Skip to main content

What Signal Processing Can Do for the Music

  • Conference paper
Exploring Music Contents (CMMR 2010)

Abstract

In this paper, several examples of what signal processing can do in the music context will be presented. In this contribution, music content includes not only the audio files but also the scores. Using advanced signal processing techniques, we have developed new tools that will help us handling music information, preserve, develop and disseminate our cultural music assets and improve our learning and education systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arduino board, http://www.arduino.cc (last viewed February 2011)

  2. Atmel corporation web side, http://www.atmel.com (last viewed February 2011)

  3. Aliev, R.: Soft Computing and its Applications. World Scientific Publishing Company, Singapore (2001)

    Book  Google Scholar 

  4. Barbancho, A.M., Barbancho, I., Fernandez, J., Tardón, L.J.: Polyphony number estimator for piano recordings using different spectral patterns. In: 128th Audio Engineering Society Convention (AES 2010), London, UK (2010)

    Google Scholar 

  5. Barbancho, A.M., Tardón, L., Barbancho, I.: CDMA systems physical function level simulation. In: IASTED International Conference on Advances in Communication, Rodas, Greece (2001)

    Google Scholar 

  6. Barbancho, A.M., Tardón, L.J., Barbancho, I.: PIC detector for piano chords. EURASIP Journal on Advances in Signal Processing (2010)

    Google Scholar 

  7. Barbancho, I., Tardón, L.J., Barbancho, A.M., Sammartino, S.: Pitch and played string estimation in classic and acoustic guitars. In: Proc. of the 126th Audio Engineering Society Convention (AES 126th), Munich, Germany (May 2009)

    Google Scholar 

  8. Barbancho, I., Bandera, C., Barbancho, A.M., Tardón, L.J.: Transcription and expressiveness detection system for violin music. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Taipei, Taiwan, pp. 189–192 (2009)

    Google Scholar 

  9. Barbancho, I., Segura, C., Tardón, L.J., Barbancho, A.M.: Automatic selection of the region of interest in ancient scores. In: IEEE Mediterranean Electrotechnical Conference (MELECON 2010), Valletta, Malta (May 2010)

    Google Scholar 

  10. Bello, J.: Automatic piano transcription using frequency and time-domain information. IEEE Transactions on Audio, Speech and Language Processing 14(6), 2242–2251 (2006)

    Article  Google Scholar 

  11. Boo, W., Wang, Y., Loscos, A.: A violin music transcriber for personalized learning. In: IEEE Int. Conf. on Multimdia and Expo. (ICME), Toronto, Canada, pp. 2081–2084 (2006)

    Google Scholar 

  12. Dixon, S., Pampalk, E., Widmer, G.: Classification of dance music by periodicity patterns. In: Proceedings of the International Conference on Music Information Retrieval (ISMIR 2003), October 26-30, pp. 159–165. John Hopkins University, Baltimore, USA (2003)

    Google Scholar 

  13. Ellis, D.P.W., Cotton, C.V., Mandel, M.I.: Cross-correlation of beat-synchronous representations for music similarity. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, USA, pp. 57–60 (2008), http://mr-pc.org/work/icassp08.pdf (last viewed February 2011)

  14. Fujishima, T.: Realtime chord recognition of musical sound: a system using common lisp music. In: Proc. International Computer Music Association, ICMC 1999, pp. 464–467 (1999), http://ci.nii.ac.jp/naid/10013545881/en/ (last viewed, February 2011)

  15. Goertzel, G.: An algorithm for the evaluation of finite trigonomentric series. The American Mathematical Monthly 65(1), 34–35 (1958)

    Article  MathSciNet  Google Scholar 

  16. Gómez, E., Herrera, P.: Estimating the tonality of polyphonic audio files: Cognitive versus machine learning modelling strategies. In: Proc. Music Information Retrieval Conference (ISMIR 2004), Barcelona, Spain, pp. 92–95 (2004)

    Google Scholar 

  17. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc., Upper Saddle River (2006)

