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Abstract. The discovery of markers allowing for accurate classification
of metabolically very similar proband groups constitutes a challenging
problem. We apply several search heuristics combined with different clas-
sifier types to targeted metabolomics data to identify compound subsets
that classify plasma samples of insulin sensitive and -resistant subjects,
both suffering from non-alcoholic fatty liver disease. Additionally, we
integrate these methods into an ensemble and screen selected subsets
for common features. We investigate, which methods appear the most
suitable for the task, and test feature subsets for robustness and re-
producibility. Furthermore, we consider the predictive potential of dif-
ferent compound classes. We find that classifiers fail in discriminating
the non-selected data accurately, but benefit considerably from feature
subset selection. Especially, a Pareto-based multi-objective genetic algo-
rithm detects highly discriminative subsets and outperforms widely used
heuristics. When transferred to new data, feature sets assembled by the
ensemble approach show greater robustness than those selected by single
methods.

1 Introduction

1.1 Background

Non-alcoholic fatty liver disease (NAFLD) is associated with insulin resistance,
but can also be detected in insulin sensitive subjects. Insulin resistant individuals
with NAFLD have a very high risk of developing type 2 diabetes (T2D) at
an early stage and therefore require a timely initiation of ongoing, preventive
intervention and drug therapy. In contrast, it is currently assumed that insulin
sensitive people with NAFLD have a low risk of developing T2D, i.e., metabolic
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control at longer intervals is sufficient [17,21]. In this work, we examine different
methods for the discovery of novel metabolite biomarkers to discriminate benign
versus malign fatty liver in prediabetic subjects.

Biomarkers are defined as a characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic processes,
or pharmacologic responses to a therapeutic intervention [1]. For the discovery
of novel biomarkers, the young discipline of metabolomics has received increased
attention in recent years. It measures small molecules or metabolites contained
in cells, tissues, or fluids involved in metabolism to reveal information about
physiological processes. These processes may be influenced by both, genetic pre-
disposition and environmental factors such as nutrition, exercise or medication
[5]. Modern high-throughput techniques are capable of performing great num-
bers of measurements to produce datasets which stand up to statistical scrutiny.
At the same time, the amounts of data generated are too voluminous to be in-
terpreted by hand and therefore require dimensionality reduction. Thus, data
mining and bioinformatics techniques are essential to identify and verify mark-
ers that are biochemically interpretable and biologically relevant. In contrast
to projection- or compression-based methods for dimensionality reduction, like
Principal Component Analysis (PCA) or the use of information theory, feature
selection methods select a subset of variables instead of altering them. Thus,
they preserve the original meaning of the variables and facilitate interpretation
by a domain expert [19].

Targeted profiling schemes are used to quantitatively screen for known com-
pounds, which depict relevant metabolic pathways of the investigated conditions.
In such an approach, features reflect calculated concentrations of predefined
metabolites. Data mining techniques are affected by factors such as noise, re-
dundancy, and relevance in the experimental data. Feature selection is therefore
focused on the process of identifying and removing as much irrelevant or redun-
dant information as possible [15]. In this context, feature selection techniques
can be organized into filter and wrapper methods.

Filter methods, in most cases, compute a feature relevance score and dis-
card low-scoring features. The remaining subset of features serves as input to a
classification algorithm. Filter techniques easily scale to very high-dimensional
datasets, are computationally fast and are independent of the classification al-
gorithm. A common disadvantage of filter methods is that most proposed tech-
niques are univariate; i.e., each feature is considered separately, ignoring feature
dependencies [19].

In wrapper methods, a search procedure generates and evaluates various sub-
sets of features. A classification algorithm is trained and tested to evaluate spe-
cific subsets. To search the space of all feature subsets, the search algorithm
is wrapped around the classification model. This problem is NP-hard, as the
space of feature subsets grows exponentially with the number of features. Heuris-
tic methods are therefore used to search for an optimal subset. Advantages of
wrapper approaches include the interaction between feature subset search and
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model selection and the ability to take feature dependencies into account. These
methods have demonstrated their utility in various studies [19,12].

But the challenge in the search for biomarkers is not only to identify highly
discriminative feature sets from a single data set. Subsets that are robust in
the sense that they yield good results in the classification of new data sets, are
particularly interesting. We assume that features that often contribute to highly
predictive subsets independent of the method used for their selection can form a
particularly robust pattern. Thus we applied a voting scheme (see Sec. 2.3) that
integrates the single selection procedures into an ensemble.

1.2 State of the Art

Large numbers of features and limited sample sizes are typical drawbacks in the
search for biomarkers in human studies. These give rise to hardly classifiable
data sets that necessitate dimensionality reduction. Therefore, multivariate ap-
proaches such as PCA or partial-least-squares discriminant analysis (PLS-DA)
are common. These techniques represent the extracted information as a set of
new variables called components [7]. As these variables are not part of the orig-
inal data set such methods lack in interpretability. Machine-learning algorithms
are a more recent class of multivariate analysis techniques. Besides their desir-
able characteristic of preserving the original variables, they have demonstrated
superior predictive accuracy than PLS-DA and PCA [14].

Several heuristic search algorithms have previously been applied as wrappers.
Genetic algorithms have been shown to be a good choice for finding small fea-
ture subsets with high discriminatory power [23]. Furthermore, a modified form
of SVMs was applied, and the unified maximum separability analysis (UMSA)
algorithm was introduced for proteomic profiling [8,11]. Ressom et. al. proposed
particle swarm optimization (PSO) for biomarker selection in mass spectrometric
profiles of peptides and proteins [18].

In this work, we apply several search heuristics combined with various types of
classifiers. The goal is to find feature subsets in different targeted metabolomics
data sets that are able to classify plasma samples of insulin sensitive and insulin
resistant subjects, both suffering from non-alcoholic fatty liver disease. This data
set holds additional challenges as the group of sample donors was particularly
singled out to be very homogeneous.

2 Methods

2.1 Plasma Samples

Plasma samples of 40 adults with NAFLD (20 insulin sensitive and 20 -resistant
subjects) were analysed by a targeted metabolomics approach. All individu-
als were intensively phenotyped as part of the Tübingen Lifestyle Intervention
Program (TULIP) and considered healthy according to physical examination
and routine laboratory tests. Plasma samples were taken before and after a nine
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month lifestyle intervention including dietary counseling and increased physical
activity. In this work, baseline and follow-up denote samples and data acquired
before and after the lifestyle intervention, respectively.

2.2 Data Acquisition

Biocrates (Innsbruck, Austria) measured the concentrations of 247 compounds in
EDTA-plasma by targeted IDQ. This targeted metabolomics analytical platform
combines flow injection, liquid chromatography, and gas chromatography mass
spectromectric approaches. The applied instruments were an API 4000 QTrap
tandem MS, a 7890 GC, and a 5795 MSD (Agilent, Waldbronn, Germany).

We considered a measured concentration to be reliable if it exceeds the noise
level by at least a factor of three. To ensure validity we only considered metabo-
lites that contained at least 70% reliable measurements. This restriction led to
an exclusion of 69 metabolites from the data set, leaving 178 compounds for the
data analyses (21 amino acids, 21 acylcarnitines, 5 bile acids, 37 free fatty acids,
15 sphingomyelins, 70 phosphatidylcholines, 9 lysophosphatidylcholines).

2.3 Feature Subset Selection

To perform feature selection we implemented a modular JavaTM software envi-
ronment. This environment integrates the optimization framework EvA2 [9] and
classification algorithms implemented in WEKA [4].

EvA2 is a comprehensive metaheuristic optimization framework with empha-
sis on Evolutionary Algorithms (EA) implemented in Java. It integrates several
derivative-free, preferably population-based, optimization methods. From these
methods, we applied the following algorithms as wrappers:

– a standard Genetic Algorithm (GA) [6]
– a Multi Objective Genetic Algorithm (MOGA) [3]
– the Cluster-Based Niching EA (CBN-EA) [22]
– Population-Based Incremental Learning (PBIL) [10]
– Hill Climbing (HC) [16]
– Monte Carlo Search (MCS)

The MOGA applies a Pareto-based ranking scheme to simultaneously optimize
two objectives: the first is to maximize the classification performance, the second
is to minimize the number of features contained in the subset.

