
Chapter 3
Feature-Based Ranking

1 Overview

In this chapter we introduce a feature-based retrieval model based on Markov ran-
dom fields, which we refer to as the Markov random field model for information
retrieval (MRF model). Although there are many different ways to formulate a gen-
eral feature-based model for information retrieval, we focus our attention through-
out this work on the Markov random field model because it satisfies the following
desiderata, which we originally outlined in Chap. 1:

1. Supports basic information retrieval tasks (e.g., ranking, query expansion, etc.).
2. Easily and intuitively models query term dependencies.
3. Handles arbitrary textual and non-textual features.
4. Consistently and significantly improves effectiveness over bag of words models

across a wide range of tasks and data sets.

Another reason we focus on the MRF model is because it has been the focus of
a great deal of recent research and has been consistently shown to provide a ro-
bust, flexible, and extensible feature-based retrieva framework (Bendersky and Croft
2008; Eguchi 2005; Lang et al. 2010; Lease 2009; Metzler et al. 2004b, 2005b, 2006;
Metzler and Croft 2005, 2007; Wang et al. 2010a, 2010b). Furthermore, there are
a number of open source information retrieval toolkits, including Indri (Strohman
et al. 2004) and Ivory (Lin et al. 2009), that include implementations of the MRF
model and its various extensions, making it easy for researchers to experiment with
the models.

The remainder of this chapter covers the basic theoretical and practical founda-
tions of the model. Subsequent chapters will go into more detail and describe various
extensions of the basic model.

2 Modeling Relevance

We begin by describing what we seek to model. The four primary variables in most
information retrieval systems are users (U ), queries (Q), documents (D), and rele-
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vance (R). We define the event space to be U × Q × D and define relevance, R ∈ R,
to be a random variable over U × Q × D. Thus, some relevance value is associated
with every user, query, document tuple. Other factors, such as time and context are
ignored.

These variables interact in real information systems in the following way. Users
submit queries to the system and are presented a ranked list of documents. Some
of the documents in the ranked are relevant, while others are non-relevant. Suppose
that we were to collect a list of query/document pairs (Q,D), such that some user
found document D relevant to query Q. Imagine that such a list was collected across
a large sample of users. The resulting list can be thought of as a sample from some
underlying population of relevant query/document pairs that are aggregated across
users and conditioned on relevance. This, is then, a relevance distribution1, which
is similar in spirit to the one proposed by Lavrenko (2004). It is this distribution,
P(Q,D|R = 1), the joint distribution over query and document pairs, conditioned
on relevance, that we focus on modeling. For notational convenience, we drop the
explicit conditioning on relevance (i.e., R = 1) throughout the remainder of this
work, unless otherwise noted.

3 The Markov Random Field Model

There are many possible ways to model a joint distribution. In this work, we choose
to use Markov random fields. Markov random fields, sometimes referred to as undi-
rected graphical models, are commonly used in the statistical machine learning do-
main to model complex joint distributions. As we will show throughout the remain-
der of this section, there are many advantages and few, if any, disadvantages to using
MRFs for information retrieval.

A Markov random field is constructed from a graph G. The nodes in the graph
represent random variables, and the edges define the independence semantics be-
tween the random variables. The independence semantics are governed by the
Markov property.

Markov Property. Let G = (V ,E) be the undirected graph associated with a Markov ran-
dom field, then P (vi |vj �=i ) = P (vi |vj : (vi , vj ) ∈ E) for every random variable vi associ-
ated with a node in V .

The Markov Property states that every random variable in the graph is independent
of its non-neighbors given observed values for its neighbors. Therefore, different
edge configurations impose different independence assumptions.

There are several ways to model the joint distribution P(Q,D) using Markov
random fields. Figure 3.1 summarizes the various options that are available. Op-
tion A constructs a graph with two nodes, a query node Q and a document node D.

1Note that we make the assumption that relevance is binary, which is commonly used for infor-
mation retrieval tasks. If relevance is non-binary, then a different relevance distribution can be
estimated for each relevance level.
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Fig. 3.1 Three possible ways to model the joint distribution P (Q,D) using Markov random fields

However, this model is too coarsely specified and does not provide any insight into
the types of term dependencies that are being modeled since it models whole queries
and documents. Option B breaks the query apart into individual terms and treats the
document as a whole. Given a query of length n, this results in a graph with n

query term nodes and a document node. This option provides more specific con-
trol over which query term dependencies are modeled. Finally, option C breaks
apart both the document and the query into individual terms. Given a query of
length n and a document of length m, the graph would contain n query term nodes
and m document term nodes. This option provides the most flexibility for mod-
eling both query and document term dependencies. However, the model is likely
to be overly complex. Modeling dependencies between query terms is more feasi-
ble than modeling dependencies between document terms since queries are gener-
ally much shorter than documents and exhibit less complex dependencies between
terms.

Option B satisfies our needs without being overly complex, and so it will be
used throughout the remainder of this work. Thus, given a query of length n, the
graph G consists of n query term nodes and a single document node D. The random
variables associated with the query term nodes are multinomials over the underlying
vocabulary V and the random variable associated with the document node is also a
multinomial over the set of documents in the collection. We note that variations
on this theme are possible. For example, it may be appropriate to include several
document nodes or even other types of nodes, such as document structure nodes
within the MRF.

The joint probability mass function over the random variables in G is defined by:

PG,Λ(Q,D) = 1

ZΛ

∏

c∈C(G)

ψ(c;Λ), (3.1)

where Q = q1 . . . qn are the set of query term nodes, D is the document node, C(G)

is the set of maximal cliques in G, each ψ(·;Λ) is a non-negative potential function
over clique configurations parameterized by Λ and ZΛ = ∑

Q,D

∏
c∈C(G) ψ(c;Λ)

normalizes the distribution. It is generally infeasible to compute ZΛ due to the ex-
ponential number of terms in the summation.

Therefore, in order to compute the joint distribution we need a graph G, potential
functions ψ , and the parameter vector Λ. Detailed descriptions of these components
are given in the following sections.
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Fig. 3.2 Example Markov
random field model for three
query terms under various
independence assumptions,
including full independence
(top left), sequential
dependence (top right), and
full dependence (bottom)

3.1 Graph Structure

We have already described how the nodes of the MRF are chosen. We now must
show how these nodes can be connected together. As explained before, the Markov
Property dictates the dependence semantics of the MRF. Therefore, it is relatively
straightforward to explore various independence assumptions by constructing MRFs
with different graph structures.

We consider three generalized graph structures, each with different underlying
independence assumptions. The three structures are full independence (FI), sequen-
tial dependence (SD), and full dependence (FD). Figure 3.2 shows graphical model
representations of each. These generalized structures are considered because of their
significance to information retrieval. As we now show, each corresponds to a well-
studied class of retrieval models.

The full independence structure makes the assumption that query terms qi are in-
dependent given some document D. That is, the likelihood of observing query term
qi is not affected by the observation of any other query term, or more succinctly,
P(qi |D,qj �=i ) = P(qi |D). This corresponds to the independence assumption made
by many of the bag of words models that were described in Chap. 2.

As its name implies, the sequential dependence structure assumes a depen-
dence between neighboring query terms. Formally, this assumption states that
P(qi |D,qj �=i ) = P(qi |D,qi−1, qi+1). Models of this form are similar in nature to
bigram and biterm language models (Song and Croft 1999; Srikanth and Srihari
2002).

The last structure we consider is the full dependence structure. In this structure,
we assume all query terms are in some way dependent on each other. Graphically,
a query of length n translates into the complete graph Kn+1, which includes edges
from each query node to the document node D, as well. This model is an attempt
to capture longer range dependencies than the sequential dependence structure. If
such a model can accurately be estimated, it should be expected to perform at least
as well as a model that ignores term dependence.
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There are other reasonable ways of constructing G given a query, such as that
proposed by Gao et al. (2004), in which dependencies between terms are inferred
using natural language processing techniques. The advantage of using one of the
structures just described is that there is no need to rely on natural language pro-
cessing techniques, which can often produce noisy output, especially on short
segments of text. Of course, some of the dependencies imposed by the structure
may be incorrect, but in general, they capture meaningful relationships between
terms.

3.2 Potential Functions

In order to compute the MRF’s joint probability mass function (Eq. 3.1), a set of po-
tential functions must be defined over configurations of the maximal cliques in the
underlying graph. These potential functions can be thought of as compatibility func-
tions. That is, they are meant to reflect how compatible a given clique configuration
is. How compatibility is defined and measured depends on the task and clique.

For example, in Fig. 3.2, the nodes D and q1 form a maximal clique in the full
independence variant. The potential function defined over the clique should reflect
how compatible the term q1 is to D. Here, compatibility may be defined as “about-
ness” and measured using some tf .idf score for the term q1 in D.

Typically, potential functions are built top-down, starting with a maximal clique
and defining a potential over it. However, within the model, we choose to build
potential functions in a bottom-up fashion, which provides more fine grained con-
trol over the behavior of the functions. This is accomplished by first associating
one or more real-valued feature functions with each (maximal or non-maximal)
clique in the graph. Each feature function has a feature weight associated with
it that is a free parameter in the model. Then, non-negative potential functions
over the maximal cliques are constructed from these feature functions and feature
weights using an exponential form. We now formally describe the details of this
process.

1. Assign one or more feature functions to each clique in G. This assignment can
be encoded as a set of 3-tuples, C = {(c, f (·), λ)}ni=1, where c is a clique of G,
f (·) is the feature function assigned to the clique, and λ is the weight (parameter)
associated with the feature. Recall that the same clique may be associated with
more than one feature function.

2. For every (c, f (·), λ) ∈ C , assign c to one of the maximal clique(s) in G that c

is a sub-clique of. It is always possible to assign sub-cliques to maximal cliques,
although this assignment is not guaranteed to be unique.

3. For every maximal clique in G, define its potential function as ψ(·) =
exp(

∑
c λf (·)), where the sum goes over the cliques that were assigned to the

maximal clique in Step 2.

We now provide an example to illustrate the process. Consider the full indepen-
dence graph in Fig. 3.2. Suppose that we make the following assignment of feature
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functions and parameters to the graph:

({q1,D}, f1(q1,D),λ1
)
,

({q1,D}, f4(q1,D),λ4
)
,

({q2,D}, f2(q2,D),λ2
)
,

({q2,D}, f4(q2,D),λ4
)
,

({q3,D}, f3(q3,D),λ3
)
,

({q3,D}, f4(q3,D),λ4
)
,

({D}, f5(D),λ5
)
,

where each fi is some real-valued feature function defined over the configurations
of the clique. The specific form of the feature functions is not important in this
example.

After assigning each clique to a maximal clique, we construct the following po-
tential functions:

ψ(q1,D) = exp
[
λ1f1(q1,D) + λ4f4(q1,D) + λ5f5(D)

]
, (3.2)

ψ(q2,D) = exp
[
λ2f2(q2,D) + λ4f4(q2,D)

]
, (3.3)

ψ(q3,D) = exp
[
λ3f3(q3,D) + λ4f4(q3,D)

]
. (3.4)

This construction is not unique since the clique {D} is a sub-clique of all three
maximal cliques. Therefore, we can assign feature function f5(D) to any of the
maximal cliques. In the previous set of potential functions, it was assigned to the
maximal clique {q1,D}. If it had been assigned to the maximal clique {q3,D} in-
stead, the following potential functions would have been constructed:

ψ(q1,D) = exp
[
λ1f1(q1,D) + λ4f4(q1,D)

]
, (3.5)

ψ(q2,D) = exp
[
λ2f2(q2,D) + λ4f4(q2,D)

]
, (3.6)

ψ(q3,D) = exp
[
λ3f3(q3,D) + λ4f4(q3,D) + λ5f5(D)

]
. (3.7)

It is critical to note that, even though the potential function definitions are not
guaranteed to be unique using this formulation, the joint probability mass function
will be unique. It is easy to see that, for this example, the joint, under all possible
assignments is equal to:

P(Q,D) = Z−1
Λ exp

[
λ1f1(q1,D) + λ4f4(q1,D)

+ λ2f2(q2,D) + λ4f4(q2,D)

+ λ3f3(q3,D) + λ4f4(q3,D)

+ λ5f5(D)
]
. (3.8)
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This example also serves to illustrate that both functions and parameters can be
shared across potential functions. Here, the feature function f4 and parameter λ4

were shared across three cliques. In order to share a feature function across cliques,
we require that the input to the feature function be compatible with each clique.
For example, a feature function that takes two term nodes and a document node as
input can only be shared across cliques with two term nodes and a document node.
We do not permit a feature function that only takes a document node as input to
be shared with a clique that contains both a query term node and a document node.
There are no restrictions on sharing parameters across cliques, however. By sharing
parameters across cliques, we effectively tie parameters together, which reduces the
number of free parameters and can help overcome data sparseness issues.

4 Constructing Markov Random Fields

As we just showed, potential functions are constructed by assigning feature func-
tions and parameters to arbitrary cliques in the MRF. In this section, we describe
how textual and non-textual features can be represented and assigned to cliques.
Potentials can then be built from these features and be used to compute P(Q,D).

In this section, we describe a method for representing MRFs for information re-
trieval. We represent MRFs using a canonical form. The canonical form is designed
to be a compact, intuitive, and flexible method of representing MRFs. It can handle a
wide variety of graph structures and features that are useful for information retrieval
tasks. A canonical forms have the following structure:

(dependence model type, clique set type, weighting function)1 : λ1

(dependence model type, clique set type, weighting function)2 : λ2

· · ·
(dependence model type, clique set type, weighting function)n : λn

Here, a 3-tuple represents how feature functions are assigned to cliques. Each 3-
tuple assigns a feature function to one or more cliques within the graph. The variable
after the colon represents the parameter associated with all of the feature functions
assigned by the 3-tuple. As we showed in the previous section, this ties the parame-
ters of all of the feature functions associated with a 3-tuple together. The details of
this assignment and tying process will become clearer later in this section when we
work through several examples.

Given a canonical form, it is easy to systematically build the corresponding MRF
and derive both the joint probability mass function, as well as the ranking function.
We represent all MRFs throughout the remainder of this work using these canonical
forms. We now describe the meaning and details of each component in the 3-tuple.
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4.1 Dependence Model Type

The first entry in the tuple is the dependence model type, which specifies the depen-
dencies, if any, that are to be modeled between query terms. As we described before,
dependencies are encoded by the edges in the MRF, with different edge configura-
tions correspond to different types of dependence assumptions.

In this work, we only allow the dependence model type to be full independence
(FI), sequential dependence (SD), or full dependence (FD), which are the three gen-
eralized graph structures described in Sect. 3.1 and illustrated in Fig. 3.2.

For a given MRF, each feature function may have a different dependence model
type. The dependence model type simply defines the graph structure that the current
feature is applied to. The graph structure that the resulting MRF has depends on the
dependence model types of all of its features combined.

4.2 Clique Set Type

The second entry in the tuple, the clique set type, describes the set of (maximal or
non-maximal) cliques within the graph that the feature function is to be applied to.
Thus, each feature function can be applied to one or more cliques within the graph,
depending on the clique set.

There are seven clique sets that can be used within the model. These sets are
summarized in Table 3.1. In order to motivate these clique sets, we enumerate every
possible type of clique that is of interest to us, beginning with cliques that contain
the document node and one or more query term nodes.

First, the simplest type of clique that contains the document node and one or
more query nodes is a 2-clique consisting of an edge between a query term qi and
the document D. A potential function over such a clique should measure how well,
or how likely query term qi describes the document.

Next, we consider cliques that contain two or more query terms. For such cliques
there are two possible cases, either all of the query terms within the clique appear
contiguously in the query or they do not. The fact that query terms appear contigu-
ously within a query provides different (stronger) evidence about the information
need than a set of non-contiguous query terms. For example, in the query train sta-
tion security measures, if any of the sub-phrases, train station, train station security,
station security measures, or security measures appear in a document then there is
strong evidence in favor of relevance.

Although the occurrence of contiguous sets of query terms provide strong evi-
dence of relevance, it is also the case that the occurrence of non-contiguous sets of
query terms can provide valuable evidence. However, since the query terms are not
contiguous we do not expect them to appear in order within relevant documents.
Rather, we only expect the terms to appear ordered or unordered within a given
proximity of each other. In the previous example, documents containing the terms
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Table 3.1 Example clique sets for the query q1 q2 q3 under full dependence model

Description Notation Example

Set of cliques containing the
document node and exactly one
query term

TQD {{q1,D}, {q2,D}, {q3,D}}

Set of cliques containing the
document node and two or more
query terms that appear in sequential
order within the query

OQD {{q1, q2,D}, {q2, q3,D}, {q1, q2, q3,D}}

Set of cliques containing the
document node and two or more
query terms that appear unordered
within the query

UQD {{q1, q3,D}}

Set of cliques containing exactly one
query term

TQ {{q1}, {q2}, {q3}}

Set of cliques containing two or more
query terms that appear in sequential
order within the query

OQ {{q1, q2}, {q2, q3}, {q1, q2, q3}}

Set of cliques containing two or more
query terms that appear unordered
within the query

UQ {{q1, q3}}

Set containing only the singleton
node D

D {{D}}

train and security within some short proximity of one another also provide addi-
tional evidence towards relevance. This issue has been explored in the past by a
number of researchers (Croft et al. 1991; Fagan 1987).

Therefore, for cliques consisting of the document node and one or more query
term nodes, we have the following clique sets:

• TQD—set of cliques containing the document node and exactly one query term.
• OQD—set of cliques containing the document node and two or more query terms

that appear in sequential order within the query.
• UQD—set of cliques containing the document node and two or more query terms

that appear unordered within the query.

Note that the cliques that make up each set may change for different dependence
model types. For example, OQD and UQD are empty under the full independence
assumption since that would result in a graph where there are no cliques with two
or more query term nodes. However, under the sequential dependence assumption,
and with a query of length 2 or more, such cliques will exist and OQD and UQD

will be non-empty.
Next, we consider cliques that only contain query term nodes. These clique sets

are defined in an analogous way to those just defined, except the cliques are only
made up of query term nodes and do not contain the document node. Potential
functions over these cliques should capture how compatible query terms are to one
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another. These clique potentials may take on the form of language models that im-
pose well-formedness of the terms. Therefore, we define following query-dependent
clique sets:

• TQ—set of cliques containing exactly one query term.
• OQ—set of cliques containing two or more query terms that appear in sequential

order within the query.
• UQ—set of cliques containing two or more query terms that appear unordered

within the query.

Finally, there is the clique that only contains the document node. Potentials over
this node can be used as a type of document prior, encoding document-centric prop-
erties. This trivial clique set is then:

• D—clique set containing only the singleton node D.

We note that the clique sets form a partition over the cliques of G. This partition
separates the cliques into sets that are meaningful from an information retrieval
perspective. Thus, these clique sets make it easy to apply features in a very specific
manner within the MRF.

Of course, the clique sets we defined here are not unique. It is possible to define
many different types of clique sets. For example, another clique set may be defined
as “the clique that contains the first query term and the document node”. Given
enough training data, it may be possible to define such fine grained clique sets.
However, given the limited amount of training data, we focus our attention on the
coarse grained clique sets defined above.

4.3 Weighting Function

Finally, the third entry in the tuple is the weighting function, which defines the fea-
ture function that is applied to the cliques defined by the clique set. In this section
we define weighting functions that can be used with the different clique sets we
just defined. It is not our goal to provide a comprehensive list of possible feature
functions. Instead, we simply seek to provide a few examples of the types of feature
functions that are possible.

4.3.1 Weighting Functions for TQD, OQD, and UQD

We first describe weighting functions that can be used with cliques in the TQD,
OQD, and UQD clique sets. These cliques consist of a set of query term nodes and a
document node. Therefore, the weighting functions applied to these cliques should
measure how much the document is “about” the query terms.

The weighting functions we use are based on language modeling estimates and
the BM25 weighting model, which we described in Chap. 2. It is straightforward



4 Constructing Markov Random Fields 33

to use the standard forms for these weighting functions for the single term cliques
(TQD). However, we must define how to match the query terms within documents
when applying these weighting functions to ordered term cliques (OQD) and un-
ordered term cliques (UQD).

For ordered term cliques, we match terms in documents using the Indri or-
dered window operator (#M), where the parameter M determines how many
non-matching terms are allowed to appear between matched terms (Metzler and
Croft 2004). For clique {qi, . . . , qi+k,D}, we match documents according to
#M( qi . . . qi+k). This rewards documents for preserving the order that the query
terms occur in.

In the unordered clique set case, we match terms using the Indri unordered win-
dow operator (#uwN ), where N defines the maximum size of the window that the
terms may occur (ordered or unordered) in. For clique {qi, . . . , qj ,D} that con-
tains k query terms, documents are matched according to #uwNk(qi . . . qj ). Notice
that we multiply the number of terms in the clique set by N . If N = 1, then all
k query terms must occur, ordered or unordered, within a window of k terms of
each other within the document. As N increases, the matching becomes looser. If
N = unlimited, then any document that contains all k query terms is matched. By
using this matching scheme, we reward documents in which subsets of query terms
occur appear within close proximity of each other.

Table 3.2 summarizes these weighting functions. Of course, many different types
of weighting functions can easily be used within the model. For example, if new,
more effective term weighting functions are developed in the future, then they can be
easily used instead of, or in addition to, the Dirichlet or BM25 weighting functions.

4.3.2 Weighting Functions for TQ, OQ, and UQ

Next, we consider weighting functions for the cliques in the TQ, OQ, and UQ clique
sets. These cliques consist of one or more query terms and no document nodes.
Weighting functions defined over them should reflect their general importance or
informativeness. Therefore, IDF-based measures are a natural set of feature func-
tions to use for these types of cliques.

The two IDF measures that are used as feature functions are inverse collection
frequency (ICF) and the Okapi IDF. Inverse collection frequency is very similar to
IDF, except it considers the number of times an expression occurs, rather than the
number of documents it occurs in. As with the weighting functions described in the
previous section, it is straightforward to apply standard IDF features to the single
term cliques (TQ). We use the same matching semantics as described in the previous
section for the ordered terms cliques (OQ) and the unordered terms cliques (UQ).

Example feature functions are shown in Table 3.3. Other possible feature func-
tions for these types of cliques include measures of how lexically cohesive the terms
are and the average vocabulary level of the terms.
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Table 3.2 Summary of Dirichlet and BM25 weighting functions that can be used with cliques in
the TQD, OQD, and UQD clique sets. Here, M and N act as weighting function parameters that
affect how matching is done, tfe,D is the number of times expression e matches in document D,
cfe,D is the number of times expression e matches in the entire collection, dfe is the total number
of documents that have at least one match for expression e, |D| is the length of document D,
|D|avg is the average document length, N is the number of documents in the collection, and |C|
is the total length of the collection. Finally, idf (e) = log N−dfe+0.5

dfe+0.5 , and μt , μw , kt
1, kw

1 , bt , and
bw are weighting function hyperparameters. The t and w superscripts indicate term and window
hyperparameters, respectively

LM

fLM,T (qi ,D) = log

[
tfqi ,D

+μt cfqi|C|
|D|+μt

]

LM-O-M

fLM,O,M({qi},D) = log

[
tf#M({qi }),D+μw

cf#M({qi })|C|
|D|+μw

]

LM-U-N

fLM,U,N ({qi},D) = log

[
tf#uwNk({qi }),D+μw

cf#uwNk({qi })|C|
|D|+μw

]

BM25

fT,BM25(qi ,D) = (kt
1+1)tfw,D

kt
1((1−bt )+bt |D|

|D|avg
)+tfw,D

idf (w)

BM25-O-M

fBM25,O,M({qi},D) = (kw
1 +1)tf#M({qi }),D

kw
1 ((1−bw)+bw |D|

|D|avg
)+tf#M({qi }),D

idf (#M({qi}))

BM25-U-N

fBM25,U,N ({qi},D) = (kw
1 +1)tf#uwNk({qi }),D

kw
1 ((1−bw)+bw |D|

|D|avg
)+tf#uwNk({qi }),D

idf (#uwNk({qi}))

4.3.3 Weighting Functions for D

Depending on the task, there are a wide variety of weighting functions that can
be applied to the document node clique. Some examples include document length
(Singhal et al. 1996), document quality (Zhou and Croft 2005), PageRank (Brin
and Page 1998), URL depth (Kraaij et al. 2002), readability (Si and Callan 2001),
sentiment (Pang et al. 2002), and opinionatedness (Ounis et al. 2006).

Although we do not explore all of these query independent features in this work,
we do make use of several of them for a Web search task later in this chapter.
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Table 3.3 Summary of ICF
and IDF weighting functions
that can be used with cliques
in the TQ, OQ, and UQ clique
sets

ICF

fICF,T (qi ,D) = − log
cfqi|C|

ICF-O-M

fICF,U,M({qi},D) = − log
cf#M({qi })|C|

ICF-U-N

fICF,O,N ({qi},D) = − log
cf#uwNk({qi })|C|

IDF

fIDF,BM25(qi ,D) = log N−dfw+0.5
dfw+0.5

IDF-O-M

fIDF,O,M({qi},D) = log
N−df#M({qi })+0.5

df#M({qi })+0.5

IDF-U-N

fIDF,U,N ({qi},D) = log
N−df#uwNk({qi })+0.5

df#uwNk({qi })+0.5

4.4 Examples

Now that we have described each element that makes up the 3-tuple, we show how
to construct MRFs from canonical forms. We do this by working through a number
of examples. In all of the following examples, it is assumed that the query being
evaluated is new york city.

Our first example is for the following canonical form:

(FI, TQD,BM25) : λ.

This canonical form includes a single feature function. The feature uses the full
independence graph structure, is applied to the cliques in TQD, and uses the BM25
weighting function. This expands to the following assignment of feature functions:

({new,D}, fBM25,T (new,D),λ
)
,

({york,D}, fBM25,T (york,D),λ
)
,

({city,D}, fBM25,T (city,D),λ
)
.

Notice that all of the features share the same parameter.
This assignment can then be transformed into the following set of potential func-

tions, using the process described in Sect. 3.2:

ψ(new,D) = exp
[
λfBM25,T (new,D)

]
, (3.9)
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ψ(york,D) = exp
[
λfBM25,T (york,D)

]
, (3.10)

ψ(city,D) = exp
[
λfBM25,T (city,D)

]
, (3.11)

where fBM25,T takes on the BM25 form as given in Table 3.2. The resulting proba-
bility mass function is then given by:

P(new york city,D) = Z−1
Λ exp

[
λfBM25,T (new,D) + λfBM25,T (york,D)

+ λfBM25,T (city,D)
]
. (3.12)

We see that this joint probability mass function is rank equivalent to the BM25
score of query for document D. Analogously, if fBM25,T is replaced with fLM,T ,
the probability mass function is rank equivalent to query likelihood scoring in the
language modeling framework.

Next, we consider the following canonical form:

(SD, OQD, LM-O-4) : λ

which contains a single feature that uses the sequential dependence model, is applied
to cliques in OQD, and uses the Dirichlet weighting function. This expands into the
following assignment of feature functions to cliques:

({new,york,D}, fLM,O,4(new,york,D), λ
)
,

({york, city,D}, fLM,O,4(york, city,D), λ
)

which is then transformed into the following set of potential functions:

ψ(new,york,D) = exp
[
λfLM,O,4(new,york,D)

]
, (3.13)

ψ(york, city,D) = exp
[
λfLM,O,4(york, city,D)

]
, (3.14)

where fLM,O,4 takes on the Dirichlet form and M , the ordered window size, is set
to 4.

Finally, we provide an example of a more complex canonical form. Consider the
following canonical form:

(FD, OQD, LM-O-8) : λ1,

(FI, TQ, IDF) : λ2,

(FI, D,PageRank) : λ3

which then results in the following set of feature function assignments:

({new,york,D}, fLM,O,8(new,york,D), λ1
)
,

({york, city,D}, fLM,O,8(york, city,D), λ1),
({new,york, city,D}, fLM,O,8(new,york, city,D), λ1

)
,
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({new}, fIDF,T (new,D), λ2
)
,

({york}, fIDF,T (york,D), λ2
)
,

({city}, fIDF,T (city,D), λ2
)
,

({D}, fPageRank(D), λ3
)

and the following potential function:

ψ(new,york, city,D) = exp
[
λ1fLM,O,8(new,york,D)

+ λ1fLM,O,8(york, city,D)

+ λ1fLM,O,8(new,york, city,D)

+ λ2fIDF,T (new,D)

+ λ2fIDF,T (york,D)

+ λ2fIDF,T (city,D)

+ λ3fPageRank(D)
]
. (3.15)

These examples illustrate that the canonical form allows us to compactly define
a large, rich set of MRFs for use with information retrieval tasks.

5 Ranking

Using the canonical feature representation, we derive the following simplified form
of the joint distribution:

logP(Q,D) =
∑

c∈TQD

λcfc(c) +
∑

c∈OQD

λcfc(c) +
∑

c∈UQD

λcfc(c)

︸ ︷︷ ︸
document+query dependent

+
∑

c∈TQ

λcfc(c) +
∑

c∈OQ

λcfc(c) +
∑

c∈UQ

λcfc(c)

︸ ︷︷ ︸
query dependent

+
∑

c∈D

λDfc(c)

︸ ︷︷ ︸
document dependent

− logZΛ︸ ︷︷ ︸
document+query independent

, (3.16)

where λc and fc are the parameter and weighting (feature) function associated with
clique c, respectively.

Given a query Q as evidence, we can use the model to rank documents in de-
scending order according of the conditional P(D|Q). Fortunately, properties of
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Fig. 3.3 Illustration showing
how the full independence
model generalizes unigram
language modeling and
BM25 (top), and how the
sequential dependence model
generalizes bigram language
modeling (bottom)

rankings allow us to significantly simplify the computation. That is,

P(D|Q)
rank= logP(D|Q)

= log
P(Q,D)

P (Q)

= logP(Q,D) − logP(Q)

rank= logP(Q,D). (3.17)

After dropping document independent expressions from logP(Q,D), we derive
the following ranking function:

P(D|Q)
rank=

∑

c∈TQD

λcfc(c) +
∑

c∈OQD

λcfc(c) +
∑

c∈UQD

λcfc(c) +
∑

c∈D

λcfc(c) (3.18)

which is a simple weighted linear combination of feature functions that can be com-
puted efficiently for reasonable graphs since the partition function ZΛ does not need
to be computed. Later, in Chap. 4 we show how the reverse conditional, P(Q|D),
can be used for query expansion.

In this chapter, we described the basics of the Markov random field model for
information retrieval. We explained our underlying model of relevance, basic MRF
theory, and how MRF models can easily be constructed using a canonical form. The
model is very robust, as it can model a wide variety of dependencies between query
terms, and can make use of arbitrary textual and non-textual features, as well. This is
the first model for information retrieval that has both of these important properties.

It is easy to show that the MRF model subsumes many previously proposed in-
formation retrieval models, which further proves the model’s flexibility. Figure 3.3
shows two simple examples of how the MRF model generalizes other models. Here,
we see that the full independence model, with properly defined potential func-
tions, gives rise to unigram language modeling and the BM25 model. Similarly,
the sequential dependence model subsumes bigram and biterm language models.
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By studying previous retrieval models in the context of the MRF model, we gain
fresh perspective and insight into the underlying principles of these models.

This chapter skirted the issue of parameter estimation (i.e., how to set Λ). Since
this issue is critical to achieving good effectiveness, it is given a detailed treatment
in Chap. 6.

6 Ad Hoc Retrieval

Our discussion, up until this point, has focused entirely on the theoretical issues
surrounding the Markov random field model. We now shift our focus to more prac-
tical matters. In this chapter, we empirically evaluate the retrieval effectiveness of
the MRF model. This requires us to choose one or more tasks to evaluate the model
against. There are a large number of important information retrieval tasks, such
as Web search (Brin and Page 1998), enterprise search (Craswell et al. 2005a),
question answering (QA) (Voorhees 1999), blog search (Ounis et al. 2006), legal
search (Baron et al. 2006), desktop search (Peng and He 2006), and image search.
Rather than evaluating the model on all of these tasks, we restrict our focus to ad
hoc retrieval and Web search. As we will describe in more detail shortly, these two
tasks are the most common and widely used in information retrieval.

Ad hoc retrieval is one of the most important information retrieval tasks. In the
task, a user submits a query, and the system returns a ranked list of documents that
are topically relevant to the query. Therefore, the goal of the task is to find topically
relevant documents in response to a query. It is critical to develop highly effective ad
hoc retrieval models since such models often play important roles in other retrieval
tasks. For example, most QA systems use an ad hoc retrieval system to procure
documents that are topically relevant to some question. The QA systems then em-
ploy various techniques to extract answers from the document retrieved (Voorhees
1999). Thus, by improving on the current state-of-the-art ad hoc retrieval models, it
is possible to positively impact the effectiveness of a wide range of tasks.

In the remainder of this section we describe experiments using three different
basic MRF models. The aim is to analyze and compare the retrieval effectiveness
of each model across collections of varying size and type. We make use of the AP,
WSJ, and ROBUST04 data sets, which are smaller collections that consist of news
articles that are mostly homogeneous, and two Web data sets, WT10g and GOV2,
which are considerably larger and less homogeneous. Further details about the data
sets are provided in Appendix A.

Each of these are TREC data sets. A TREC data set consists of a collection of
documents, a set of topics, and human relevance assessments. An example ad hoc
topic is shown in Fig. 3.4. A TREC topic typically consists of a title, description,
and narrative. It is important to note that a topic is not the same thing as a query,
although the two terms are often used interchangeably. A query must be distilled
from a topic. This is typically done by using the text contained in one or more of
the topic fields as the query. For all of the experiments in this section, except where
noted otherwise, we follow the common TREC procedure of using only the title
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<top>
<num> Number: 744

<title>
Counterfeit ID punishments

<desc> Description:
What punishments or sentences have been given in the U.S. for
making or selling counterfeit IDs?

<narr> Narrative:
Relevant documents will describe punishments for manufacturing or
selling counterfeit identification, such as drivers licenses,
passports, social security cards, etc. Fake professional
certifications and fake credit cards are relevant. Counterfeit goods
or auto serial numbers not relevant. Counterfeit checks are not
relevant. “Counterfeiting” with no indication of type is relevant.

</top>

Fig. 3.4 TREC topic number 744

portion of the topic as the query. Therefore, the query that we distill for the topic
given in Fig. 3.4 is counterfeit id punishments.

TREC relevance judgments are done by human assessors. When determining rel-
evance, the entire TREC topic is considered. The assessors judge documents using
a binary2 scale, where rating 0 indicates not relevant and rating 1 indicates relevant.

All of the evaluation metrics that we consider in this section are based on binary
judgments. For all of the experiments, we return a ranked list of no more than 1000
documents per query, as is standardly done during TREC evaluations. Furthermore,
the primary evaluation metric that we use to evaluate ad hoc retrieval is mean av-
erage precision. Further details about the retrieval metrics we use can be found in
Appendix B.

Finally, for all of the experiments, documents were stemmed using the Porter
stemmer and a standard list of 418 stopwords was applied. All model parameters
were estimated by maximizing mean average precision using a coordinate ascent
algorithm (see Algorithm 2).

Throughout all of the experiments, statistical significance is always tested using
a one-tailed, paired t -test at significance level p < 0.05.

2Although some TREC collections actually do have ternary (i.e., not relevant, relevant, and highly
relevant) judgments, they have never been used during official evaluations. When ternary judg-
ments do exist, all relevant (rating 1) and highly relevant (rating 2) documents are considered
relevant, which thereby binarizes the judgments.
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6.1 MRF Models for Ad Hoc Retrieval

We now define the three basic MRF models for the ad hoc retrieval task. The models
correspond to the three dependence model types shown in Fig. 3.2. Each model
represents a different set of underlying dependence assumptions and makes use of
different features. We define each model in terms of its canonical form, provide its
joint probability mass function, and show its ranking function.

6.1.1 Full Independence

The first basic model that we consider makes use of the full independence model
shown in Fig. 3.2 (left). Recall that, under this model, query term nodes are inde-
pendent of each other given a document as evidence. This model, therefore, shares
many properties with standard bag of words retrieval models.

We now introduce the first basic MRF model, which we call the Full Indepen-
dence MRF Model (MRF-FI model). It is constructed using the following canonical
form:

(FI, TQD,LM) : λTD
,

(FI, TQ, ICF) : λTQ
.

The model defines two features. One feature is defined over the TQD clique set and
the other is defined over the TQ clique set. Both features use the full independence
assumption and language modeling features.

Notice that no feature is defined over D, the document node clique set. By not
defining a feature over the document node clique, we are enforcing the constraint
that documents, in isolation, provide no useful information for the ad hoc retrieval
task. While this may seem like an extreme assumption, it is actually quite valid. No
single document prior has ever been shown to significantly improve effectiveness
across a wide range of data sets. Therefore, in order to keep the model as simple as
possible, we simply do not define a feature over this clique. However, we note that
for specific tasks it may be beneficial to define such a feature.

The model results in the following joint probability mass function:

P(Q,D) = Z−1 exp

[
λTD

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt

+ λTQ

∑

qi∈TQ

log
|C|
cfqi

]
. (3.19)
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Table 3.4 Test set results for the MRF-FI model

AP WSJ ROBUST04 WT10G GOV2

MAP 0.2077 0.3258 0.2920 0.1861 0.2984

GMAP 0.1219 0.2267 0.1970 0.1176 0.1891

P@10 0.3460 0.4860 0.4293 0.3204 0.5180

R-Prec 0.2448 0.3558 0.3291 0.2199 0.3515

μt 1750 2000 1000 1000 1500

Furthermore, it is easy to see that we obtain the following linear feature-based model
when ranking according to P(D|Q):

P(D|Q)
rank=

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt
(3.20)

which shows that the MRF-FI model reduces exactly to the unigram query likeli-
hood language modeling approach with Dirichlet smoothing (see Eq. 2.14).

Although the MRF-FI model is not technically a bag of words model, we con-
sider it as a bag of words baseline. This is appropriate, since, as we just showed, the
model is rank equivalent to the unigram language modeling approach, which is a bag
of words model. Therefore, we use the MRF-FI model as a baseline by which we
compare other MRF models that actually go beyond the bag of words assumption.

Table 3.4 shows the test set results for the MRF-FI model across data sets. In
the table, MAP refers to mean average precision, GMAP is geometric mean average
precision, P@10 is precision at 10 ranked documents, R-Precision is precision at R
(number of judged relevant documents), and μt denotes the smoothing parameter
learned on the training set. All models were trained to maximize mean average
precision. These numbers serve as the baselines, which we attempt to improve upon
by employing more complex models.

6.1.2 Sequential Dependence

The second of the basic MRF models corresponds to the sequential dependence
model shown in Fig. 3.2 (center). It is the Sequential Dependence MRF Model
(MRF-SD model), which is constructed according to the following canonical
form:

(FI, TQD,LM) : λTD
,

(FI, TQ, ICF) : λTQ
,

(SD,OQD,LM-O-1) : λOD
,

(SD,OQ, ICF-O-1) : λOQ
,
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(SD,OQD,LM-U-4) : λUD
,

(SD,OQ, ICF-U-4) : λUQ

which defines features over single term (i.e., TQD and TQ) clique sets, as well as
ordered term clique sets (i.e., OQD and OQ). Unlike the MRF-SI model, this model
makes use of some of the MRF model’s strengths. As we see, the model defines
ordered and unordered window features over the ordered cliques in the graph. By
doing so, we go beyond the bag of words assumption. The joint probability mass
function for the model is:

P(Q,D) ∝ exp

[
λTD

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt

+ λTQ

∑

qi∈TQ

log
|C|
cfqi

+ λOD

∑

(q1,q2,D)∈OQD

log
tf#1(q1q2),D + μw cf#1(q1q2)

|C|
|D| + μw

+ λOQ

∑

(q1,q2)∈OQ

log
|C|

cf#1(q1q2)

+ λUD

∑

(q1,q2,D)∈UQD

log
tf#uw8(q1q2),D + μw cf#uw8(q1q2)

|C|
|D| + μw

+ λUQ

∑

(q1,q2)∈UQ

log
|C|

cf#uw8(q1q2)

]
(3.21)

and the ranking function simplifies to the following linear feature-based model:

P(D|Q)
rank= λTD

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt

+ λOD

∑

(q1,q2,D)∈OQD

log
tf#1(q1q2),D + μw cf#1(q1q2)

|C|
|D| + μw

+ λUD

∑

(q1,q2,D)∈UQD

log
tf#uw8(q1q2),D + μw cf#uw8(q1q2)

|C|
|D| + μw

.

(3.22)
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Table 3.5 Mean average precision for various parameter settings for LM-U-N using the MRF-SD
model

N AP WSJ WT10g GOV2

2 0.1860 0.2776 0.2148 0.2697

8 0.1867 0.2763 0.2167 0.2832

50 0.1858 0.2766 0.2154 0.2817

Unlimited 0.1857 0.2759 0.2138 0.2714

Recall that both the ordered (LM-O-M) and unordered (LM-U-N ) features have
free parameters that allow the size of the unordered window (scope of proximity) to
vary. We now motivate why these specific values were chosen.

First, for M , the parameter that controls the ordered window matching, we de-
cided to use 1, because it results in an “exact phrase” feature that does not allow
any room in the ordered matching of query terms. This choice is motivated by the
fact that exact phrases are commonly used in many different applications. Further-
more, there has been little previous research that looked at relaxing such phrases.
Therefore, choosing 1 is the most reasonable choice.

The other value, N , which controls the window width for unordered matching,
was chosen after careful consideration of previous research. Fagan shows that the
best choice of N varies across collections (Fagan 1987). Optimal values found in-
cluded setting N to either 2, the length of a sentence, or “unlimited” (matches any
co-occurrences of the terms within a document). Croft et al. showed improvements
could be achieved with passage-sized windows of 50 terms (Croft et al. 1991).
Therefore, since there were no strong conclusions, we experimented with window
sizes of 2, 50, sentence, and “unlimited” to see what impact each had on effective-
ness. Instead of segmenting sentences at index time, we observe that the average
length of an English sentence is 8–15 terms, and choose a window size of 8 terms
to model sentence-level proximity.

The results, which were evaluated on the entire data set, are given in Table 3.5.
The results show very little difference across the various window sizes. However,
for the AP, WT10g, and GOV2 collection the sentence-sized windows performed the
best. For the WSJ collection, N = 1 performed the best. The only collection where
mean average precision varies noticeably is the GOV2 collection. These results sug-
gest that a limited scope of proximity (2–50 terms) performs reasonably, but can
be approximated rather well by an “unlimited” scope, which reaffirms past research
into dependence models based on co-occurrences. However, it appears as though
smaller scopes of proximity may provide better performance for larger collections,
as evidenced by the GOV2 results. Therefore, given this experimental evidence, we
decide to set N = 4 for use with the basic MRF-SD model.

Now that we have describe why the rationale behind the manual construction
of the model, we must see how well it performs compared to the simple MRF-FI
model. The results are given in Table 3.6. Results that are statistically significantly
better than the MRF-FI model are indicated by a †.
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Table 3.6 Test set results for the MRF-SD model. A † indicates a statistically significant improve-
ment over the MRF-FI model

AP WSJ ROBUST04 WT10G GOV2

MAP 0.2147† 0.3425 0.3096† 0.2053† 0.3325†

GMAP 0.1265 0.2399† 0.2196† 0.1286† 0.2449†

P@10 0.3340 0.5080 0.4566† 0.3245 0.5680†

R-Prec 0.2580† 0.3633 0.3363 0.2374† 0.3716†

The results show that the MRF-SD model is significantly better than the MRF-
FI model on every data set except WSJ for mean average precision, which is the
primary evaluation metric. The improvements in mean average precision are 3.4%
for AP, 5.1% for WSJ, 6.0% for ROBUST04, 10.3% for WT10G, and 11.4% for
GOV2. These results indicate very strong, consistent improvements over the bag of
words baseline.

Similar results are exhibited for geometric mean average precision. GMAP heav-
ily penalizes queries with a low average precision Therefore, GMAP is often used
to measure robustness (Voorhees 2005). As the results show, the MRF-SD model
is quite robust and significantly improves GMAP for every data set except AP.
We do a deeper analysis of the robustness of the MRF model later in this chap-
ter.

We see that the precision at 10 is improved across most data sets, but is only
significant on two of them (ROBUST04 and GOV2). Therefore, it appears as though
most of the boost in mean average precision that is achieved from using the MRF-SD
model does not come from the very top of the ranked list. Instead, the improvement
is likely coming from lower in the ranked list, where the ordered and unordered
window features are bringing in more relevant documents and filtering out many of
the low ranked, poorly matching documents.

Finally, it is important to recall that training is done to maximize mean average
precision. It is likely that more significant improvements could be achieved for the
other metrics if the model were trained to optimize them.

6.1.3 Full Dependence

The third basic MRF model is derived from the full dependence model. The model,
which is shown in Fig. 3.2 (right), is called the Full Dependence MRF Model (MRF-
FD model). The model attempts to incorporate dependencies between every subset
of query terms and is the most general of the basic models. Here, the number of
cliques is exponential in the number of query terms, which restricts the application
of this variant to shorter queries. This is not a problem for the MRF-FI and MRF-SD
models, which have a linear number of cliques. The model is constructed according
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to the following canonical form:

(FI, TQD,LM) : λTD
,

(FI, TQ, ICF) : λTQ
,

(FD,OQD,LM-O-1) : λOD
,

(FD,OQ, ICF-O-1) : λOQ
,

(FD,OQD,LM-U-4) : λUD
,

(FD,OQ, ICF-U-4) : λUQ
,

(FD,UQD,LM-U-4) : λUD
,

(FD,UQ, ICF-U-4) : λUQ

which is similar to the MRF-SD model. However, the models differ in several key
ways. First, the MRF-FD model uses the full dependence model type. Second,
the MRF-FD model defines two new features for the unordered clique sets (UQD

and UQ). These clique sets are empty in the MRF-SD model. Furthermore, the pa-
rameters for all the unordered features are tied together. While this is not required,
it simplifies the model.

The resulting joint probability mass function for the model is then given by:

P(Q,D) ∝ exp

[
λTD

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt

+ λTQ

∑

qi∈TQ

log
|C|
cfqi

+ λOD

∑

(q1,...,qk,D)∈OQD

log
tf#1({qi }),D + μw cf#1({qi })|C|

|D| + μw

+ λOQ

∑

(q1,...,qk)∈OQ

log
|C|

cf#1({qi })

+ λUD

∑

(q1,...,qk,D)∈UQD

log
tf#uw8({qi }),D + μw cf#uw8({qi })|C|

|D| + μw

+ λUQ

∑

(q1,...,qk)∈UQ

log
|C|

cf#uw8({qi })

]
(3.23)
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Table 3.7 Mean average precision using the MRF-FD model over different combinations of term,
ordered, and unordered features

Term + Ordered Term + Unordered

Train\Test AP WSJ WT10g GOV2 AP WSJ WT10g GOV2

AP 0.185 0.272 0.218 0.267 0.1840 0.267 0.218 0.275

WSJ 0.184 0.273 0.217 0.261 0.1840 0.267 0.218 0.275

WT10G 0.185 0.272 0.218 0.267 0.184 0.267 0.219 0.278

GOV2 0.184 0.271 0.215 0.268 0.184 0.267 0.219 0.278

Term + Ordered + Unordered

Train\Test AP WSJ WT10g GOV2

AP 0.187 0.272 0.223 0.284

WSJ 0.184 0.274 0.220 0.269

WT10G 0.187 0.272 0.223 0.278

GOV2 0.185 0.271 0.220 0.284

and the resulting ranking function is then:

P(D|Q)
rank= λTD

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt

+ λOD

∑

(q1,...,qk,D)∈OQD

log
tf#1({qi }),D + μw cf#1({qi })|C|

|D| + μw

+ λUD

∑

(q1,...,qk,D)∈UQD

log
tf#uw4k({qi }),D + μw cf#uw4k({qi })|C|

|D| + μw
.

(3.24)

Now that we have defined the MRF-FD model, we would like to understand what
effect the ordered and unordered features have on the model’s effectiveness and how
well the models learned on one collection generalize to another. In order to measure
this, we train on one data set and then use the parameter values found to test on
the other data sets. Results for models trained using terms and ordered features,
terms and unordered features, and terms, ordered, and unordered features are given
in Table 3.7.

For the AP collection, there is very little difference between using ordered and
unordered features. However, there is a marginal increase when both ordered and
unordered features are used together. The results for the WSJ collection are differ-
ent. For that collection, the ordered features produce a clear improvement over the
unordered features, but there is very little difference between using ordered features
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Table 3.8 Test set results for the MRF-FD model. A † indicates a statistically significant im-
provement over the MRF-FI model and a ‡ indicates statistically significant improvement over the
MRF-SD model

AP WSJ ROBUST04 WT10G GOV2

MAP 0.2128 0.3429† 0.3092† 0.2140†‡ 0.3360†

GMAP 0.1257 0.2404† 0.2196† 0.1361†‡ 0.2421†

P@10 0.3540 0.5080† 0.45605† 0.3469†‡ 0.5720†

R-Prec 0.2543† 0.3694† 0.3394† 0.2417†‡ 0.3763†

and the combination of ordered and unordered. The results for the two Web col-
lections, WT10g and GOV2, are similar. In both, unordered features perform better
than ordered features, but the combination of both ordered and unordered features
led to noticeable improvements in mean average precision.

From these results we can conclude that strict matching via ordered window fea-
tures is more important for the smaller newswire collections. This may be due to the
homogeneous, clean nature of the documents, where an ordered window match is
likely to be a high quality match instead of noise. For the Web collections, the oppo-
site is true. Here, the fuzzy unordered window matches provide better evidence. In
these less homogeneous, noisy collections, an ordered window match is less likely to
be a high quality match and more likely to be a noisy match. Instead, fuzzy matches
are appropriate because they deal better with the noise inherent in Web documents.

These results also suggest that parameters trained on any of the data sets general-
ize well to other data sets. This result is somewhat surprising; we expected parame-
ters trained on newswire (Web) data would generalize better to newswire (Web) test
data. However, this is not the case. It appears as though the parameters trained on
any reasonable data set will generalize well, which allows one to use a single setting
of the parameters across multiple data sets. This may imply that the features used
here only capture general aspects of the text and that more domain-specific features
may yield further improvements. We return to the issue of parameter generalization
later in this chapter.

We conclude our discussion of the MRF-FD model by reporting test set effective-
ness results. The results are given in Table 3.8. The improvements over the MRF-FI
model are highly consistent, even more so than the improvements we saw with the
MRF-SD model. Consistent and significant improvements in mean average preci-
sion and geometric mean average precision are observed on every data set except
AP. Furthermore, both precision at 10 and R-prec are consistently improved across
nearly all of the data sets, as well.

These results indicate that the MRF-FD model is better at improving precision at
the top of the ranked list. This suggests that modeling dependencies between non-
adjacent query terms, via the use of ordered and unordered features, enhances preci-
sion more so than modeling dependencies between adjacent query terms. By using
the full dependence model, we impose a more global (i.e., across all query terms)
type of proximity constraint on the query terms, whereas the sequential dependence
model imposes more of a local (i.e., only between adjacent query terms) proximity
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constraint. Hence, the MRF-FD model promotes documents where all of the query
terms occur within a close proximity to each other, and the MRF-SD model only
promotes documents based on the proximity of pairs of adjacent query terms. The
MRF-SD model, therefore, may result in lower quality matches that do not satisfy
the global proximity constraints imposed by the MRF-FD model, which may lead
to fewer relevant documents returned at the top of the ranked list.

Despite the fact that the MRF-SD model only enforces local proximity con-
straints, it is only significantly worse than the MRF-FD model on the WT10G data
set. The two models are statistically indistinguishable for all other metrics and data
sets.

This is an interesting result with practical ramifications. If a system builder
had to decide whether to implement the MRF-SD model or the MRF-FD model,
they would need to analyze this efficiency/effectiveness tradeoff closely. The re-
sults show that, statistically, there is often no difference between the two models.
However, as we showed, the MRF-FD model does tend to produce better results
across all data sets and metrics. In terms of efficiency, the MRF-SD model requires
less computation in order to rank documents, since there are only a linear number
of cliques. The MRF-FD model, on the other hand, has an exponential number of
cliques. Therefore, the key practical factors to consider are average query length,
importance of excellent effectiveness, and computational resources.

Recent advances in inverted indexing technology and query evaluation may be
able to significantly improve the efficiency by which both MRF-SD and MRF-FD
models can be evaluated. These new techniques, based on impact ordered indexes,
pre-compute complicated features and store them directly in the index (Anh and
Moffat 2005). Then, rather than computing an exponential number of feature func-
tions per query, the aggregated feature value can be read directly from the index. Of
course, applying such an indexing strategy requires a large amount of disk space to
store the “feature lists”, but could result in very fast query evaluation, especially
using recently developed query optimization techniques (Anh and Moffat 2006;
Strohman and Croft 2007).

6.2 Evaluation

In this section, we delve deeper into a number of issues related to the three basic
MRF models. By analyzing these issues, we help distill a better understanding of
the MRF model. Many of the insights described here can be widely applied to other
information retrieval models.

6.2.1 Smoothing

All three of the basic models have one or more model hyperparameters that con-
trol smoothing. These parameters live outside of the MRF model and must be tuned
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separately. Previous research has shown that language modeling effectiveness is of-
ten sensitive to the setting of the smoothing parameters (Zhai and Lafferty 2001b).
Therefore, it is important to consider how sensitive the effectiveness of the basic
models are to the setting of the hyperparameters.

There are two different hyperparameters associated with the basic models. They
are μt , which controls single term smoothing, and μw , which controls both ordered
and unordered window smoothing. We choose to smooth single terms different from
windows because terms tend to behave differently than windows and have different
occurrence statistics. Although not explored here, it is also possible to smooth the
ordered window features differently than the unordered windows. However, we feel
that the two window types are similar enough that they can be smoothed in the same
way.

Since nobody has ever applied smoothing to ordered and unordered windows in
this way, it is important to analyze how sensitive effectiveness is with regard to the
window smoothing parameters. Figure 3.5 plots the mean average precision surfaces
over a wide range of settings for μt and μw using the MRF-SD model for the AP,
WSJ, ROBUST04, and WT10G data set.

The surfaces show that, in general, effectiveness is more sensitive to the setting of
the window smoothing parameter (μw) than the term smoothing parameter (μt ). The
results suggest that it is important to tune the smoothing parameters, especially the
window smoothing parameter. These surfaces also support the decision to smooth
windows and terms differently, as it is apparent that setting μt = μw is often far
from the optimal setting.

Finally, we note that the AP, WSJ, and WT10G curves are shaped similarly. How-
ever, the ROBUST04 surface has a very distinct shape to it. The difference appears
to be that it is difficult to “saturate” the window smoothing parameter on the AP,
WSJ, and WT10G data sets, but that the window smoothing parameter quickly satu-
rates on the ROBUST04 collection. This result may have to do with the fact that the
ROBUST04 query set was specifically chosen to be difficult (for retrieval systems
built before 2004). It may be that these queries were “hard” because the models
that were applied to them did not take term proximity into account (Buckley 2004;
Voorhees 2004). Therefore, when we apply the model to these queries, it may be
possible to over smooth the window features, which reduces the effect of term prox-
imity on the ranking function and decreases effectiveness.

6.2.2 Collection Size

In Chap. 1, we described the various paradigm shifts that have occurred in informa-
tion retrieval. We argued that as collection sizes grew and average document lengths
increased, new types of features beyond term frequency and inverse document fre-
quency would become important. We argued that these new types of features that
go beyond bags of words would act to filter out all of the noisy matches that were
made by chance.

We test this hypothesis by analyzing how much better the MRF-FD model is
compared to the MRF-FI model across a range of data set sizes. This data is plotted
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Fig. 3.5 Training set mean average precision as a function of term and window smoothing param-
eters using the sequential dependence model on the AP, WSJ, ROBUST04, and WT01G data sets
(top to bottom)
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Fig. 3.5 (Continued)
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Fig. 3.6 Relationship
between the number of
documents in a collection and
the relative improvement in
mean average precision of the
MRF-FD model over unigram
language modeling
(MRF-FI). Note that the
x-axis is log scaled

in Fig. 3.6. In the figure, the x-axis represents the number of documents in the
collection (log scale) and the y-axis represents the relative improvement in mean
average precision of MRF-FD over MRF-FI.

Although there are only five data points, there is clearly an increasing trend in the
data, with bigger improvements seen for the larger collections. The trend, of course,
is not perfect, but it does help validate the hypothesis that bag of words features
begin to fail as collection sizes increase. It will be interesting to see whether this
trend continues as larger data sets are made available. Clearly, bag of words models,
such as language modeling or BM25, are not well suited for ad hoc retrieval against
Web-scale collections.

6.2.3 The Role of Features

We have just shown that going beyond the bag of words assumption and making use
of term proximity features is highly effective, especially on very large collections.
In this section, we take this analysis one step further and investigate the role of
various types of features across the data sets. This analysis provides insights into
why certain features are more effective than others on a given data set and helps us
understand which other types of features may be important in the future.

To aid the analysis, we compute statistics for various information retrieval fea-
tures. The statistics are computed in the following manner. For every query, we
compute the feature of interest for every document in D, the document set of inter-
est. The average feature value is then computed across all of the documents in D.
We then use the median of the average values as the primary statistic. We use the
median, rather than the average, because many of the feature distributions are highly
skewed. This procedure is carried out for the following features:

• Overlap— |Q∩D|
|Q| , which is the fraction of query terms that occur in the document.

If this value is 1, then every query term occurs in the document. We note that this
is similar in spirit to Buckley et al.’s titlestat measure (Buckley et al. 2006).
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Table 3.9 Median values for various statistics computed across judged relevant (Rel) and non-
relevant (Nonrel) documents

Overlap Avg. TF Avg. Dist. (Seq) Avg. Dist. (Tot)

Rel Nonrel Rel Nonrel Rel Nonrel Rel Nonrel

AP 0.63 0.52 2.6 1.84 212 207 215 210

WSJ 0.67 0.53 2.7 1.93 370 460 387 471

ROBUST04 0.67 0.53 2.9 2.42 430 4933 452 5998

WT10G 0.80 0.66 6.5 5.16 1389 10357 1414 10357

GOV2 0.94 0.76 18.6 18.79 7090 7826 7164 8017

• Average TF—
∑

w∈Q tfw,D

|Q| , which is the average term frequency of the query terms
in the document.

• Average Distance (Sequential)—The average distance (with respect to term po-
sitions) between every pair of query terms that are adjacent to each other. Single
term queries are ignored when computing this feature.

• Average Distance (Total)—The average distance between every pair of query
terms. Again, single term queries are ignored when computing this feature.

These features are meant to capture various bag of words features (overlap and av-
erage TF), as well as notions of term proximity (average distances).

The medians, as computed using the procedure described above, are given in
Table 3.9. Results are given for the AP, WSJ, ROBUST04, WT10G, and GOV2 data
sets. The statistics are computed for both the set of judged relevant documents and
the set of judged non-relevant documents. By comparing the median values of these
features in both sets, we are able to better understand which features discriminate
well between relevant and non-relevant documents.

Of course, the judged relevant and judged non-relevant documents are heavily
biased because of the pooling procedure used at TREC. However, these statistics
still provide valuable insights into the fine line between relevant and non-relevant
documents and what types of features are important for data sets with varying char-
acteristics.

We first analyze the overlap feature. As the results show, the overlap is higher
in the relevant set than in the non-relevant set. This is to be expected, as relevant
documents typically contain most of the query terms. However, there is a noticeable
increasing trend in the value as the collection size increases. This suggests that as
collections get larger, relevant documents that appear high in the ranked list (i.e.,
those that would get pooled and judged) will contain most, if not all, of the query
terms. This suggests that it might be useful to run the query as a simple conjunctive
Boolean query first, and then apply a more complex ranking function to the filtered
set of documents.

A similar trend exists for the average term frequency feature, with larger average
TF values for larger collections that contain longer documents. This, again, should
not be surprising, since collections that contain longer documents will naturally con-
tain more term occurrences. Furthermore, since many of the judgment pools include
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Fig. 3.7 Plot of average distance between adjacent query terms for WT10G data set. Coll rep-
resents the entire collection, nonrel the set of judged non-relevant documents, and rel the set of
judged relevant documents

a large number of runs that use bag of words models based on tf.idf scoring, it is
only natural for the results to be biased towards high term frequencies. The gap in
TF from the relevant to the non-relevant set is not very large, and therefore average
TF alone cannot be used as a very good discriminator. Indeed, it is very interest-
ing to observe that the median average TF of non-relevant documents for GOV2 is
larger than the median average TF of relevant documents. This suggests that many
of the bag of words models return documents that contain many chance occurrences
of the query terms. Since these are not meaningful occurrences of the query terms,
the documents were actually non-relevant. This is where the term proximity and
other types of features begin to become important, as we will now show.

The two term proximity features show the greatest discriminative potential of any
of the features we looked at, especially as collection sizes grow. For the AP and WSJ
collections, there is little difference between the term proximity features in the rele-
vant and non-relevant sets. However, for the ROBUST04, WT10G, and GOV2 data
sets, there is a noticeable divide between the term proximity characteristics of the
relevant and non-relevant document sets. The biggest divide occurs for the WT10G
data set, which, not surprisingly, showed the biggest boost in effectiveness when the
MRF-SD and MRF-FD models were used. These statistics validate the arguments
as to the importance of term proximity features, especially on larger collections.
They show that both local proximity, as modeled by the MRF-SD model, as well as
global proximity, as modeled by the MRF-FD model, actually model discriminative
characteristics of query terms that discriminate between relevant and non-relevant
documents.

Finally, in order to give an idea of the distribution of the average distance (se-
quential) feature, we plot a histogram and smoothed density estimate for the WT10g
data set in Fig. 3.7. In addition to the statistics about the judged relevant and non-
relevant documents, the same statistics were also computed for the entire set of
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documents. The entire set of documents is a much more realistic, less biased model
of “not relevant” than the judged non-relevant documents. As the figure shows, the
relevant distribution is highly skewed towards small values. The non-relevant distri-
bution is skewed, but not as much as the relevant distribution. The collection distri-
bution does not appear to be as skewed as the other distributions, but it is clear that
the average distances compute across the collection are generally much larger than
both the judged relevant and non-relevant documents.

6.2.4 Robustness

Next, we investigate the robustness of the MRF-SD and MRF-FD models. Here, we
define robustness as the number queries whose effectiveness is improved/hurt (and
by how much) as the result of applying these methods. A highly robust model will
significantly improve many queries over the baseline and only minimally hurt a few.

In order to evaluate the robustness of the MRF-SD and MRF-FD models, we plot
histograms that show how many queries were helped or hurt by a given amount.
These plots are given in Fig. 3.8. The bin labels indicate the relative change in
mean average precision with regard to the baseline MRF-FI model. We see from the
results that the distributions are skewed in the direction of positive improvements.
In fact, for most of the data sets, there are very few queries that are hurt by more
than 50%. Similarly, many queries are often improved by over 50% on every data
set.

These histograms are only useful for aggregate data analysis. However, we would
like to know which queries were the most helped and most hurt by these more
complex models. In Tables 3.10 and 3.11 we provide the 10 most improved and
10 most hurt queries when using the MRF-SD model on the ROBUST04 and GOV2
data sets, respectively.

The first observation we make about these results is that the most improved
queries are often those that have poor MRF-FI average precision (e.g., below 0.1).
Of course, since these queries are so poor, it is very easy to achieve large relative
improvements. However, some queries, such as price fixing (ROBUST04 topic 622),
big dig pork (GOV2 topic 835), and spanish civil war support (GOV2 topic 829)
are significantly improved and have “acceptable” MRF-SD average precision val-
ues. There are very few cases of queries with large MRF-FI average precisions being
significantly hurt when the MRF-SD model is applied to them.

The second observation is that queries consisting of meaningful, common two
word phrases, such as gasoline tax (ROBUST04 topic 700), price fixing (RO-
BUST04 topic 622), pol pot (GOV2 topic 843), and model railroads (GOV2 topic
830), are more likely to be improved than two word phrases that are not as common
or meaningful, such as ethnic population (ROBUST04 topic 651), tibet protesters
(ROBUST04 topic 612), eskimo history (GOV2 topic 837), and heredity obesity
(GOV2 topic 846). This may be the result of how ordered and unordered feature
weights are computed in the MRF-SD model. It may be useful in the future to in-
clude notions of lexical cohesiveness in the computation of ordered and unordered
phrase features in order to rectify this issue (Vechtomova et al. 2006).
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Fig. 3.8 Robustness of MRF-SD and MRF-FD models on the AP, WSJ, ROBUST04, WT10G,
and GOV2 test sets. The MRF-FI model is used as the baseline by which the improvements are
computed. The evaluation metric used is average precision

Finally, we note that parsing/stopword removal errors may have contributed to
the reduction in effectiveness observed for some of the queries. One clear example
of such an error is the query custers stand (GOV2 topic 822). The original title
is custer’s last stand. However, the query distillation process removes a large set
of stopwords, including the term last. When the MRF-SD model is applied to the
query custers stand, the exact phrase feature becomes a very poor feature, since the
actual exact phrase features that we want are custers last and last stand, instead of
custers stand. Interestingly, the query doctors borders (GOV2 topic 806), which is
originally doctors without borders is the most improved query for the GOV2 data
set. A better understanding of stopword removal from within phrases is needed in
order to deal with these cases in a more consistent manner.
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Table 3.10 The 10 most improved and 10 most hurt test set queries when using the MRF-SD
model on the ROBUST04 data set. Effectiveness is measure in terms of average precision

Topic Query MRF-FI MRF-SD % Change

615 timber exports asia 0.1477 0.0697 −52.81%

685 oscar winner selection 0.2689 0.1740 −35.29%

623 toxic chemical weapon 0.2982 0.2238 −24.95%

651 ethnic population 0.0381 0.0305 −19.95%

659 cruise health safety 0.3216 0.2589 −19.50%

644 exotic animals import 0.1719 0.1392 −19.02%

698 literacy rates africa 0.5278 0.4314 −18.26%

612 tibet protesters 0.4528 0.3733 −17.56%

695 white collar crime sentence 0.2746 0.2316 −15.66%

693 newspapers electronic media 0.3108 0.2680 −13.77%

· · ·
639 consumer line shopping 0.1353 0.2094 54.77%

629 abortion clinic attack 0.1568 0.2527 61.16%

700 gasoline tax 0.2811 0.4579 62.90%

684 part time benefits 0.0881 0.1482 68.22%

627 russian food crisis 0.0102 0.0175 71.57%

638 wrongful convictions 0.0231 0.0468 102.60%

690 college education advantage 0.0027 0.0062 129.63%

689 family planning aid 0.0224 0.0583 160.27%

666 thatcher resignation impact 0.0078 0.0333 326.92%

622 price fixing 0.0287 0.1354 371.78%

6.2.5 Long Queries

Up until this point, we have only considered queries that were constructed from the
title portion of the TREC topics. These queries tend to be very short, high qual-
ity queries that contain few, if any, function words. In this section, we examine
whether or not the MRF model maintains its effectiveness on long queries. In par-
ticular, we are interested in evaluating the model on queries constructed from the
description portion of the TREC topic. The description field contains a longer natu-
ral language description of the underlying information need and often contains more
useful terms. However, it also includes many function words. For this reason, a spe-
cial stopword list that contains common function words that often occur in TREC
description fields was developed. This stopword list is then applied to queries in
order to remove most of the noisy query terms, while keeping the important content
terms.

In order to evaluate long queries, we define two new basic MRF models designed
specifically for long queries. The first, MRF-FI-L, is a variant of the MRF-FI model.
The LM weighting function is replaced with another language modeling weighting
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Table 3.11 The 10 most improved and 10 most hurt test set queries when using the MRF-SD
model on the GOV2 data set. Effectiveness is measure in terms of average precision

Topic Query MRF-FI MRF-SD % Change

822 custers stand 0.0815 0.0562 −31.04%

833 iceland government 0.5150 0.3669 −28.76%

847 portugal world war ii 0.2513 0.1859 −26.02%

837 eskimo history 0.0622 0.0486 −21.86%

838 urban suburban coyotes 0.2778 0.2402 −13.53%

846 heredity obesity 0.1734 0.1517 −12.51%

816 usaid assistance galapagos 0.7751 0.7056 −8.97%

850 mississippi river flood 0.1799 0.1663 −7.56%

808 north korean counterfeiting 0.7212 0.6717 −6.86%

845 new jersey tomato 0.3892 0.3635 −6.60%

· · ·
825 national guard involvement iraq 0.0755 0.1183 56.69%

843 pol pot 0.3158 0.5012 58.71%

849 scalable vector graphics 0.2080 0.4029 93.70%

842 david mccullough 0.0806 0.1799 123.20%

805 identity theft passport 0.0412 0.0961 133.25%

844 segmental duplications 0.0543 0.1486 173.66%

830 model railroads 0.0327 0.0992 203.36%

829 spanish civil war support 0.0637 0.2183 242.70%

835 big dig pork 0.0593 0.2141 261.05%

806 doctors borders 0.0061 0.0750 1129.51%

function based on Jelinek–Mercer smoothing. This is done because previous re-
search has suggested that Jelinek–Mercer smoothing is more effective on longer
queries than Dirichlet smoothing (Zhai and Lafferty 2001b). This small change re-
sults in the following ranking function:

P(D|Q)
rank=

∑

(qi ,D)∈TQD

log

[(
1 − δt

) tfqi ,D

|D| + δt cfqi

|C|
]
, (3.25)

where δt is the term smoothing parameter. In a similar fashion, we modify the MRF-
SD model to use Jelinek–Mercer smoothing instead of Dirichlet smoothing. This
model has this ranking function:

P(D|Q)
rank= λTD

∑

(qi ,D)∈TQD

log

[(
1 − δt

) tfqi ,D

|D| + δt cfqi

|C|
]
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+ λOD

∑

(q1,q2,D)∈OQD

log

[(
1 − δw

) tf#1(q1q2),D

|D| + δw cf#1(q1q2)

|C|
]

+ λUD

∑

(q1,q2,D)∈UQD

log

[(
1 − δw

) tf#uw8(q1q2),D

|D|

+ δw cf#uw8(q1q2)

|C|
]
, (3.26)

where δw is the ordered and unordered window smoothing parameter. Both δt and
δw must be in the range [0,1].

The long query results are given in Table 3.12. These results show that the
MRF-SD-L model significantly outperforms the MRF-FI-L model on all data sets.
In fact, the improvements here are much larger than those observed for the short
queries, which signifies that modeling dependencies between adjacent query terms
is even more important for longer queries. One potential reason for this behav-
ior is the fact that longer queries often contain many more spurious terms that,
when matched in a bag of words setting, will return many poor documents. In-
stead, when the adjacency constraint is enforced, the number of these poor matches
is reduced.

These results also indicate that the longer queries are much less effective than
the shorter version of the queries (see Table 3.6). This poor effectiveness is likely
caused by the increased noise in the query. Although many function words are re-
moved from the queries during pre-processing, some make it into the query. Similar
results have been observed at TREC, as well (Voorhees 2004, 2005). This brings
up the question of whether or not more information, in the form of longer natural
language queries, should be expected to return better results than short keyword
queries. If the search engine were replaced by a librarian, then it is obvious that the
more information that you were to provide, the better the results would ultimately
be. However, natural language processing techniques have failed to have a positive
effect on retrieval effectiveness, especially for longer queries. Perhaps once natural
language techniques are improved, it may be reasonable to expect better effective-
ness from longer queries. However, it remains to be seen whether or not users of
information retrieval systems will be willing to enter long descriptive queries. In-
stead, the most likely answer in some technology that lies between short keyword
queries and fully descriptive queries. For example, a user interface that allows users

Table 3.12 Test set mean
average precision for
description-length queries
using full and sequential
dependence models. All
improvements are statistically
significant

MRF-FI-L MRF-SD-L

AP 0.1778 0.1956 (+10.0%)

WSJ 0.2395 0.2544 (+6.2%)

ROBUST04 0.2910 0.3120 (+7.2%)

WT10G 0.1288 0.1639 (+27.3%)

GOV2 0.2003 0.2412 (+20.4%)
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to enter a keyword query and then provides a set of simple options to focus their
search results. Such technologies are starting to show up in Web search engines, but
whether or not they will enter the mainstream remains yet to be seen.

6.2.6 BM25 Weighting

All of the basic MRFs described so far have used language modeling weighting
functions. As described in Chap. 2, the BM25 weighting function has been shown
to have effectiveness comparable to language modeling. For this reason, we are in-
terested in examining the effectiveness of MRF models built using BM25 weighting
functions. It is straightforward to modify any of the MRF models described thus
far to use BM25 weighting. In order to keep things relatively simple and provide
for an easy comparison, we choose to modify the MRF-SD model. The resulting
MRF-BM25 model is then given by the following canonical form:

(FI, TQD,BM25) : λTD
,

(FI, TQ, IDF) : λTQ
,

(SD,OQD,BM25-O-1) : λOD
,

(SD,OQ, IDF-O-1) : λOQ
,

(SD,OQD,BM25-U-4) : λUD
,

(SD,OQ, IDF-U-4) : λUQ
,

where the weighting functions are defined in Sect. 4.3. The MRF-BM25 model has
the same form as the MRF-SD model, but replaces the LM and ICF weighting func-
tions with analogous BM25 and IDF ones. This results in the following ranking
function:

P(D|Q)
rank= λTD

∑

(qi ,D)∈TQD

(kt
1 + 1)tfw,D

kt
1

(
(1 − bt ) + bt |D|

|D|avg

) + tfw,D

idf (w)

+ λOD

∑

(q1,q2,D)∈OQD

(kw
1 + 1)tf#1(q1q2),D

kw
1

(
(1 − bw) + bw |D|

|D|avg

) + tf#1(q1q2),D

× idf
(
#1(q2q2)

)

+ λUD

∑

(q1,q2,D)∈UQD

(kw
1 + 1)tf#uw8(q1q2),D

kw
1

(
(1 − bw) + bw |D|

|D|avg

) + tf#uw8(q1q2),D

× idf
(
#uw8(q1q2)

)
(3.27)

which has four hyperparameters, as opposed to the two hyperparameters in the
MRF-SD model. While the two extra parameters make the model more flexible,
to a certain extent, it also makes it more difficult to properly tune.
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Table 3.13 Test set results for the MRF-BM25 model. The †, ‡, and ∗ indicate statistically signif-
icant improvements over the MRF-FI, BM25 and MRF-SD models, respectively. Recommended
term and window hyperparameter values are also provided

AP WSJ ROBUST04 WT10G GOV2

MAP 0.2210† 0.3512†‡ 0.3101†‡ 0.2129†‡ 0.3476†‡

GMAP 0.1366†∗ 0.2471†‡ 0.2199†‡ 0.1181‡ 0.2817†‡∗
P@10 0.3140 0.5140† 0.4525† 0.3388 0.6100†‡∗
R-Prec 0.2666† 0.3698† 0.3366‡ 0.2508†‡ 0.3834†

(kt
1, b

t ) (1.75, 0.3) (1.5, 0.3) (0.5, 0.3) (0.5, 0.2) (1.0, 0.4)

(kw
1 , bw) (0.25, 0.1) (0.25, 0.1) (0.25, 0.0) (0.25, 0.0) (0.25, 0.0)

The results of the experiments using the MRF-BM25 model are shown in Ta-
ble 3.13. Test set results are given and significance tests are done comparing the
retrieval effectiveness against MRF-FI, BM25 (see Eq. 2.11) and MRF-SD. Ac-
cording to the primary evaluation metric, mean average precision, we see that the
MRF-BM25 is always significantly better than the MRF-FI model and significantly
better than BM25 on all data sets, except AP. Furthermore, the MRF-BM25 model
is statistically indistinguishable from the MRF-SD model. These results indicate
that the improvement in effectiveness we observed when using the MRF-SD model
was not specific to the language modeling weights used. Indeed, as we just showed,
similar improvements can be obtained using BM25 weights. Therefore, this gen-
eral form of model can be used in a “plug ’n play” manner, using any reasonable
weighting function.

6.2.7 Comparison to Bigram Model

We now compare the model against another non-bag of words model. The model
that we choose to compare against is the bigram language model (see Eq. 2.16),
ranked using query likelihood. This model has recently been shown to be one of the
most consistently effective non-bag of words models to date (Gao et al. 2004). We
compare the effectiveness of the model against the MRF-FI and MRF-SD models.
We choose the MRF-SD model since it is a direct generalization of the bigram model
and models no additional dependencies, thus making it the most similar model to
compare against.

In the experiments, we train the bigram model’s smoothing parameters to maxi-
mize mean average precision. The test set results are shown in Table 3.14. For each
data set, we provide a set of recommended parameter settings. Furthermore, we indi-
cate statistically significant improvements over the MRF-FI model and statistically
significant decreases in effectiveness versus the MRF-SD model.