    Google Scholar 

  18. Goto, M.: Development of the RWC music database. In: 18th Int. Congress on Acoustics., pp. I-553–I-556 (2004)

    Google Scholar 

  19. Goto, M.: Development of the RWC music database. In: Proc. of the 18th International Congress on Acoustics ICA 2004, Kyoto, Japan, pp. 553–556 (April 2004)

    Google Scholar 

  20. Gouyon, F.: A computational approach to rhythm description — Audio features for the computation of rhythm periodicity functions and their use in tempo induction and music content processing. Ph.D. thesis, Ph.D. Dissertation. UPF (2005), http://www.mtg.upf.edu/files/publications/9d0455-PhD-Gouyon.pdf (last viewed February 2011)

  21. Holzapfel, A., Stylianou, Y.: Rhythmic similarity of music based on dynamic periodicity warping. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008, Las Vegas, USA, March 31- April 4, pp. 2217–2220 (2008)

    Google Scholar 

  22. Izmirli, Ö.: Audio key finding using low-dimensional spaces. In: Proc. Music Information Retrieval Conference, ISMIR 2006, Victoria, Canada, pp. 127–132 (2006)

    Google Scholar 

  23. Klapuri, A.: Automatic music transcription as we know it today. Journal of New Music Research 33(3), 269–282 (2004)

    Article  Google Scholar 

  24. Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review 89, 334–368 (1982)

    Article  Google Scholar 

  25. Lampropoulos, A.S., Sotiropoulos, D.N., Tsihrintzis, G.A.: Individualization of music similarity perception via feature subset selection. In: Proc. Int. Conference on Systems, Man and Cybernetics, Massachusetts, USA, vol. 1, pp. 552–556 (2004)

    Google Scholar 

  26. Logan, B., Salomon, A.: A music similarity function based on signal analysis. In: IEEE International Conference on Multimedia and Expo., ICME 2001,Tokyo, Japan, pp. 745–748 (August 2001)

    Google Scholar 

  27. Logan, B.: Mel frequency cepstral coefficients for music modeling. In: Proc. Music Information Retrieval Conference(ISMIR 2000) (2000)

    Google Scholar 

  28. Marolt, M.: A connectionist approach to automatic transcription of polyphonic piano music. IEEE Transactions on Multimedia 6(3), 439–449 (2004)

    Article  Google Scholar 

  29. Ockelford, A.: On Similarity, Derivation and the Cognition of Musical Structure. Psychology of Music 32(1), 23–74 (2004), http://pom.sagepub.com/cgi/content/abstract/32/1/23 (last viewed February 2011)

    Article  Google Scholar 

  30. Oppenheim, A., Schafer, R.: Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  31. Pampalk, E.: Islands of music - analysis, organization, and visualization of music archives. Vienna University of Technology, Tech. rep. (2001)

    Google Scholar 

  32. Philips: The I2C bus specification v.2.1. (2000), http://www.nxp.com (last viewed February 2011)

  33. Prasad, B., Mahadeva, S.: Speech, Audio, Image and Biomedical Signal Processing using Neural Networks. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  34. Tardón, L.J., Sammartino, S., Barbancho, I., Gómez, V., Oliver, A.J.: Optical music recognition for scores written in white mensural notation. EURASIP Journal on Image and Video Processing 2009, Article ID 843401, 23 pages (2009), doi:10.1155/2009/843401

    Google Scholar 

  35. Temperley, D.: The Cognition of Basic Musical Structures. The MIT Press, Cambridge (2004)

    Google Scholar 

  36. William, W.K.P.: Digital image processing, 2nd edn. John Wiley & Sons Inc., New York (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barbancho, I., Tardón, L.J., Barbancho, A.M., Ortiz, A., Sammartino, S., de la Bandera, C. (2011). What Signal Processing Can Do for the Music. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K. (eds) Exploring Music Contents. CMMR 2010. Lecture Notes in Computer Science, vol 6684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23126-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23126-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23125-4

  • Online ISBN: 978-3-642-23126-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics