Skip to main content

Adaptive Sliding-Mode Speed Control for Electric Unicycle

  • Conference paper
Next Wave in Robotics (FIRA 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 212))

Included in the following conference series:

Abstract

This paper presents an adaptive hierarchical decoupling sliding-mode speed controller for an electric unicycle. A completely dynamic model of the electric unicycle moving in a flat terrain is derived using Lagrangian mechanics. With the model, an aggregated hierarchical sliding-mode control is used to accomplish robust self-balancing and velocity control (regulation) of the electric unicycle incorporating with viscous and static frictions. Computer simulations and experimental results are conducted for illustration of the effectiveness and applicability of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Honda Com. (2009), http://www.honda.co.jp/news/2009/c090924.html

  2. Sheng, Z., Yamafuji, K.: Postural stability of a human riding a unicycle and its emulation by a Robot. IEEE Trans. Robot. and Auto. 13(5), 709–720 (1997)

    Article  Google Scholar 

  3. Brown Jr, H.B., Xu, Y.: A single-wheel, gyroscopically stabilized robot. IEEE Robotics & Automation Magazine 4(3), 39–44 (1997)

    Article  Google Scholar 

  4. Pathak, K., Agrawal, S.K.: An integrated path-planning and control approach for non-holonomic unicycles using switched local potentials. IEEE Trans. Robotics and Automation 21(6), 1201–1208 (2005)

    Article  Google Scholar 

  5. Cedervall, S., Hu, X.: Nonlinear Observers for Unicycle Robots with Range Sensors. IEEE Trans. Automatic Control 52(7), 1325–1329 (2007)

    Article  MathSciNet  Google Scholar 

  6. Jin, Z., Zhang, G.: the nonholonomic motion planning and control of the unicycle mobile robot. Proc. Intelligent Control and Automation (1), 3461–3465 (2006)

    Google Scholar 

  7. Colli, V.D., Tomassi, G., Scarano, M.: Single wheel longitudinal traction control for electric vehicles. IEEE Trans. Power Electronics 21(3), 799–808 (2006)

    Article  Google Scholar 

  8. Ricky, G.: The Electric Unicycle Riding (aunicycle is the most useless thing you can do,) (2007), http://tlb.org/eunicycle.html

  9. Oryschuk, P., Salerno, A., Al-Husseini, A.M., Angeles, J.: Experimental Validation of an Underactuated Two-Wheeled Mobile Robot. IEEE/ASME Trans. on Mechatronics 14(2), 252–257 (2009)

    Article  Google Scholar 

  10. Grasser, F., Arrigo, A.D., Colombi, S.: JOE: A Mobile, Inverted Pendulum. IEEE Trans. Indus. Elec. 49(1), 107–114 (2002)

    Article  Google Scholar 

  11. Pathak, K., Franch, J., Agrawal, S.K.: Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Robotics and Automation 21(3), 505–513 (2005)

    Article  Google Scholar 

  12. Zhao, D., Deng, X., Yi, J.: Motion and Internal Force Control for Omnidirectional Wheeled Mobile Robots. IEEE/ASME Trans. on Mech. 14(3), 382–387 (2009)

    Article  Google Scholar 

  13. Conceicao, A.S., Moreira, A.P., Costa, P.J.: Practical Approach of Modeling and Parameters Estimation for Omnidirectional Mobile Robots. IEEE/ASME Trans. on Mechatronics 14(3), 377–381 (2009)

    Article  Google Scholar 

  14. Low, C.B., Wang, D.: GPS-Based Tracking Control for a Car-Like Wheeled Mobile Robot With Skidding and Slipping. IEEE/ASME Trans. on Mechatronics 13(4), 480–484 (2008)

    Article  Google Scholar 

  15. Damien, L.D., Grand, C., Faiz, B.A., Guinot, J.C.: Doppler-Based Ground Speed Sensor Fusion and Slip Control for a Wheeled Rover. IEEE/ASME Trans. on Mechatronics 13(4), 484–492 (2009)

    Google Scholar 

  16. Liaw, H.C., Shirinzadeh, B.: Neural Network Motion Tracking Control of Piezo-Actuated Flexure-Based Mechanisms for Micro-/Nanomanipulation. IEEE/ASME Trans. on Mechatronics 14(5), 517–527 (2009)

    Article  Google Scholar 

  17. Tsai, C.C., Huang, H.C., Lin, S.C.: Adaptive Neural Network Control of a Self-balancing Two-wheeled Scooter. IEEE Trans. on Industrial Electronics 57(4), 1420–1428 (2010)

    Article  Google Scholar 

  18. Lo, J.C., Kuo, Y.H.: Decoupled fuzzy sliding-mode control. IEEE Trans. on Fuzzy Systems 6(3), 426–435 (1998)

    Article  Google Scholar 

  19. Lin, C.M., Mon, Y.J.: Decoupling Control by hierarchical fuzzy sliding-mode controller. IEEE Trans. on Control System Technology 13(4), 593–598 (2005)

    Article  Google Scholar 

  20. Wang, W., Liu, X.D., Yi, J.Q.: Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems. IET Proc. of Control Theory and Applications 1(1), 163–172 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, SC. (2011). Adaptive Sliding-Mode Speed Control for Electric Unicycle. In: Li, TH.S., et al. Next Wave in Robotics. FIRA 2011. Communications in Computer and Information Science, vol 212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23147-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23147-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23146-9

  • Online ISBN: 978-3-642-23147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics