA attack game, and Gameasym
is the standard public key attack game.

3 Separation Result

In this section, we discuss a two-party protocol that is provably secure in the ran-
dom oracle model against both classical and quantum adversaries with classical
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access to the random oracle (and when using quantum-immune primitives). We
then use the polynomial gap between the birthday attack and a collision finder
based on Grover’s algorithm to show that the protocol remains secure for cer-
tain hash functions when only classical adversaries are considered, but becomes
insecure for any hash function if quantum adversaries are allowed. Analyzing
the protocol in the stronger quantum random oracle model, where we grant the
adversary quantum access to the random oracle, yields the same negative result.

Note that, due to the page limit, we discuss only the high-level idea of our
protocol, for the full description and the formal security analysis we refer to the
full version [BDFT10]. We start by briefly presenting the necessary definitions
and assumptions for our construction.

Building Blocks. For sake of simplicity, we start with a quantum-immune iden-
tification scheme to derive our protocol; any other primitive or protocol can be
used in a similar fashion. An identification scheme 1S consists of three efficient
algorithms (IS.KGen, P, V) where IS.KGen on input 1" returns a key pair (sk, pk).
The joint execution of P(sk, pk) and V(pk) then defines an interactive protocol
between the prover P and the verifier V. At the end of the protocol V outputs
a decision bit b € {0,1}, indicating whether he accepts the identification of P
or not. We say that IS is secure if an adversary after interacting with an honest
prover P cannot impersonate P such that a verifier accepts the interaction.

A hash function H = (H.KGen, H.Eval) is a pair of efficient algorithms such
that H.KGen for input 1" returns a key k (which contains 1), and H.Eval for
input k and M € {0, 1}* deterministically outputs a digest H.Eval(k, M). For a
random oracle H we use k as a “salt” and consider the random function H (k,-).
The hash function is called near-collision-resistant if for any efficient algorithm
A the probability that for k «— H.KGen(1"), some constant 1 < ¢ < n and
(M,M") «— A(k,¢) we have M # M’ but H.Eval(k, M)|, = H.Eval(k, M')|,, is
negligible (as a function of n). Here we denote by x|, the leading ¢ bits of the
string x. Note that for £ = n the above definition yields the standard notion of
collision-resistance.

Classical vs. Quantum Collision-Resistance. In the classical setting, (near-)
collision-resistance for any hash function is upper bounded by the birthday at-
tack. This generic attack states that for any hash function with n bits output, an
attacker can find a collision with probability roughly 1/2 by probing 27/2 distinct
and random inputs. For (classical) random oracles this attack is optimal.

In the quantum setting, one can gain a polynomial speed-up on the collision
search by using Grover’s algorithm [Gro96J/Gro98], which performs a search on
an unstructured database with N elements in time O(v/N). Roughly, this is
achieved by using superpositions to examine all entries “at the same time”.
Brassard et al. [BHT9§| use Grover’s algorithm to obtain an algorithm for solving
the collision problem for a hash function H : {0,1}* — {0,1}" with probability
at least 1/2, using only O(+/2") evaluations of H.
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Computational and Timing Assumptions. To allow reasonable statements about
the security of our protocol we need to formalize assumptions concerning the
computational power of the adversary and the time that elapses on quantum
and classical computers. In particular, we assume the following:

1. The speed-up one can gain by using a parallel machine with many processors,
is bounded by a fixed term.

2. The time that is required to evaluate a hash function is independent of the
input and the computational environment.

3. Any computation or action that does not require the evaluation of a hash
function, costs zero time.

The first assumption basically resembles the fact that in the real world there is
only a concrete and finite amount of equipment available that can contribute to
a performance gain of a parallel system. Assumptions (2)+(3) are regarding the
time that is needed to evaluate a hash function or to send a message between two
parties and are merely for the sake of convenience, as one could patch the idea
by relating the timings more rigorously. The latter assumption implicitly states
that the computational overhead that quantum algorithms may create to obtain
a speed-up is negligible when compared to the costs of a hash evaluation. This
might be too optimistic in the near future, as indicated by Bernstein [Ber(09].
That is, Bernstein discussed that the overall costs of a quantum computation
can be higher than of massive parallel computation. However, as our work ad-
dresses conceptional issues that arise when efficient quantum computers exist,
this assumption is somewhat inherent in our scenario.

3.1 Construction

We now present our identification scheme between a prover P and a verifier V.
The main idea is to augment a secure identification scheme IS by a collision-
finding stage for some hash function H. In this first stage, the verifier checks
if the prover is able to produce collisions on a hash function in a particular
time. More precisely, the verifier starts for timekeeping to evaluate the hash

function H.Eval(k,-) on the messages {(c) for ¢ = 1,2,..., [\3/2[‘ for a key k
chosen by the verifier and where (c) stands for the binary representation of ¢ with
log {\7 2‘51 bits. The prover has now to respond with a near-collision M # M’

such that H.Eval(k, M) = H.Eval(k, M") holds for the first ¢ bits. One round of
the collision-stage ends if the verifier either receives such a collision or finishes
its v/2¢ hash evaluations. The verifier and the receiver then repeat such a round
r = poly(n) times, sending a fresh key k in each round.

Subsequently, both parties run the standard identification scheme. At the end,
the verifier accepts if the prover was able to find enough collisions in the first
stage or identifies correctly in the second stage. Thus, as long as the prover is not
able to produce collisions in the required time, the protocol mainly resembles
the IS protocol.
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Verifier V* Prover P*
pk, ¢ < log(n), collCount = 0 (sk, pk) <« IS.KGen(1™), ¢
collision stage (repeat for i =1,2,...,7):

ki — H.KGen(1™)

compute H.Eval((1)) search for ¢-near
compute H.Eval((2)) collision on H (k;, -)

compute H.Eval({c))

stop if ¢ > [\3/25—‘ or
HEvaI(kl,M1)|g = HEvaI(kZ,M{)|g

if collision was found set
collCount := collCount + 1

identification stage:

(P(sk, pk), V(pk))

decision bit b

accept if b =1
or collCount > r/4

Fig. 1. The IS*-Identification Protocol

Completeness of the IS* protocol follows easily from the completeness of the
underlying IS scheme.

Security against Classical and Quantum Adversaries. To prove security of our
protocol, we need to show that an adversary A after interacting with an honest
prover P*, can subsequently not impersonate P* such that V* will accept the
identification. Let ¢ be such that ¢ > 6log(a) where « is the constant reflecting
the bounded speed-up in parallel computing from Assumption (1). By assuming
that IS = (IS.KGen, P, V) is a quantum-immune identification scheme, we can
show that IS™ is secure in the standard random oracle model against classical
and quantum adversaries.

The main idea is that for the standard random oracle model, the ability of
finding collisions is bounded by the birthday attack. Due to the constraint of
granting only time O(\s/ 2¢) for the collision search and setting £ > 6 log(a), even
an adversary with quantum or parallel power is not able to make at least V2!
random oracle queries. Thus, A has only negligible probability to respond in
more than 1/4 of r rounds with a collision.
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When considering only classical adversaries, we can also securely instantiate
the random oracle by a hash function H that provides near-collision-resistance
close to the birthday bound. Note that this property is particularly required
from the SHA-3 candidates [NIS07].

However, for adversaries Aqg with quantum power, such an instantiation is
not possible for any hash function. This stems from the fact that Aq can locally
evaluate a hash function on quantum states which in turns allows it to apply
Grover’s search algorithm. Then an adversary will find a collision in time v/2¢
with probability at least 1/2, and thus will be able to provide r/4 collisions with
noticeable probability. The same result holds in the quantum-accessible random
oracle model, since Grover’s algorithm only requires (quantum) black-box access
to the hash function.

4 Signature Schemes in the Quantum-Accessible Random
Oracle Model

We now turn to proving security in the quantum-accessible random oracle model.
We present general conditions for when a proof of security in the classical random
oracle model implies security in the quantum-accessible random oracle model.
The result in this section applies to signatures whose classical proof of security
is a history-free reduction as defined next. Roughly speaking, history-freeness
means that the classical proof of security simulates the random oracle and sig-
nature oracle in a history-free fashion. That is, its responses to queries do not
depend on responses to previous queries or the query number. We then show that
a number of classical signature schemes have a history-free reduction thereby
proving their security in the quantum-accessible random oracle model.

Definition 4 (History-free Reduction). A random oracle model signature
scheme S = (G,8°,VO) has a history-free reduction from a hard problem P =
(Gamep,0) if there is a proof of security that uses a classical PPT adversary A
for S to construct a classical PPT algorithm B for problem P such that:

o Algorithm B for P contains four explicit classical algorithms: START,
RAND?:, SIGNY:, and FINISHO:. The latter three algorithms have ac-
cess to a shared classical random oracle O.. These algorithms, except for
RANDOC, may also make queries to the challenger for problem P. The al-
gorithms are used as follows:

(1) Given an instance = for problem P as input, algorithm B first runs
START () to obtain (pk, z) where pk is a signature public key and z is
private state to be used by B. Algorithm B sends pk to A and plays the
role of challenger to A.

(2) When A makes a classical random oracle query to O(r), algorithm B re-
sponds with RANDY: (r,z). Note that RAND s given the current query
as input, but is unaware of previous queries and responses.

(3) When A makes a classical signature query S(sk,m), algorithm B re-
sponds with SIGN= (m, z).
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(4) When A outputs a signature forgery candidate (m, o), algorithm B out-
puts FINISHO* (m, 0, 2).

e There is an efficiently computable function INSTANCE(pk) which pro-
duces an instance x of problem P such that START (z) = (pk, z) for some z.
Consider the process of first generating (sk, pk) from G(1™), and then com-
puting © = INSTANCE(pk). The distribution of x generated in this way is
negligibly close to the distribution of x generated in Gamep.

e For fized z, consider the classical random oracle O(r) = RANDO<(r, z).
Define a quantum oracle Oguant, which transforms a basis element |x,y)
into |z,y ® O(x)). We require that Oquant S quantum computationally in-
distinguishable from a random oracle.

e SIGNY either aborts (and hence B aborts) or it generates a valid signa-
ture relative to the oracle O(r) = RANDO(r, z) with a distribution negli-
gibly close to the correct signing algorithm. The probability that none of the
signature queries abort is non-negligible.

e If (m,0) is a valid signature forgery relative to the public key pk and oracle
O(r) = RANDY: (1, 2) then the output of B (i.e. FINISH?*(m, 0, 2) ) causes
the challenger for problem P to output 1 with non-negligible probability. O

We now show that history-free reductions imply security in the quantum settings.

Theorem 1. Let S = (G, S, V) be a signature scheme. Suppose that there is
a history-free reduction that uses a classical PPT adversary A for S to con-
struct a PPT algorithm B for a problem P. Further, assume that P is hard for
polynomial-time quantum computers, and that quantum-accessible pseudorandom
functions exist. Then S is secure in the quantum-accessible random oracle model.

Proof. The history-free reduction includes five (classical) algorithms START,
RAND, SIGN, FINISH, and INSTANCE, as in Definition @l We prove the
quantum security of S using a sequence of games, where the first game is the
standard quantum signature game with respect to S.

Game 0. Define Game as the game a quantum adversary Ag plays for prob-
lem Sig-Forge(S). Assume towards contradiction that Ag has a non-negligible
advantage.

Game 1. Define Game; as the following modification to Gamey: after the
challenger generates (sk,pk), it computes = «— INSTANCE(pk) as well as
(pk,z) < START(z). Further, instead of answering Ag’s quantum random
oracle queries with a truly random oracle, the challenger simulates for Ag a
quantum-accessible random oracle Oguant @s an oracle that maps a basis ele-
ment |z, y) into the element |z, y & RAND% (g, z)), where O, is a truly random
quantum-accessible oracle. The history-free guarantee on RAND ensures that
Oquant is computationally indistinguishable from random for quantum adver-
saries. Therefore, the success probability of Ag in Game; is negligibly close to
its success probability in Gameg, and hence is non-negligible.
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Game 2. Modify the challenger from Game; as follows: instead of generating
(sk, pk) and computing x = INSTANCE(pk), start off by running the challenger
for problem P. When that challenger sends x, then start the challenger from
Game; using this x. Also, when Ag asks for a signature on m, answer with
SIGN4 (m, z). First, since INSTANCE is part of a history-free reduction, this
change in how we compute z only negligibly affects the distribution of x, and
hence the behavior of Ag. Second, as long as all signing algorithms succeed,
changing how we answer signing queries only negligibly affects the behavior of
Ag. Thus, the probability that Ag succeeds is the product of the following two
probabilities:

e The probability that all of the signing queries are answered without abort-
ing.

e The probability that Ag produces a valid forgery given that the signing
queries were answered successfully.

The first probability is non-negligible by assumption, and the second is negligibly
close to the success probability of Ag in Game;, which is also non-negligible.
This means that the success probability of Ag in Games is non-negligible.

Game 3. Define Games as in Games, except that for two modifications to the
challenger: First, it generates a key k for the quantum-accessible PRF. Then,
to answer a random oracle query O4(|¢)), the challenger applies the unitary
transformation that takes a basis element |z,y) into |z,y @ PRF(k,z)). If the
success probability in Games was non-negligibly different from that of Games,,
we could construct a distinguisher for PRF which plays both the role of Ag and
the challenger. Hence, the success probability in Games is negligibly close to
that of Games, and hence is also non-negligible.

Given a quantum adversary that has non-negligible advantage in Game 3 we
construct a quantum algorithm B¢ that breaks problem P. When Bg receives
instance x from the challenger for problem P, it computes (pk, z) <« START(x)
and generates a key k for PRF. Then, it simulates Ag on pk. By answers random
oracle queries using a quantum-accessible function built from RANDPRF(%:) (-, 2)
as in Game 1. It answers signing queries using SIGNPRF®:) (L 2y Then, when
Ag outputs a forgery candidate (m, o), Bg computes FINISHPRF(k")(m7O’7Z),
and returns the result to the challenger for problem P.

Observe that the behavior of Ag in Games is identical to that as a subroutine
of Bg. Hence, Ag as a subroutine of Bg will output a valid forgery (m, o) with
non-negligible probability. If (m, o) is a valid forgery, then since FINISH is part
of a history-free reduction, FINISHPRF(}C")(m7 0, z) will cause the challenger for
problem P to accept with non-negligible probability. Thus, the probability that
P accepts is also non-negligible, contradicting our assumption that P is hard for
quantum computers.

Hence we have shown that any polynomial quantum algorithm has negligible
advantage against problem Sig-Forge(S) which completes the proof. O
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We note that, in every step of the algorithm, the adversary Ag remains in a
pure state. This is because, in each game, Ag’s state is initially pure (since it is
classical), and every step of the game either involves a unitary transformation, a
partial measurement, or classical communication. In all three cases, if the state
is pure before, it is also pure after.

We also note that we could have stopped at Game, and assumed that the cryp-
tographic problem P is hard relative to a (quantum-accessible) random oracle.
Assuming the existence of quantum-accessible pseudorandom functions allows
us to draw the same conclusion in the standard (i.e., non-relativized) model at
the expense of an extra assumption.

4.1 Secure Signatures from Preimage Sampleable Trapdoor
Functions (PSF)

We now use Theorem [I] to prove the security of the Full Domain Hash signature
scheme when instantiated with a preimage sampleable trapdoor function (PSF),
such as the one proposed in [GPV0S|. Loosely speaking, a PSF F is a tuple
of PPT algorithms (G, Sample, f, f~!) where G(-) generates a key pair (pk, sk),
f(pk,-) defines an efficiently computable function, f~!(sk,y) samples from the
set of pre-images of y, and Sample(pk) samples x from the domain of f(pk,-)
such that f(pk,x) is statistically close to uniform in the range of f(pk,-). The
PSF of [GPV0S] is not only one-way, but is also collision resistant.

Recall that the full domain hash (FDH) signature scheme [BR93] is defined
as follows:

Definition 5 (Full Domain Hash). Let F = (G, f, f~!) be a trapdoor permu-
tation, and O a hash function whose range is the same as the range of f. The
full domain hash signature scheme is S = (G, T, V) where:

o G=0G
o SO(sk,m) = f~Y(sk,O(m))

L if O(m) = f(pk, o)

VO k7 b =
¢ (Pkym, 7) {0 otherwise

Gentry et al. [GPV08| show that the FDH signature scheme can be instan-
tiated with a PSF F = (G, Sample, f, f~!) instead of a trapdoor permutation.
Call the resulting system FDH-PSF. They prove that FDH-PSF is secure against
classical adversaries, provided that the pre-image sampling algorithm used dur-
ing signing is derandomized (e.g. by using a classical PRF to generate its random
bits). Their reduction is not quite history-free, but we show that it can be made
history-free.

Consider the following reduction from a classical adversary A for the FDH-
PSF scheme S to a classical collision finder B for F:

e On input pk, B computes START(pk) := (pk, pk), and simulates A on pk.

e When A queries O(r), B responds with
RAND(r, pk) := f(pk, Sample(1™; O.(r))).
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e When A queries S(sk,m), B responds with
SIGNY(m, pk) := Sample(1™; O.(m)).

e When A outputs (m, o), B outputs
FINISHO- (m, o, pk) := (Sample(l";Oc(m)),U).

In addition, we define INSTANCE(pk) := pk. Algorithms INSTANCE and
START trivially satisfy the requirements of history-freeness (Definition []). Be-
fore showing that the above reduction is in history-free form, we need the fol-
lowing technical lemma whose proof is given in the full version [BDF™10).

Lemma 3. Say A is a quantum algorithm that makes q quantum oracle queries.
Suppose further that we draw the oracle O from two distributions. The first is the
random oracle distribution. The second is the distribution of oracles where the
value of the oracle at each input x is identically and independently distributed by
some distribution D whose variational distance is within € from uniform. Then
the variational distance between the distributions of outputs of A with each oracle
is at most 4q*\/e.

Proof Sketch. We show that there is a way of moving from O to Op such
that the oracle is only changed on inputs in a set K where the sum of the
amplitudes squared of all k£ € K, over all queries made by A, is small. Thus, we
can use Lemma [2] to show that the expected behavior of any algorithm making
polynomially many quantum queries to O is only changed by a small amount.
O
Lemma [3] shows that we can replace a truly random oracle O with an oracle
Op distributed according to distribution D without impacting A, provided D is
close to uniform. Note, however, that while this change only affects the output
of A negligibly, the effects are larger than in the classical setting. If A only made
classical queries to O, a simple hybrid argument shows that changing to Op
affects the distribution of the output of A by at most ge, as opposed to 4q2+/e
in the quantum case. Thus, quantum security reductions that use Lemma [B] will
not be as tight as their classical counterparts.

We now show that the reduction above is history-free.
Theorem 2. The reduction above applied to FDH-PSF is history-free.

Proof. The definition of a PSF implies that the distribution of f(pk, Sample(1™))
is within €gample of uniform, for some negligible €sample. Now, since O(r) =
RAND(r, pk) = f(pk,Sample(1”;O.(r))) and O, is a true random oracle,
the quantity O(r) is distributed independently according to a distribution that
is €sample away from uniform. Define a quantum oracle Oguant Which transforms
the basis state |z,y) into |z,y @ O(x)). Using Lemma B for any algorithm B
making ¢ random oracle queries, the variational distance between the proba-
bility distributions of the outputs of B using a truly random oracle and the
“not-quite” random oracle Oquant is at most 4q2\/esample, which is still negligi-
ble. Hence, O, is computationally indistinguishable from random.
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Centry et al. [GPVOS] also show that SIGNP¢(m,pk) is consistent with
RANDY (-, pk) for all queries, and that if A outputs a valid forgery (m,o),
FINISH: (m, o, pk) produces a collision for F with probability 1 — 2~ where
E is the minimum over all y in the range of f(pk,-) of the min-entropy of the
distribution on o given f(pk,o) = y. The PSF of Gentry et al. [GPV0S] has
super-logarithmic min-entropy, so 1 — 2% is negligibly close to 1, though any
constant non-zero min-entropy will suffice to make the quantity a non-negligible
fraction of 1. O

We note that the security proof of Gentry et al. [GPV0S§] is a tight reduction in
the following sense: if the advantage of an adversary A for § is €, the reduction
gives a collision finding adversary B for F with advantage negligibly close to e,
provided that the lower bound over y in the range of f(pk,-) of the min-entropy
of o given f(pk,o) =y is super-logarithmic. If the PSF has a min-entropy of 1,
the advantage of B is still €/2.

The following corollary, which is the main result of this section, follows from
Theorems () and (@).

Corollary 1. If quantum-accessible pseudorandom functions exist, and F is a
secure PSF against quantum adversaries, then the FDH-PSF signature scheme
s secure in the quantum-accessible random oracle model.

4.2 Secure Signatures from Claw-Free Permutations

In this section, we show how to use claw-free permutations to construct three sig-
nature schemes that have history-free reductions and are therefore secure in the
quantum-accessible random oracle model. The first is the standard FDH from
Definition B, but when the underlying permutation is a claw-free permutation.
We adapt the proof of Coron [CorQ0Q] to give a history-free reduction. The second
is the Katz and Wang [KW03] signature scheme, and we also modify their proof
to get a history-free reduction. Lastly, following Gentry et al. [GPV08], we note
that claw-free permutations give rise to a pre-image sampleable trapdoor func-
tion (PSF), which can then be used in FDH to get a secure signature scheme as
in Section [£Jl The Katz-Wang and FDH-PSF schemes from claw-free permuta-
tions give a tight reduction, whereas the Coron-based proof loses a factor of g
in the security reduction, where ¢, is the number of signing queries.

Recall that a claw-free pair of permutations [GMRSS§]| is a pair of trapdoor
permutations (Fi, Fa), where F; = (G4, fi, fi_l), with the following properties:

(] G1 = GQ. Define G = G1 = GQ.
e For any key pk, f1(pk,-) and f2(pk,-) have the same domain and range.

e Given only pk, the probability that any PPT adversary can find a pair
(21, x2) such that fi(pk,z1) = fa(pk,x2) is negligible. Such a pair is called
a claw.

Dodis and Reyzin [DRO3] note that claw-free permutations are a generalization
of trapdoor permutations with a random self-reduction. A random self-reduction
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is a way of taking a worst-case instance x of a problem, and converting it into
a random instance y of the same problem, such that a solution to y gives a
solution to z. Dodis and Reyzin [DR03] show that any trapdoor permutation
with a random self reduction (e.g. RSA) gives a claw-free pair of permutations.

We note that currently there are no candidate pairs of claw-free permutations
that are secure against quantum adversaries, but this may change in time.

FDH Signatures from Claw-Free Permutations. Coron [Cor00] shows that
the Full Domain Hash signature scheme, when instantiated with the RSA trap-
door permutation, has a tighter security reduction than the general Full Domain
Hash scheme, in the classical world. That is, Coron’s reduction loses a factor
of approximately ¢s, the number of signing queries, as apposed to gy, the num-
ber of hash queries. Of course, the RSA trapdoor permutation is not secure
against quantum adversaries, but his reduction can be applied to any claw-free
permutation and is equivalent to a history-free reduction with similar tightness.

To construct a FDH signature scheme from a pair of claw-free permutations
(F1, Fa), we simply instantiate FDH with F7, and ignore the second permutation
Fa, to yield the following signature scheme

e (G is the generator for the pair of claw-free permutations.
o SO(sk,m) = fi*(sk,O(m))
e VO (pk,m,o) =1 if and only if f;(pk,o) = O(m).

We now present a history-free reduction for this scheme. The random oracle for
this reduction, O.(r), returns a random pair (a,b), where a is a random element
from the domain of F; and F», and b is a random element from {1, ...,p} for
some p to be chosen later.

We construct history-free reduction from a classical adversary A for S to a
classical adversary B for (F1, F2). Algorithm B, on input pk, works as follows:

e Compute START(pk,y) = (pk, pk), and simulate A on pk. Notice that z =
pk is the state saved by B.

e When A queries O(r), compute RANDO (r, pk). For each string r, RAND
works as follows: compute (a,b) < O.(r). If b = 1, return fo(pk,a). Other-
wise, return f1(pk, a)

e When A queries S(sk, m), compute SIGN© (m, pk). SIGN works as follows:
compute (a,b) < O.(m) and return a if b # 1. Otherwise, fail.

e When A returns (m,o), compute FINISHY:(m, o, pk). FINISH works as
follows: compute (a,b) < O.(m) and output (o, a).

In addition, we have INSTANCE(pk) = pk and START(INSTANCE(pk)) =
(pk, pk), so INSTANCE and START satisfy the required properties.

Theorem 3. The reduction above is in history-free form.

Proof. RAND9- (r, pk) is completely random and independently distributed, as
f1(pk,a) and f2(pk, a) are both random (fy(pk, -) is a permutation and a is truly
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random). As long as b # 1, where (a, b) = O.(m), SIGN(m, pk) will be consis-
tent with RAND. This is because because VR'ANDOC("P")(pk, m, SIGN9¢ (m, pk))
outputs 1 if RANDO (m, pk) = f1(pk, SIGN?* (m, pk)). But RAND?(m, pk) =
f1(pk, a) (since b # 1), and SIGNY: (m, pk)) = a. Thus, the equality holds. The
probability over all signature queries of no failure is (1 — 1/p)®e~¥. If we chose
P = gsiaN, this quantity is at least e~ — o(1), which is non-negligible.

Suppose A returns a valid forgery (m, o), meaning A never asked for a forgery
on m and fi(sk,0) = RANDO(m, pk). If b = 1 (where (a,b) = O.(m)), then
we have f)(sk,0) = RAND<(m, pk) = fa(pk, a), meaning that (o, a) is a claw.
Since A never asked for a signature on m, there is no way A could have figured
out a, so the case where b =1 and «a is the preimage of O(m) under fo, and the
case where b # 1 and a is the preimage of O(m) under f; are indistinguishable.
Thus, b = 1 with probability 1/p. Thus, B converts a valid signature into a claw
with non-negligible probability. a

Corollary 2. If quantum-accessible pseudorandom functions exists, and(F1, Fa)
18 a pair claw-free trapdoor permutations, then the FDH scheme instantiated with
JF1 is secure against quantum adversaries.

Note that in this reduction, our simulated random oracle is truly random,
so we do not need to rely on Lemma [Bl Hence, the tightness of the reduction
will be the same as the classical setting. Namely, if the quantum adversary A
has advantage ¢ when making gsion signature queries, B will have advantage
approximately €/gsian.

The Katz-Wang Signature Scheme In this section, we consider a variant
of FDH due to Katz and Wang [KWO03]. This scheme admits an almost tight
security reduction in the classical world. That is, if an adversary has advantage
€, the reduction gives a claw finder with advantage €/2. Their proof of security is
not in history-free form, but it can be modified so that it is in history-free form.
Given a pair of trapdoor permutation (Fi, F2), the construction is as follows:

e (G is the key generator for F.

e S9(sk,m) = f; (sk,O(b,m)) for a random bit b.

e VO (pk,m, o) is 1 if either fi(pk,o) = O(0,m) or fi(pk,o) = O(1,m)
We construct a history-free reduction from an adversary A for S to an adversary
B for (Fi, F2). The random oracle for this reduction, O.(r), generates a random

pair (a,b), where a is a random element from the domain of F; and Fs, and b
is a random bit. On input pk, B works as follows:

e Compute START (pk,y) = (pk, pk), and simulate A on pk. Notice that z =
pk is the state saved by B.

e When A queries O(b, ), compute RAND?: (b, r, pk). For each string (b,r),
RAND works as follows: compute (a,b’) = O.(r). If b =¥, return f1(pk, a).
Otherwise, return fa(pk, a).
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e When A queries S(sk, m), compute SIGN©- (m, pk). SIGN works as follows:
compute (a,b) = O.(m) and return a.

e When A returns (m, o), compute FINISHO:(m, o, pk). FINISH works as
follows: compute (a,b) = O.(m). If 0 = a, abort. Otherwise, output (o, a).

In addition, we have INSTANCE(pk) = pk and START(INSTANCE(pk)) =
(pk, pk), so INSTANCE and START satisfy the required properties.

Theorem 4. The reduction above is in history-free form.

Proof. RANDY- (b, r, pk) is completely random and independently distributed,
as f1(pk,a) and fo(pk,a) are both random (f, is a permutation and a is truly
random). Observe that f;(pk, SIGNY<(m,pk)) = fi(pk,a) = O(b,m) where
(a,b) = Oc(m). Thus, signing queries are always answered with a valid signa-
ture, and the distribution of signatures is identical to that of the correct signing
algorithm since b is chosen uniformly.

Suppose A returns a valid forgery (m, o). Let (a,b) = O(m). There are two
cases, corresponding to whether o corresponds to a signature using b or 1 — b.
In the first case, we have fi(pk,0) = O(b,m) = fi1(pk,a), meaning o = a, so
we abort. Otherwise, f1(pk,o) = O(1 —b,m) = fa(pk,a), so (o,a) form a claw.
Since the adversary never asked for a signing query on m, these two cases are
indistinguishable by the same logic as the proof for FDH. Thus, the probability
of failure is at most a half, which is non-negligible. O

Corollary 3. If quantum-accessible pseudorandom functions exists, and (Fi, Fa)
18 a pair claw-free trapdoor permutations, then the Katz- Wang signature scheme
instantiated with F1 is secure against quantum adversaries.

As in the case of FDH, our simulated quantum-accessible random oracle is truly
random, so we do not need to rely on Lemma Bl Thus, the tightness of our
reduction is the same as the classical case. In particular, if the quantum adversary
Ag has advantage ¢ then B will have advantage /2.

PSF Signatures from Claw-Free Permutations. Gentry et al. [GPV0S]
note that Claw-Free Permutations give rise to pre-image sampleable trapdoor
functions (PSFs). These PSFs can then be used to construct an FDH signature
scheme as in Section E1

Given a pair of claw-free permutations (F1, F2), define the following PSF: G is
just the generator for the pair of permutations. Sample(pk) generates a random
bit b and random « in the domain of fy, and returns (z,b). f(pk, z,b) = fo(pk, ),
and f~1(sk,y) = (fl;l(sk7 y),b) for a random b. Suppose we have a collision
((1‘1, bl), (1‘2, bg)) for this PSF. Then

fbl(pk7l'1) = f(pk7l'1,b1) = f(pkvaabQ) = sz(pk7l'2)

If by = b2, then 1 = x2 since fp, is a permutation. But this is impossible since
(z1,b1) # (x2,b2). Thus, by # ba, so one of (x1,x2) or (z2,21) is a claw for
(F1, Fa).
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Hence, we can instantiate FDH with this PSF to get the following signature
scheme:

e ( is the generator for the permutations.
o S9(sk,m) = (f, '(sk,O(m)),b) for a random bit b.
e VO(pk,m,(0,b)) = 1 if and only if f,(pk, o) = O(m).

The security of this scheme follows from Corollary [l with a similar tightness
guarantee (this PSF has only a pre-image min-entropy of 1, which results in a
loss of a factor of two in the tightness of the reduction). In particular, if we have
a quantum adversary Ag for £ with advantage €, we get a quantum algorithm
Bg for the PSF with advantage €/2, which gives us a quantum algorithm Cyg
that finds claws of (F1, F2) with probability €/2.

5 Encryption Schemes in the Quantum-Accessible
Random Oracle Model

In this section, we prove the security of two encryption schemes. The first is the
BR encryption scheme due to Bellare and Rogaway [BR93|], which we show is
CPA secure. The second is a hybrid generalization of the BR scheme, which we
show is CCA secure.

Ideally, we could define a general type of classical reduction like we did for
signatures, and show that such a reduction implies quantum security. Unfor-
tunately, defining a history-free reduction for encryption is considerably more
complicated than for signatures. We therefore directly prove the security of two
random oracle schemes in the quantum setting.

5.1 CPA Security of BR Encryption

In this section, we prove the security of the BR encryption scheme [BR93] against
quantum adversaries:

Definition 6 (BR Encryption Scheme). Let F = (Go, f, f~1) be an injective
trapdoor function, and O a hash function with the same domain as f(pk,-). We
define the following encryption scheme, € = (G, E, D) where:

o G= Go
e E9(pk,m) = (f(pk,7),0(r) @ m) for a randomly chosen r.
o DOsk, (y.c)) = c® 1 (sk,y)

A candidate quantum-immune injective trapdoor function can be built from hard
problems on lattices [PWO0§].

Theorem 5. If quantum-accessible pseudorandom functions exists and F is a
quantum-immune injective trapdoor function, then & is quantum CPA secure.

We omit the proof of Theorem [ because the CPA security of the BR encryption
scheme is a special case of the CCA security of the hybrid encryption scheme in
the next section.
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5.2 CCA Security of Hybrid Encryption

We now prove the CCA security of the following standard hybrid encryption,
a generalization of the BR encryption scheme scheme [BR93|, built from an
injective trapdoor function and symmetric key encryption scheme.

Definition 7 (Hybrid Encryption Scheme). Let F = (Go, f, f~!) be an
injective trapdoor function, and Es = (Eg, Dg) be a CCA secure symmetric key

encryption scheme, and O a hash function. We define the following encryption
scheme, € = (G, E, D) where:

o G = G()
o E9(pk,m) = (f(pk,7), Es(O(r),m)) for a randomly chosen r.
e DO(sk, (y,c)) = Ds(O(r"), c) where r' = f~'(sk,y)

We note that the BR encryption scheme from the previous section is a special
case of this hybrid encryption scheme where £s is the one-time pad. That is,
Es(k,m)=k@®m and Dg(k,c) =k @ c.

Theorem 6. If quantum-accessible pseudorandom functions exists, F is a
quantum-immaune injective trapdoor function, and Es is a quantum CCA secure
symmetric key encryption scheme, then &€ is quantum CCA secure.

Proof. Suppose we have an adversary Ag that breaks £. We start with the
standard security game for CCA secure encryption:

Game 0. Define Game as the game a quantum adversary Ag plays for problem

Asym-CCA(€E).

Game 1. Define Game; as the following game: the challenger generates(sk, pk) <
G(1™), a random r in the domain of F, a random k in the key space of Es,
and computes y = f(pk,r). The challenger has access to a quantum-accessible
random oracle O, whose range is the key space of £s. It then sends pk to Ag.
The challenger answers queries as follows:

e Random oracle queries are answered with the random oracle Oquant, which
takes a basis element |z,y) into |z,y @& Oq(f(pk, x))).

e Decryption queries on (y, ¢’) are answered as follows:
Case 1: If y = ¢/, respond with Dg(k, ).
Case 2: If y # /, respond with Dg(Oy(y'), ).

e The challenge query on (mg,m;) is answered as follows: choose a random
b. Then, respond with (y, Es(k, mp)).

When Ag responds with &', we say that Ag won if b="b'.

Observe that, because f is injective and O, is random, the oracle Ogyant is a
truly random oracle with the same range as O,. The challenge ciphertext (y, c)
seen by Aq is distributed identically to that of Gamey. Further, it is a valid
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encryption of m; relative to the random oracle being Oquant if Og(y) = k. For
y' # y, the decryption of (y/,¢) is

Ds(04(y"), ¢") = Ds(Oquant (f " (sk, y')),¢') = DOt sk, (', ')

Which is correct. Likewise, if O4(y) = k, the decryption of (y, ¢’) is also correct.
Thus, the view of Ag in Game; is identical to that in Gameg if O,4(y) = k. We
now make the following observations:

e The challenge query and decryption query answering algorithms never query
O4 on y.

e Fach quantum random oracle query from the adversary to Oquant leads
to a quantum random oracle query from the challenger to O,. The query
magnitude of y in the challenger’s query to O, is the same as the query
magnitude of r in the adversary’s query Oguant.

Let € be the sum of the square magnitudes of y over all queries made to Oy (i.e.
the total query probability of y). This is identical to the total query probability
of r over all queries Ag makes to Oguant-

We now construct a quantum algorithm ng that uses a quantum-accessible
random oracle Oy, and inverts f with probability ¢/¢, where ¢ is the number of

random oracle queries made by Aq. ng takes as input (pk,y), and its goal is
to output r = f~1(sk,y). ng works as follows:

e Generate a random k in the key space of £s. Also, generate a random
i €{1,...,q}. Now, send pk to Ag and play the role of challenger to Ag.

o Answer random oracle queries with the random oracle Oquant, Which takes
a basis element |z,y) into |z,y & O4(f(pk,z))).

e Answer decryption queries on (y’,¢’) as follows:
Case 1: If y = ¢/, respond with Dg(k, ).
Case 2: If y # y/, respond with Dg(Oy(y'), ).

e Answer the challenge query on (mg,m1) as follows: choose a random b.
Then, respond with (y, Fs(k,my)).

e At the 7th random oracle query, sample the query to get v/, and output r’
and terminate.

Comparing our definition of Bj?_-“ to Gamej, we can conclude that the view seen
by Ag in both cases is identical. Thus, the total query probability that Ag makes
t0 Oguant at the point r is e. Hence, the probability that BJ?_—‘I outputs 7 is €/q.
If we assume that F is secure against quantum adversaries that use a quantum-
accessible random oracle, then this quantity, and hence €, must be negligible. As
in the case of signatures (Section M), we can replace this assumption with the
assumption that F is secure against quantum adversaries (i.e. with no access to
a quantum random oracle) and that pseudorandom functions exists to reach the
same conclusion.

Since € is negligible, we can change O,4(y) = k in Game;, thus getting a game
identical to Gamey from the adversary’s point of view. Notice that in Gameg
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and Game;, Ag is in a pure state because we are only applying unitary transfor-
mations, performing measurements, or performing classical communication. We
are only changing the oracle at a point with negligible total query probability,
so Lemma [ tells us that making this change only affects the distribution of
the outcome of Game; negligibly. This allows us to conclude that the success
probability of Ag in Game; is negligibly close to that in Game.

Now, assume that the success probability of Ag in Game; is non-negligible.

We now define a quantum algorithm BSOS" that uses a quantum-accessible random
oracle Oy to break the CCA security of &s. B?S‘I works as follows:

e On input 1", generate (sk,pk) < G(1™). Also, generate a random r, and
compute y = f(pk, ). Now send pk to Ag and play the role of challenger to
Ag.

e Answer random oracle queries with the random oracle Oquant, which takes
a basis element |z,y) into |z,y & O4(f(pk,z))).

e Answer decryption queries on (y’,¢’) as follows:

Case 1: If y = ¢/, ask the Es challenger for a decryption Dg(k, ) to obtain
m’. Return m/ to Ag.

Case 2: If y # ¢/, respond with Dg(Oy(y'), ).

e Answer the challenge query on (mg, m1) by forwarding the pair £s. When
the challenger responds with ¢ (which equals Fg(k, m;) for some b), return
(y,c) to Ag.

e When Ag outputs ¥, output b’ and halt.

Comparing our definition of B?S‘I to that of Game;, we can conclude that the
view of Ag in both cases is identical. Thus, Ag succeeds with non-negligible
probability. If Ag succeeds, it means it returned b, meaning B?S‘I also succeeded.
Thus, we have an algorithm with a quantum random oracle that breaks Es.
This is a contradiction if £s is CCA secure against quantum adversaries with
access to a quantum random oracle, which holds since s is CCA secure against
quantum adversaries and quantum-accessible pseudorandom functions exist, by
assumption.

Thus, the success probability of Ag in Game; is negligible, so the success
probability of Ag in Gameg is also negligible. Hence, we have shown that all
polynomial time quantum adversaries have negligible advantage in breaking in
breaking the CCA security of &, so £ is CCA secure. O

We briefly explain why Theorem [ is a special case of Theorem [6l Notice
that, in the above proof, Bg, only queries its decryption oracle when answering
decryption queries made by Ag, and that it never makes encryption queries.
Hence, if Ag makes no decryption queries, Bgs; makes no queries at all except
the challenge query. If we are only concerned with the CPA security of &, we
then only need Eg to be secure against adversaries that can only make the
challenge query. Further, if we only let Ap make a challenge query with messages
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of length n, then Eg only has to be secure against adversaries making challenges
of a specific length. But this is exactly the model in which the one-time pad is
unconditionally secure. Hence, the BR encryption scheme is secure, and we have
proved Theorem

6 Conclusion

We have shown that great care must be taken if using the random oracle model
when arguing security against quantum attackers. Proofs in the classical case
should be reconsidered, especially in case the quantum adversary can access the
random oracle with quantum states. We also developed conditions for translating
security proofs in the classical random oracle model to the quantum random
oracle model. We applied these tools to certain signature and encryption schemes.

The foremost question raised by our results is in how far techniques for “clas-
sical random oracles” can be applied in the quantum case. This stems from
the fact that manipulating or even observing the interaction with the quantum-
accessible random oracle would require measurements of the quantum states.
That, however, prevents further processing of the query in a quantum manner.
We gave several examples of schemes that remain secure in the quantum setting,
provided quantum-accessible pseudorandom functions exist. The latter primi-
tive seems to be fundamental to simulate random oracles in the quantum world.
Showing or disproving the existence of such pseudorandom functions is thus an
important step.

Many classical random oracle results remain open in the quantum random
oracle settings. It is not known how to prove security of generic FDH signatures
as well as signatures derived from the Fiat-Shamir heuristic in the quantum
random oracle model. Similarly, a secure generic transformation from CPA to
CCA security in the quantum RO model is still open.
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