The results show that the bigram model is significantly better than the MRF-FI
model across all data sets. This result is consistent with previous results (Gao et al.
2004). However, the model is significantly worse than the MRF-SD model on the
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Table 3.14 Test set results for the bigram language model. The † indicates a statistically signifi-
cant improvement over the MRF-FI model and the ↓ indicates a statistically significant decrease
in effectiveness compared to the MRF-SD model (i.e., MRF-SD > MRF-BM25). Recommended
smoothing parameter values are also provided

AP WSJ ROBUST04 WT10G GOV2

MAP 0.2116† 0.3319†↓ 0.3012†↓ 0.2165† 0.3371†

GMAP 0.1229 0.2313↓ 0.2076†↓ 0.1347† 0.2137†↓
P@10 0.3420 0.4880↓ 0.4343↓ 0.3061 0.5500

R-Prec 0.2537† 0.3561↓ 0.3339 0.2499† 0.3744†

μ1 2750 2250 1000 2750 1250

λ2 0.995 0.998 0.970 0.950 0.990

λ3 1.00 1.00 1.00 0.99 1.00

WSJ and ROBUST04 data sets. We note that the bigram model is never significantly
better than the MRF-SD model for any metric. This result indicates that while the
bigram model can be highly effective, the MRF-SD model is still a better choice,
based purely on effectiveness.

Furthermore, we argue that the MRF framework, in general, is always a better
choice than the bigram model. Since the MRF model clearly generalizes and super-
sedes the bigram model, it will always be more flexible and provide more modeling
options. Furthermore, the bigram model uses a very rigid set of unigram and bigram
features that cannot be changed across tasks. However, the MRF model provides an
easy mechanism for including a wide range of arbitrary features. Therefore, there is
little reason to choose the bigram model over the MRF model.

One particularly interesting result of the bigram experiments is that the improve-
ment over the MRF-FI model increases as the collection size grows in a similar
manner to the MRF-SD model. This result further supports the claim that term de-
pendence and term proximity features are of the utmost importance when collection
sizes grow, document lengths increase, and collections become noisier.

6.2.8 Generalization

Finally, we investigate several aspects of how well the MRF model parameters gen-
eralize. An underlying goal of parameter selection strategies is to produce a model
that generalizes well. A model is said to generalize well if, when trained on one set
of data, remains effective on an unseen test set. A model that is capable of achieving
excellent effectiveness on a training set but performs poorly on a test set is of mini-
mal value. Therefore, if some parameter selection method results in effectiveness m̂,
and the optimal effectiveness is m∗, we then compute the following:

G = m̂

m∗ (3.28)
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Table 3.15 Intracollection generalization results for mean average precision. Values given are
effectiveness ratios

AP WSJ ROBUST04 WT10G GOV2 Avg.

LM 99.33 99.57 100.0 94.28 99.42 98.52

BM25 99.35 99.67 98.67 98.34 99.79 99.17

F2EXP 100.0 99.97 97.95 95.50 99.66 98.62

MRF-SD 97.93 97.39 99.23 100.0 100.0 98.91

which we define as the effectiveness ratio. An ideal model, that generalizes per-
fectly, would achieve an effectiveness ratio of 1 for every unseen data set. In in-
formation retrieval, even a 2–5% change in some measures, such as mean aver-
age precision, can be statistically significant, and therefore effectiveness ratios be-
low 0.90 indicate a model’s inability to generalize can severely hinder its effec-
tiveness. Most reasonable retrieval models will have an effectiveness ratio greater
than 0.95.

We are particularly interested in intracollection and intercollection generaliza-
tion, which are two different ways of measuring the generalization properties of a
model, which we now describe.

Intracollection generalization deals with how well a model trained on a set of
topics from some collection generalizes to another set of topics on that same col-
lection. This is a common setting in TREC evaluations, where collections are often
reused from year to year, and systems are typically trained on the topics from the
previous year(s).

We ran a number of experiments to test the intracollection properties of vari-
ous retrieval models. The retrieval models considered are language modeling (LM),
BM25, F2EXP (an axiomatic retrieval model that was designed to be less sensitive
to parameter estimation (Fang and Zhai 2005)), and the MRF-SD model. In these
experiments, parameters are estimated by maximizing mean average precision on
the training set. Models are evaluated according to the effectiveness ratio on the
test set. The metric used to compute the effectiveness ratio is mean average preci-
sion.

The results are given in Table 3.15. The table lists the effectiveness ratios of
each model across each data set, as well as the average effectiveness ratio across
all data sets. A model with perfect intracollection generalization would have an
effectiveness ratio of 100. The results indicate that all of the models do a relatively
good job of generalizing, with average effectiveness ratios well above 98%. We note
that the F2EXP model tends to generalize better within newswire collections, while
the dependence model generalizes better for Web collections. The BM25 model,
however, has the best average effectiveness ratio, which indicates its parameters do
a particularly good job of capturing collection-dependent characteristics, rather than
topic set-specific ones.

The other type of generalization we consider is intercollection generalization.
This type of generalization measures how well a model trained on a topic set from
one collection generalizes to a different topic set on a different collection. This is a
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Table 3.16 Intercollection generalization results. Table includes mean average precision effec-
tiveness ratios across all possible train/test splits using the F2EXP model

Train\Test AP WSJ ROBUST04 WT10G GOV2 Avg.

AP – 99.2 94.3 93.0 93.6 95.0

WSJ 99.1 – 97.4 96.4 96.2 97.3

ROBUST04 95.0 97.7 – 97.5 99.6 97.4

WT10G 91.8 92.7 96.5 – 93.4 93.4

GOV2 95.6 98.2 99.3 97.2 – 97.6

Avg. 95.4 96.9 96.9 96.0 95.8 96.2

Table 3.17 Intercollection generalization results. Table includes mean average precision effec-
tiveness ratios across all possible train/test splits using the MRF-SD model

Train\Test AP WSJ ROBUST04 WT10G GOV2 Avg.

AP – 100 99.7 98.4 98.9 99.3

WSJ 100 – 99.7 98.4 98.9 99.3

ROBUST04 99.6 99.6 – 99.7 99.3 99.5

WT10G 98.1 98.9 99.8 – 97.0 98.5

GOV2 99.6 99.4 99.7 98.0 – 99.2

Avg. 99.3 99.5 99.7 98.7 98.5 99.1

practical scenario for ‘off the shelf’ retrieval systems that may be used across a wide
range of different collections. It is unlikely that the end users of these systems will
be willing or able to provide training data to the system, and therefore the system
must be shipped with a very solid set of pre-tuned, highly generalizable parameters.

In order to measure the intercollection generalization, we compute the effective-
ness ratio for every possible combination of training/test splits. The results for the
F2EXP and MRF-SD models are shown in Tables 3.16 and 3.17, respectively.

As we see from the table, the cross-collection effectiveness ratios for the MRF-
SD model are higher for every training/test set pair, with very few exceptions. In
fact, on average, the MRF-SD comes within 1% of the optimal setting regardless of
which collection is used for training, whereas the F2EXP model only comes within
4% of the optimal on average. The Dirichlet and BM25 models (not shown) have
average effectiveness ratios of 98.9% and 96.9%, respectively. Therefore, the MRF-
SD model and Dirichlet models are more robust when it comes to cross-collection
generalization and make them good candidates for “out of the box” implementa-
tions that require a single parameter setting to work well across a wide range of
collections.

As further evidence of the model’s generalization properties, Fig. 3.9 illustrates
the well-behaved, nearly concave surfaces that arise when mean average precision
is plotted over the multinomial parameter simplex of the MRF-SD ranking function
for various data sets. Each of the mean average precision surfaces has the same
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Fig. 3.9 Mean average precision values plotted over MRF-SD parameter simplex for AP, WSJ,
WT10g, and GOV2 collections

general form, which indicates that the features capture an inherent property that
persists across different types of collections. Although there is no guarantee that
such a nicely concave surface will exist for all features and all evaluation metrics,
it provides some evidence that the functions we are maximizing over the simplex
are not too difficult to optimize using simple algorithms, such as those described in
Chap. 6.

6.3 Summary of Results

For completeness, we summarize the main results of the ad hoc retrieval experi-
ments in Table 3.18. The table shows test set mean average precision across all data
sets for the MRF-FI, MRF-SD, and MRF-FD basic models. It also includes recom-
mended smoothing parameters for each collection, as well as recommended MRF
model parameters for each model.

These results show that the hand constructed non-bag of words MRF models
(MRF-SD and MRF-FD) consistently outperform the bag of words model (MRF-
FI). Although we only show results here that make use of language modeling
weighting functions, we note that the results achieved using the MRF-BM25 model,
which uses BM25 weighting functions, did consistently and significantly outper-
form the MRF-FI model in terms of mean average precision across all data sets,
thereby satisfying one of the over-arching goals of the model. As we will show in
Chap. 6, moving away from hand built MRFs towards automatically constructed
ones yields even more significant increases in effectiveness.
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Table 3.18 Summary of test set mean average precision for the MRF-FI, MRF-SD, and MRF-
FD models across all of the ad hoc retrieval data sets. Values in parenthesis denote percentage
improvement over MRF-FI model. A † indicates a statistically significant improvement over the
MRF-FI model, and a ‡ indicates a statistically significant improvement over the MRF-SD model.
Recommended smoothing values are given for each collection, and recommended MRF model
parameters are provided for each model

MRF-FI MRF-SD MRF-FD (μt ,μw)

AP 0.2077 0.2147 (+3.4%)† 0.2128 (+2.5%) (1750, 5000)

WSJ 0.3258 0.3425 (+4.8%) 0.3429 (+5.2%)† (2000, 1000)

ROBUST04 0.2920 0.3096 (+6.0%)† 0.3092 (+5.9%)† (1000, 750)

WT10g 0.1861 0.2053 (+10.3%)† 0.2140 (+15.0%)†‡ (1000, 6000)

GOV2 0.2984 0.3325 (+11.4%)† 0.3360 (+12.6%)† (1500, 4500)

(λTD
,λOD

,λUD
) N/A (0.85, 0.10, 0.05) (0.80, 0.10, 0.10)

7 Web Search

Web search is one of the most popular and widely used information retrieval ap-
plications. The goal of a Web search system is to return a set of Web pages that
are relevant to a user’s query. There are several important differences between ad
hoc retrieval and Web search. First, not all Web search queries are content-based,
or informational, searches. For example, a user who enters the query mcdonalds lo-
cations is not looking for documents that are about McDonalds locations. Instead,
they are likely searching for the Web page on the McDonald’s Web page that lists
where their restaurants are located. This type of query, where a user seeks out a
specific page that they either know exists or think is very likely to exist, is known
as a navigational query. Additionally, a user who enters the query cheap digital
cameras is neither seeking information about digital cameras nor seeking a spe-
cific page. Instead, the user is likely interested in purchasing a digital camera. Such
queries, which are intended to lead to an online transaction, are known as transac-
tional queries. A study done by Broder in 2002 reports that approximately 50% of
Web queries are informational, 20% navigational, and 30% transactional (Broder
2002).

Since these three query types are so different, they are often evaluated differ-
ently. Content-based (informational) Web retrieval was evaluated in the previous
section with the experiments on the WT10G and GOV2 data sets. Evaluation of
transactional queries is difficult, since it often requires product databases and query
click-through logs, which are not currently publicly available for privacy and intel-
lectual property reasons. In this section, we focus on navigational queries, for which
there are publicly available TREC data sets.

These data sets were used during the TREC Web Track (1999–2004) and the
TREC Terabyte Track (2004–2006). During these tracks, there were several naviga-
tional search-related subtasks. Of particular interest to us is the named page finding
task that was run during the TREC Terabyte Track in 2005 and 2006. We are in-
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Fig. 3.10 Example TREC
named page finding topics <num> Number: NP1048

<title> us embassy vietnam
</top>

<top>
<num> Number: NP1049
<title> phil english biography
</top>

<top>
<num> Number: NP1050
<title> tenet 9/11 testimony
</top>

<top>
<num> Number: NP1051
<title> hubble timeline
</top>

<top>
<num> Number: NP1052
<title> cdc west nile 2003 statistics by state
</top>

terested in this task because of the large data (GOV2) set and the large number of
queries available to experiment with (252 from 2005, 181 from 2006).

The named page finding task requires systems to find “bookmarkable” pages that
users either know exist or presume are likely to exist (Clarke et al. 2006). One of the
main differences between named page finding and ad hoc retrieval is that there is
typically only one relevant document for every named page finding query. Another
key difference is that the primary evaluation metric is mean reciprocal rank, instead
of mean average precision3. Several example named page finding topics are shown
in Fig. 3.10.

In the remainder of this section, we first review previously proposed approaches
to Web search (named page finding). We then describe the basic MRF model for
Web search. Finally, we evaluate the model on the TREC Terabyte Track named
page finding topics.

3Average precision is equal to reciprocal rank for queries with only one relevant document, so the
two measures will only differ for those topics that have more than one relevant document.
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7.1 Previous Models for Web Search

Web data sets are very different than standard ad hoc retrieval data sets. They are
typically larger and tend to be noisier, because users may publish their own content.
Furthermore, Web pages contain HTML markup and can link to other pages. These
additional pieces of information play a particularly important role for navigational
queries. For this reason, navigational search models often focus on link structure
and document structure.

