Skip to main content

Numerical Algorithms for ESM: Future Perspectives for Atmospheric Modelling

  • Chapter
  • First Online:
Earth System Modelling - Volume 2

Part of the book series: SpringerBriefs in Earth System Sciences ((BRIEFSEARTHSYST,volume 1))

  • 749 Accesses

Abstract

In the past two decades, a number of factors have reenlivened the debate on the optimal numerical techniques for the highly demanding tasks of climate simulation. The increasing amount of computer power available has made viable options that would have appeared unfeasible not long ago. This growth in computational power has also been accompanied by major changes in computer architecture, such as the development of massively parallel computers. Therefore, great emphasis has been placed on the application of highly scalable techniques that can employ most efficiently large numbers of relatively small sized CPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adcroft A, Campin J, Hill C, Marshall J (2004) Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube. Mon Weather Rev 132:2845–2863

    Article  Google Scholar 

  • Arakawa A, Lamb V (1981) A potential enstrophy and energy conserving scheme for the shallow water equations. Mon Weather Rev 109:18–136

    Article  Google Scholar 

  • Bonaventura L, Ringler T (2005) Analysis of discrete shallow water models on geodesic Delaunay grids with C-type staggering. Mon Weather Rev 133:2351–2373

    Article  Google Scholar 

  • Caya A, Laprise R, Zwack P (1998) Consequences of using the splitting method for implementing physical forcings in a semi-implicit, semi-Lagrangian model. Mon Weather Rev 126:1707–1713

    Article  Google Scholar 

  • Cheong H (2000) Application of double Fourier series to the shallow-water equations on a sphere. J Comput Phys 165:261–287

    Article  Google Scholar 

  • Cheong H (2006) A dynamical core with double Fourier series: comparison with the spherical harmonics method. Mon Weather Rev 134:1299–1315

    Article  Google Scholar 

  • Cullen M, Salmond D (2003) On the use of a predictor–corrector scheme to couple the dynamics with the physical parametrizations in the ECMWF model. Q J Royal Meteorol Soc 129:1217–1236

    Article  Google Scholar 

  • Dubal M, Wood N, Staniforth A (2005) Mixed parallel–sequential-split schemes for time-stepping multiple physical parameterizations. Mon Weather Rev 133:989–1002

    Article  Google Scholar 

  • Dubal M, Wood N, Staniforth A (2006) Some numerical properties of approaches to physics–dynamics coupling for NWP. Q J Royal Meteorol Soc 132:27–42

    Article  Google Scholar 

  • Giraldo F (1998) The Lagrange–Galerkin spectral element method on unstructured quadrilateral grids. J Comput Phys 147:114–146

    Article  Google Scholar 

  • Giraldo F (2001) A spectral element shallow water model on spherical geodesic grids. Int J Numer Methods Fluids 35:869–901

    Article  Google Scholar 

  • Giraldo F, Rosmond T (2004) A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: dynamical core tests. Mon Weather Rev 132:133–153

    Article  Google Scholar 

  • Giraldo F, Hesthaven J, Warburton T (2002) High-order discontinuous Galerkin methods for the spherical shallow water equations. J Comput Phys 181:499–525

    Article  Google Scholar 

  • Giraldo F, Perot J, Fischer P (2003) A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations. J Comput Phys 190:623–650

    Article  Google Scholar 

  • Heikes R, Randall D (1995) Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I: basic design and results of tests. Mon Weather Rev 123:1862–1880

    Article  Google Scholar 

  • Laprise J, Plante R (1995) A class of semi-Lagrangian integrated-mass (SLIM) numerical transport algorithms. Mon Weather Rev 123:553–565

    Article  Google Scholar 

  • Leonard B, Lock A, MacVean M (1996) Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes. Mon Weather Rev 124:2588–2606

    Article  Google Scholar 

  • Lin S, Rood R (1996) Multidimensional flux-form semi-Lagrangian transport schemes. Mon Weather Rev 124:2046–2070

    Article  Google Scholar 

  • Lipscomb W, Ringler T (2005) An incremental remapping transport scheme on a spherical geodesic grid. Mon Weather Rev 133:2335–2350

    Article  Google Scholar 

  • Majewski D, Liermann D, Prohl P, Ritter B, Buchhold M, Hanisch T, Paul G, Wergen W, Baumgardner J (2002) The operational global icosahedral-hexagonal gridpoint model GME: description and high resolution tests. Mon Weather Rev 130:319–338

    Article  Google Scholar 

  • Nair R D, Machenhauer B (2002) The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere. Mon Weather Rev 130:649–667

    Article  Google Scholar 

  • Nair R D, Scroggs J, Semazzi F (2002) Conservative global transport schemes for climate and atmospheric chemistry models. Mon Weather Rev 130:2059–2073

    Article  Google Scholar 

  • Nair R D, Thomas S, Loft R (2005) A Discontinuous Galerkin transport scheme on the cubed sphere. Mon Weather Rev 133:814–828

    Article  Google Scholar 

  • Rancic M, Purser R, Mesinger F (1996) A global shallow-water model using an expanded spherical cube: gnomonic versus conformal coordinates. Q J Royal Meteorol Soc 122:959–982

    Google Scholar 

  • Restelli M, Bonaventura L, Sacco R (2006) A semi-Lagrangian Discontinuous Galerkin method for scalar advection by incompressible flows. J Comput Phys 216:195–215

    Article  Google Scholar 

  • Ringler T, Randall D (2002) A potential enstrophy and energy conserving numerical scheme for solution of the shallow-water equations a geodesic grid. Mon Weather Rev 130:1397–1410

    Article  Google Scholar 

  • Ringler T, Heikes R, Randall D (2000) Modeling the atmospheric general circulation using a spherical geodesic grid: a new class of dynamical cores. Mon Weather Rev 128:2471–2490

    Article  Google Scholar 

  • Ringler T, Thuburn J, Klemp J, Skamarock W (2010) A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J Comput Phys 229:3065–3090

    Article  Google Scholar 

  • Ronchi C, Iacono R, Paolucci R (1996) The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry. J Comput Phys 124:93–114

    Google Scholar 

  • Sadourny R (1972) Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon Weather Rev 100:136–144

    Article  Google Scholar 

  • Sadourny R (1975) The dynamics of finite difference models of the shallow water equations. J Atmos Sci 32:680–689

    Article  Google Scholar 

  • Taylor M, Tribbia J, Iskandarani M (1997) The spectral element method for the shallow water equations on the sphere. Mon Weather Rev 130:92–108

    Google Scholar 

  • Thomas S, Loft R (2002) Semi-implicit spectral element method for the shallow water equations on the sphere. J Sci Comput 17:339–350

    Article  Google Scholar 

  • Thuburn J (1997) A PV-based shallow-water model on a hexagonal-icosahedral grid. Mon Weather Rev 125:2328–2347

    Article  Google Scholar 

  • Tomita H, Satoh M (2004) A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn Res 34:357–400

    Article  Google Scholar 

  • Tomita H, Tsugawa M, Satoh M, Goto K (2001) Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. J Comput Phys 174:579–613

    Article  Google Scholar 

  • Tomita H, Goto K, Satoh M (2008) A new approach to atmospheric general circulation model: global cloud resolving model NICAM and its computational performance. SIAM J Sci Comput 30:2755–2776

    Article  Google Scholar 

  • Williamson D. (1979) Numerical methods used in atmospheric models, vol. II, WMO, GARP Publication series no.17

    Google Scholar 

  • Zerroukat M, Wood N, Staniforth A (2004) SLICE-S: a semi-Lagrangian inherently conserving and efficient scheme for transport problems on the sphere. Q J Royal Meteorol Soc 130:2649–2664

    Article  Google Scholar 

  • Zerroukat M, Wood N, Staniforth A (2005) A monotonic and positive-definite filter for a semi-Lagrangian inherently conserving and efficient (SLICE) scheme. Q J Royal Meteorol Soc 131:2923–2936

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Bonaventura .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Bonaventura, L. (2012). Numerical Algorithms for ESM: Future Perspectives for Atmospheric Modelling. In: Earth System Modelling - Volume 2. SpringerBriefs in Earth System Sciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23831-4_3

Download citation

Publish with us

Policies and ethics