Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2043))

  • 857 Accesses

Abstract

In the cold plasma model the sonic curve is a parabola. In the physical model presented in this chapter the sonic curve is a circle, and the elliptic region of the governing equation surrounds the hyperbolic region. Thus we can prescribe Dirichlet data on a suitable closed curve lying entirely in the elliptic region and obtain an elliptic–3hyperbolic boundary value problem. Eventually,we will construct such a problem and show that it possesses a weak solution. In the next chapter the sonic curve will also be a circle; but in that case the hyperbolic region of the governing equation will enclose the elliptic region, leading to a significant reduction in regularity for elliptic–hyperbolic Dirichlet problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alías, L.J., Palmer, B: A duality result between the minimal surface equation and the maximal surface equation. An. Acad. Brasil. Ciê,nc. 73, 161–164 (2001)

    Google Scholar 

  2. Arnold, V.I.: Lectures on Partial Differential Equations. Springer-Phasis, Berlin (2004)

    Google Scholar 

  3. Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Wiley, New York (1958)

    MATH  Google Scholar 

  4. Chaplygin, S.A.: On gas jets. Sci. Mem. Moscow Univ. Phys. Sec. 21, 1–121 (1902) [Translation: NACA Tech. Mem. 1063 (1944)]

    Google Scholar 

  5. Chapman, C.J.: High Speed Flow. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Dinh, H., Carey, G.F.: Some results concerning approximation of regularized compressible flow. Int. J. Num. Meth. Fluids 5, 299–302 (1985)

    Article  MATH  Google Scholar 

  7. Felsen, L.B.: Evanescent waves. J. Opt. Soc. Amer. 66, 751–760 (1976)

    Article  Google Scholar 

  8. Felsen, L.B.: Complex spectra in high-frequency propagation and diffration. Proceedings of ISAP ’85, pp. 221–223

    Google Scholar 

  9. Gerlach, U.H.: Linear Mathematics in Infinite Dimensions: Signals, Boundary Value Problems, and Special Functions, Lecture 46: The Method of Steepest Descent and Stationary Phase. http://www.math.osu.edu/~gerlach/math/BVtypset/node128.html.Cited2Aug2011

  10. Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, 25–55 (1858)

    Article  MATH  Google Scholar 

  11. Hodge, W.V.D.: A Dirichlet problem for harmonic functionals with applications to analytic varieties. Proc. London Math. Soc. 36, 257–303 (1934)

    Article  Google Scholar 

  12. Iwaniec, T., Scott, C., Stroffolini, B.: Nonlinear Hodge theory on manifolds with boundary. Annali Mat. Pura Appl. 177, 37–115 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Keller, J.B.: Geometrical theory of diffraction. In: Graves, L.M. (ed.) Calculus of Variations and its Applications, Proceedings of Symposia in Applied Mathematics, vol. 8, pp. 27–52. McGraw-Hill, New York (1958)

    Google Scholar 

  14. Kravtsov, Yu.A.: A modification of the geometrical optics method [in Russian]. Radiofizika 7, 664–673 (1964)

    Google Scholar 

  15. Kreyszig, E.: On the theory of minimal surfaces. In: Rassias, Th.M. (ed.) The Problem of Plateau: A Tribute to Jesse Douglas and Tibor Radó, pp. 138–164. World Scientific, Singapore (1992)

    Chapter  Google Scholar 

  16. Ludwig, D.: Uniform asymptotic expansions at a caustic. Commun. Pure Appl. Math. 19, 215–250 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  17. Magnanini, R., Talenti, G.: On complex-valued solutions to a 2D eikonal equation. Part one: qualitative properties. Contemporary Math. 283, 203–229 (1999)

    MathSciNet  Google Scholar 

  18. Magnanini, R., Talenti, G.: Approaching a partial differential equation of mixed elliptic-hyperbolic type. In: Anikonov, Yu.E., Bukhageim, A.L., Kabanikhin, S.I., Romanov, V.G. (eds.) Ill-posed and Inverse Problems, pp. 263–276. VSP, Utrecht (2002)

    Google Scholar 

  19. Magnanini, R., Talenti, G.: On complex-valued solutions to a two-dimensional eikonal equation. II. Existence theorems. SIAM J. Math. Anal. 34, 805–835 (2003)

    MATH  MathSciNet  Google Scholar 

  20. Magnanini, R., Talenti, G.: On complex-valued solutions to a 2D eikonal equation. III. Analysis of a Bäcklund transformation. Appl. Anal. 85, 249–276 (2006)

    MATH  MathSciNet  Google Scholar 

  21. Marini, A., Otway, T.H.: Nonlinear Hodge-Frobenius equations and the Hodge-Bäcklund transformation. Proc. R. Soc. Edinburgh, Ser. A 140, 787–819 (2010)

    Google Scholar 

  22. Morawetz, C.S.: Note on a maximum principle and a uniqueness theorem for an elliptic-hyperbolic equation. Proc. R. Soc. London, Ser. A 236, 141–144 (1956)

    Google Scholar 

  23. Otway, T.H.: Nonlinear Hodge maps. J. Math. Phys. 41, 5745–5766 (2000)

    MATH  MathSciNet  Google Scholar 

  24. Otway, T.H.: Maps and fields with compressible density. Rend. Sem. Mat. Univ. Padova 111, 133–159 (2004)

    MATH  MathSciNet  Google Scholar 

  25. Otway, T.H.: Variational equations on mixed Riemannian-Lorentzian metrics. J. Geom. Phys. 58, 1043–1061 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Riabouchinsky, D.: Sur l’analogie hydraulique des mouvements d’un fluide compressible. C. R. Academie des Sciences, Paris 195, 998 (1932)

    Google Scholar 

  27. Rogers, C., Schief, W.K.: Bäcklund and Darboux Transformations, Geometry and Modern Applications of Soliton Theory. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  28. Sibner, L.M., Sibner, R.J.: A nonlinear Hodge-de Rham theorem. Acta Math. 125, 57–73 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sibner, L.M., Sibner, R.J.: Nonlinear Hodge theory: Applications. Advances in Math. 31, 1–15 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sibner, L.M., Sibner, R.J., Yang, Y.: Generalized Bernstein property and gravitational strings in Born–Infeld theory. Nonlinearity 20, 1193–1213 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Talenti, G.: Some equations of non-geometrical optics. In: Lupo, D., Pagani, C.D., Ruf. B. (eds.) Nonlinear Equations: Methods, Models and Applications, pp. 257–267. Birkhäuser, Basel (2003)

    Chapter  Google Scholar 

  32. Torre, C.G.: The helically reduced wave equation as a symmetric positive system. J. Math. Phys. 44, 6223–6232 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yang, Y.: Classical solutions in the Born-Infeld theory. Proc. R. Soc. Lond. Ser. A 456, 615–640 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Otway, T.H. (2012). Light Near a Caustic. In: The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type. Lecture Notes in Mathematics(), vol 2043. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24415-5_5

Download citation

Publish with us

Policies and ethics