From WEKA, we applied different classifier types:

– k-nearest-neighbor (kNN), an instance-based learner, which compares each
new instance to existing ones using a distance metric

– K*NN, another instance-based method using an entropic distance measure [2]
– Naive Bayes, a classifier based on Bayes’ formula for conditional probabili-

ties, depending on the assumption that attributes are independent
– the J4.8 decision tree, a reimplementation of the C4.5 decision tree which

has been shown to have a very good combination of error rate and speed [13]
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– random forest, a metalearner which baggs ensembles of random trees
– linear SVM, a maximum-margin based classifier we chose due to its amenities

concerning interpretability compared to nonlinear models [20]

While we are interested in features, that provide good classification performance,
this is not the sole criterion of our search. We also want our selected features to
be interpretable by a domain expert. Hence, we focused on classification methods
that allow conclusions to be drawn about the involved features.

The modular structure of our software environment allows us to combine any
of the aforementioned search strategies with an arbitrary classification method
and thereby design a multitude of wrapper-based feature subset selection pro-
cedures. Each procedure performs a search for a good subset using the selected
classifier to evaluate feature subsets.

For the evaluation of each feature subset, we performed a stratified nested
cross validation consisting of an inner loop for model selection of optimal pa-
rameters and an outer loop for external validation. The optimal parameter com-
bination was determined in the inner loop within a two-fold cross-validation.
The performance of the selected parameters was then evaluated in the outer
loop using three-fold cross-validation according to the area under the receiver
operating characteristic curve (AUC). We carried out this validation scheme five
times to avoid bias induced by the random number generator and computed the
average AUC.

We combined each of the listed search strategies from EvA2 with each classi-
fier to determine the feature subset that produces the best classification perfor-
mance. Thereby we also assessed the question of the optimal wrapper-classifier
combination for this task.

Additionally, we regarded the tested wrapper-classifier combinations as an
ensemble and screened their selected subsets for common features. We imple-
mented a voting scheme to extract features that were selected by many of the
search procedures assuming that these form a particularly robust pattern. For
this purpose, we compared all feature subsets selected by the individual proce-
dures by their average AUC. Those with an AUC less than the median of all
subsets were discarded. Thus, we only incorporate feature subsets that show a
comparatively high predictive potential. Each of these subsets votes for the fea-
tures it contains. We weight the votes by the average AUC of the voting subset
and sum them into a voting score for every feature. Hence, votes from highly
predictive subsets have a greater impact than others. From these voting scores
we calculated the 90% quantile as a lower bound. All features that received a
voting score exceeding that bound were included in the consensus feature subset.

2.4 Experimental Design

From the measurements described in Sec. 2.2, we generated several different
data sets. Firstly, we formed a data set from each of the listed compound classes
individually. Secondly, we integrated all metabolites into one dataset to select
subsets containing features from all groups under consideration. We performed
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Fig. 1. Comparison of a) the classification performances of the applied wrappers and
b) the predictive potential of the compound classes before (grey) and after (black)
feature subset selection

this approach for the baseline as well as for the follow-up data. All data sets were
mean-centered and scaled to unit variance. We applied each of the feature subset
selection procedures described in Sec. 2.3 to these data sets to find subsets that
accurately discriminate between insulin sensitive and insulin resistant subjects.

We analysed the results from different perspectives. The primary question
is whether feature subset selection enhances classification performance at all.
From this the question arises whether the applied procedures differ in their per-
formance and which of them appears the most suitable for the task. Furthermore,
we test our assumption that features that are selected by many different pro-
cedures form a particularly robust pattern. From the biological perspective we
further consider the predicitve potential of the individual compound classes. We
investigate whether these differ in their discriminative power and what impact
the lifestyle intervention has on the different compound classes.

3 Results and Discussion

3.1 Benefit of Feature Subset Selection

First, we addressed the question whether the applied classification algorithms
benefit from feature subset selection in terms of their classification accuracies.
In Fig. 1a), grey boxes indicate the distribution of average AUCs each classifier
achieved when applied to the complete data sets. Black boxes display the av-
erage AUCs when applied to the best selected feature subset, respectively. On
each box, the central mark is the median, the edges of the box are the 25th

and 75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually. Fig. 1b) shows the pre-
diction accuracies based on the individual data sets. Again, the distributions of
the classification results across all applied classifiers on the complete data sets
are given by the grey boxes and black boxes illustrate the corresponding distri-
butions of AUCs based on the best selected feature subsets from each data set.
Both figures demonstrate that, in general, classification performances without
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Fig. 2. Prediction accuracies achieved by the applied a) wrappers and b) classifiers on
the baseline (black) and follow-up (grey) data sets

feature subset selection are close to an AUC of 0.5 and were significantly im-
proved by the reduction of irrelevant information. All classifiers similarly benefit
from the use of feature subset selection.

The individual compound classes differ in their gain in predictive potential.
On the one hand, lysoPCs already classify the samples fairly well without feature
subset selection and show a slight increase. On the other hand, phosphatidyl-
cholines (PC), which show hardly any classification performance without feature
subset selection, strongly benefit and even contain the most discriminative fea-
ture subsets afterwards.

3.2 Performance of Feature Subset Selection Procedures

We tested all feature subset selection procedures described in Sec. 2.3 on each
individual compound class data set. The most discriminative subset selected from
the baseline data consists of 10 phosphatidylcholines (PC). It yields an average
AUC of 0.92 and was selected using MOGA and the K*NN classifier. Using the
follow-up data sets, the best performing subset from a single compound class
was again selected from the phosphatidylcholines. It also contains 10 metabolites
and achieved an average AUC of 0.93. The employed classifier in this case was
the linear SVM also wrapped by MOGA. The most discriminative subsets from
the baseline and the follow-up data sets were selected from the same compound
class, respectively, but they do not overlap with regard to individual compounds.
Analogously, we analysed the data sets consisting of all considered metabolites.
From the baseline data set, a subset of 19 compounds yields the best classification
performance with an average AUC of 0.980. From the follow-up data, the most
predicitve feature subset includes 23 metabolites and has an average AUC of
0.984. Both subsets were selected using MOGA as the wrapper and the linear
SVM as the classifier. In this case, we found three compounds that were in
both subsets.

In Fig. 2a), we compare the performance of the applied optimization heuris-
tics. For each heuristic, it shows the distributions of average AUCs across all
classifiers achieved by the best feature subset selected from all metabolites. Black
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Fig. 3. Prediction accuracies achieved by the applied wrapper-classifier combinations
on the baseline (black circles) and follow-up (grey triangles) datasets

boxes represent results obtained from the baseline data set and grey boxes depict
results from the data acquired after lifestyle intervention. Entries are arranged
in descending order of the median results per wrapper on the baseline data.
MOGA and PBIL achieved the best results on both the baseline and the follow-
up data sets. In both cases, they are followed by the GA. CBN-EA, HC and MCS
achieve comparable results, which are considerably worse than those of MOGA
and PBIL on both data sets.

Fig. 2b) displays a comparison of the classifiers applied to evaluate the tested
feature subsets. For each classifier it shows the distribution of average AUCs
across all wrappers achieved by the best feature subset selected from all metabo-
lites. Again, black boxes depict results obtained from baseline data and grey
boxes represent results from follow-up data. They are arranged in descending
order of the median results per classifier on the baseline data. The results scat-
ter strongly for most of the considered classifiers. The Naive Bayes classifier
performs well on the baseline data, though the overall best feature set was se-
lected using the linear SVM. Naive Bayes performs noticeably worse on the
follow-up data sets. In this case the linear SVM ranks highest in terms of the
median performance and overall best subset. The AUCs obtained by the J4.8
decision tree display the smallest variance, but no highly discriminative feature
subsets could be selected using this classifier. The random forest shows a very
similar behaviour, though its median performance is slightly better. However, a
ranking of the performed classification algorithms is not revealing, due to the
great variance in their results.

Fig. 3 gives an overview of the results achieved by each applied combination
of classification algorithm and search heuristic. The presented average AUCs
were obtained from the data sets including all considered compounds acquired
before (black circles) and after lifestyle intervention (grey triangles). The data
is sorted in descending order of the baseline results. The top three classification
results were achieved using MOGA as the employed search heuristic. Among
the top five classification results, MOGA can be found four times, followed by
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Fig. 4. Performance comparison of consensus feature sets with selected feature sets
and complete data sets

PBIL, which appears four times among the top ten results. All feature sets
selected using either of these heuristics are placed within the upper half of this
arrangement. As previously mentioned, the results concerning the classifiers are
not as clear. However, it can be observed that the achieved results of the applied
combinations of wrappers and classifiers show significant correlation between
baseline and follow-up data sets despite the scatter in the classifier performances
(Spearman’s ρ = 0.73, p = 3.7e − 7). Figures 2 and 3 show that, in the applied
configurations, the choice of the search heuristic has a greater influence on the
achieved results than the classifier applied for the evaluation of feature sets.

From the considered wrappers, MOGA delivered the most discriminative fea-
ture subsets and outperformed widely used heuristics such as the standard GA.
This is an interesting finding because the MOGA has to deal with a tradeoff be-
tween the classifiaction accuracy and the size of the selected feature sets, whereas
the GA is focused only on the accuracy. A possible explanation for this outcome
might be that the said tradeoff prevents the MOGA from getting trapped in local
optima and therefore it directs the search trajectory towards more generalizable
solutions. This observation requires further investigation.

3.3 Ensemble Method

As described in Sec. 2.3, we assembled consensus feature sets from metabolites
that were contained in many highly predictive subsets. From the baseline and
follow-up data we obtained consensus sets that each contain 18 features. Seven
features are in both of them. We tested the consensus sets for their predictive
potential by using them as inputs for all of the applied classification algorithms.
To measure their benefit, we compare the achieved classification results to those
obtained using the data sets containing all metabolites. To evaluate the robust-
ness of the consensus subsets, we applied the set that was assembled from the
baseline analyses to the follow-up data and vice versa. Fig. 4 presents the re-
sults of these comparisons. In this figure, the term selected features refers to the
best feature sets selected from the corresponding data as described in Sec. 3.2,
consensus features denotes the consensus feature set as characterized in Sec. 2.3,
respectively, and all features stands for the complete data sets.
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Fig. 5. Discriminative potential of compound classes at baseline (black) and follow-up
(grey)

With regard to the benefit of the consensus feature sets, the results show that
in both cases these sets have a significantly greater discriminative potential than
the corresponding complete data sets. Furthermore, they also achieve signifi-
cantly better results than the complete data sets, when applied to the data they
were not derived from. In contrast, the selected feature sets did not perform con-
siderably better than the complete data sets on the data, they were not selected
from. The consensus feature sets do not quite attain the discriminative power of
the best subsets selected by the single procedures. But when transferred from
the baseline to the follow-up data sets or vice versa, the consensus sets prove to
be more robust than those selected by single methods and reproducible results
are obtained. This is also indicated by the finding, that the consensus feature
sets obtained from baseline and follow-up data overlap in 7 out of 18 metabo-
lites whereas the best subsets selected by single procedures, overlap by only 3
out of 19 and 23 compounds, respectively. The best subsets from the individual
compound class data sets do not overlap at all.

3.4 Discriminative Potential of Compound Classes

Fig. 5 shows the distributions of classification performances that were achieved
based on the individual compound class data sets (see Sec. 2.4) using all applied
wrappers and classifiers. Black and grey boxes represent results from the baseline
and the follow-up data, respectively. The entries are arranged in descending order
by the median results from the baseline data sets. With the exception of the bile
acids, no considerable differences exist in the results from the baseline data
sets, with regard to the medians. In terms of the best selected feature subsets,
however, the differences between the compound classes are more distinct. Highly
discriminative subsets could be selected from the phosphatidylcholines (PC) and
the free fatty acids (FFA) in the baseline and follow-up data. In general, the
differences between the median results are greater at follow-up. LysoPCs, amino
acids and bile acids show an increase in their discriminative power, whereas
acylcarnitines and sphingomyelins decrease.
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The selected feature subsets and actual metabolites will be analysed and dis-
cussed in more detail from the metabolic point of view in a separate publication.

4 Conclusions

The results demonstrate that highly discriminative subsets of interpretable fea-
tures can be selected from otherwise hardly classifiable metabolomics data using
a wrapper approach. Generally, in such an approach the choice of the wrapper
has greater influence on the results than the applied classifier. It turned out that
the J4.8 decision tree and random forests are not a good choice for the task,
though. As a search strategy the Pareto-based MOGA proved to perform espe-
cially well and might be a useful tool in similar issues. With respect to trans-
ferability, however, the comparison and combination of several independently
generated individual solutions revealed robust and reproducible subsets, which
might become starting points for further investigation and test development for
the early diagnosis of malign fatty liver in prediabetic subjects.
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