Link structure refers to the hyperlink structure of the Web. Graph-based algo-
rithms are typically applied to the link structure of the Web in order to find hubs
and authoritative pages. Examples of these algorithms include PageRank and HITS
(Brin and Page 1998; Kleinberg 1999). These algorithms, along with other Web-
specific features such as inlink count, and URL depth have been shown to be useful
for improvement the effectiveness of navigational queries (Kraaij et al. 2002).

Methods that make use of document structure often treat certain HTML fields in
a special way. For example, a common technique is to weight the importance of text
occurring in various fields differently, such as the title field or the anchor text
pointing to the document (Ogilvie and Callan 2003; Robertson et al. 2004).

Recently, other aspects of Web search, such as user behavior, have been found to
be useful, but is beyond the scope of this work (Agichtein et al. 2006).

In this section, we use a bag of words language modeling approach as the base-
line. The model, which we refer to as LM-Mixture, makes use of both link structure
and document structure, has been shown to be highly effective in the past (Ogilvie
and Callan 2003). Given a query, documents are ranked under the model according
to:

P(D|Q) = P(D)
∏

w∈Q

∑
f P (f |D)P (w|D,f )

∑
D P (D)

∏
w∈Q

∑
f P (f |D)P (w|D,f )

rank= P(D)
∏

w∈Q

∑

f

P (f |D)P (w|D,f ), (3.29)

where P(w|D,f ) is the probability of generating term w from field f in docu-
ment D (i.e., this is a language model built from field f in document D), P(f |D)

is a mixing probability, and P(D) is the document’s prior probability. It is easy
to see that this model is closely related to the standard query likelihood ranking
function, except the monolithic document model is replaced with a mixture of field
models and a document prior is introduced.

There are other models that attempt to combine evidence from multiple fields,
including The BM25F model, which is a field weighted variant of BM25 (Robert-
son et al. 2004). The model is similar in nature to the mixture of language models
approach described here, but field weighting is done differently. Rather than weight-
ing terms after document length normalization is done, as is done in Eq. 3.29, term
weights are incorporated before document length normalization. How to properly
combine evidence and handle document length normalization in the presence of
multiple fields is still an open question (Spärck Jones 2005).
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In order to fully specify the model we must describe how to estimate P(w|D,f ),
P(f |D), and P(D). We begin with the field language model, P(w|D,f ). This
probability is estimated in a straightforward manner by treating all of the text that
appears in field f of document D as a pseudo-document. By doing so, we induce
the pseudo-document Df for field i and the pseudo-collection Cf , which is made
up of all of the pseudo-documents constructed from field f . Now, standard language
modeling estimation can be applied. We choose to model each field language model
as a Dirichlet smoothed language model, which results in the following estimate:

P(w|D,f ) =
tfw,Df

+ μt
f

cfw,f

|Cf |
|Df | + μt

f

, (3.30)

where all of the f subscripts refer to statistics computed in the pseudo-document/
pseudo-collection and μt

f specifies the smoothing parameter for the field. Since
there is a single smoothing parameter per field, accurate estimation may be difficult.
Hence, smoothing parameter values are typically chosen to be two times the average
length of pseudo-documents of type f . We follow this general rule of thumb in the
experiments here.

The mixing probabilities, P(f |D) can either be set to
|Df |
|D| or uniformly. Al-

ternatively, they can be hand or automatically tuned in order to maximize mean
reciprocal rank. In this work, we use a set of hand tuned values that have been found
to be effective in previous experiments.

7.2 Document Priors

There are many different document priors that can be estimated for navigational
Web search tasks. In this section, we describe how to estimate priors based on inlink
count and PageRank. The priors are estimated using TREC relevance judgments, al-
though they may also be estimated in a completely unsupervised or semi-supervised
setting, given other resources, such as query click logs.

When computing P(D), we really are computing the prior probability that doc-
ument D is relevant given some external piece of evidence about D, such as the
number of links pointing to D or the PageRank of D. Therefore, instead of estimat-
ing P(D) directly, we estimate P(R = 1|evidence), where evidence is some random
variable that only depends on the document itself.

7.2.1 Inlink Count

The inlink count of document D is the number of Web pages that point to D. Inlink
count is often a good feature to use for navigational queries because the pages that
are “bookmarkable” often have a high inlink count associated with them. There-
fore, we expect documents with larger numbers of inlinks to have a higher prior
probability of relevance.
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Fig. 3.11 Inlink count prior

Following the framework we described above, we compute the probability of
relevance, given the log of the inlink count (simply denoted l). We choose to apply
the log function in order to compress the range of values to a more reasonable set.
The resulting probability estimate, using Bayes’ rule, is:

P(R = 1|l = X) = P(l = X|R = 1)P (R = 1)

P (l = X)
, (3.31)

where P(l = X|R) and P(R) are estimated empirically from TREC relevance judg-
ments. The relevance judgments used are from the TREC 2001 and 2002 Web Track
data set. Later, we will apply these priors to the larger TREC 2005–2006 Terabyte
Track data set (GOV2). It is unknown how well these probabilities will generalize to
this newer, larger data set, but we feel that the estimates should be fairly reasonable.

Figure 3.11 shows the estimated priors across a range of log inlink counts. We see
that the prior probability of relevance increases as the number of inlinks increases,
as expected.

7.2.2 PageRank

The problem with using inlink count alone is that there is no notion of authority
involved. It is very easy for a spammer to create thousands of fake Web pages and
have them all point to each other (this is a so-called link farm). This results in a large
number of inlinks, but none of the pages are actually authoritative at all. The Page-
Rank algorithm is based on the notion of spreading authority throughout a graph.
The basic idea is that if a page has many inlinks from highly authoritative pages,
then that page is likely to be authoritative, as well.

The PageRank of document D, denoted rD,t , can be computed iteratively. Let t

denote the current iteration. Then, the PageRank is computed as follows:

rD,t+1 = α + (1 − α)
∑

p : p→D

rp,t

deg(p)
, (3.32)
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Table 3.19 URLs in the
GOV2 collection with the
largest raw PageRank scores.
The number of inlinks for
each URL is also shown

URL # Inlinks

http://www.usgs.gov 1,329,036

http://www.ca.gov 471,819

http://www.nih.gov 1,502,324

http://www.epa.gov 1,386,329

http://es.epa.gov/cgi-bin/ncerqamail.pl 1,349,131

http://es.epa.gov/ncer/rfa 1,344,630

http://www.hhs.gov 778,652

http://www.ornl.gov 639,570

http://www.doi.gov 761,456

http://www.medicare.gov 186,948

where α ∈ (0,1] affects the amount of “random surfing” done, p → D indicates
that page p links to document D, and deg(p) is the number of links out of page p.
The values are iteratively updated and renormalized until they converge to the raw
PageRank value. There are other ways of computing PageRank, for example, by
solving an eigenvector problem, but we use the iterative approach for simplicity.

The raw PageRank is a value between 0 and 1. We assume that the true authorita-
tiveness, or importance, of Web pages is Zipfian in nature. That is, there are a small
number of highly authoritative pages, a larger number of less authoritative pages,
all the way down to a very large number of non-authoritative pages. Therefore, in
order to impose such a distribution, we sort the documents by their raw PageRank
scores and then geometrically bin the documents into 11 bins. This idea was inspired
by Anh and Moffat’s work on document-centric impact weighting (Anh and Mof-
fat 2005). This results in each document being assigned a binned PageRank value
between 0 and 10. We use these binned PageRank values in order to estimate the
document prior.

The PageRank prior is computed in a similar fashion to the inlink count prior, as
follows:

P(R = 1|PR = X) = P(PR = X|R = 1)P (R = 1)

P (PR = X)
, (3.33)

where PR denotes the binned PageRank value. Table 3.19 shows a list of the Web
pages in the GOV2 collection with the highest raw PageRank values and the number
of inlinks those pages have. Although many of the pages with the highest PageRank
have very many inlinks, this is not always the case. The best example of this is the
fact that the Medicare Web page has such a high PageRank, but only has 186,948
inlinks.

Lastly, Fig. 3.12 shows the estimated document priors for each binned PageRank
value. The plot has an interesting shape to it. Documents with very low PageRank
are given a very low prior probability of relevance. The prior probability dramati-
cally increases as the PageRank reaches 8 and 9. Interestingly, a higher prior is as-
signed to documents with PageRank 8 than 9 and that a zero probability is assigned

http://www.usgs.gov
http://www.ca.gov
http://www.nih.gov
http://www.epa.gov
http://es.epa.gov/cgi-bin/ncerqamail.pl
http://es.epa.gov/ncer/rfa
http://www.hhs.gov
http://www.ornl.gov
http://www.doi.gov
http://www.medicare.gov
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Fig. 3.12 PageRank prior

to documents with PageRank 10. This is very likely the result of data sparseness
and the fact that there are so few documents with PageRank 9 or 10 in the relevance
judgments.

7.3 MRF Models for Web Search

We now describe one of the many possible ways to use the MRF model for Web
search. The mixture of language modeling approach described earlier (see Eq. 3.29)
has been shown to be highly effective. Therefore, we wish to use the MRF frame-
work to generalize this model. By doing so, we will be able to model dependencies
between query terms, which allows us to make use of phrase and term proximity
weighting functions, which were shown to be very valuable for the ad hoc retrieval
task.

To achieve this, we modify the MRF-SD model by replacing the standard lan-
guage modeling feature weights (i.e., LM, LM-O-1, and LM-U-4) with analogous
mixture of language modeling feature weights. In addition, we add the inlink count
and PageRank document priors as feature weights defined over the document clique,
as well. These new feature weights, named NP, NP-O-M , NP-U-N , INLINK, and
PAGERANK are defined in Table 3.20. This gives rise to the basic MRF for Web
search, which we call the MRF-NP model, defined by the following canonical form:

(FI, TQD,NP) : λTD
,

(FI, TQ, ICF) : λTQ
,

(SD,OQD,NP-O-1) : λOD
,

(SD,OQ, ICF-O-1) : λOQ
,

(SD,OQD,NP-U-4) : λUD
,

(SD,OQ, ICF-U-4) : λUQ
,
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Table 3.20 Summary of named page finding weighting functions. The NP, NP-O-M , and NP-U-N
weighting functions are based on mixtures of field language models, and INLINK and PAGER-
ANK are based on document priors. The αf values correspond to the mixing probabilities P (f |D).
Term and window smoothing parameters are denoted by μt

f and μw
f , respectively

NP

fNP,T (qi ,D) = log

[∑
f αf

tfqi ,Df
+μt

f

cfqi ,f|Cf |
|Df |+μt

f

]

NP-O-M

fNP,O,M({qi},D) = log

[∑
f αf

tf#M({qi }),Df
+μw

f

cf#M({qi }),f|Cf |
|Df |+μw

f

]

NP-U-N

fNP,U,N ({qi},D) = log

[∑
f αf

tf#uwNk({qi }),Df
+μw

f

cf#uwNk({qi }),f|Cf |
|Df |+μw

f

]

INLINK

fINLINK(D) = logP (R = 1|l = l(D))

PAGERANK

fPR(D) = logP (R = 1|PR = PR(D))

(FI, D, INLINK) : λIN,

(FI, D,PAGERANK) : λPR.

Using this canonical form, the MRF-NP ranking function is given by:

P(D|Q)

rank= λTD

∑

(qi ,D)∈TQD

log

[
∑

f

αf

tfqi ,Df
+ μt

f

cfqi ,f|Cf |
|Df | + μt

f

]

+ λOD

∑

(q1,q2,D)∈OQD

log

[
∑

f

αf

tf#1(q1q2),Df
+ μw

f

cf# 1(q1q2),f

|Cf |
|Df | + μw

f

]

+ λUD

∑

(q1,q2,D)∈UQD

log

[
∑

f

αf

tf#uw8(q1q2),Df
+ μw

f

cf#uw8(q1q2),f

|Cf |
|Df | + μw

f

]

+ λIN logP
(
R = 1|l = l(D)

)

+ λPR logP
(
R = 1|PR = PR(D)

)
. (3.34)
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The model provides a mechanism for weighting fields (αf ), single term matches
(λTD

), ordered phrases (λOD
), unordered phrases (λUD

), inlink prior (λIN), and
PageRank prior (λPR). Thus, the model encompasses many of the features that have
been shown to be effective for navigational Web search.

There are many alternative ways that this model may have been constructed. For
example, rather than mixing the field language models within the NP weighting
functions, each field language model could be its own feature weight. This would
promote the αf hyperparameters to full-fledged MRF model parameters, which
would allow them to be estimated using the machinery described in Chap. 6. Al-
though we do not attempt to empirically analyze the differences in the formulations,
we believe that there would be little, if any, difference in the effectiveness of the two
models.

7.4 Results

We now empirically evaluate the retrieval effectiveness of the MRF-NP model. For
the experiments, we use the TREC 2005 and 2006 Terabyte Track named page find-
ing queries. These queries are evaluated against the GOV2 collection. Please refer
to Appendix A for further information on this data set.

In the experiments, we consider four fields in the mixture models. These fields are
body (full text of the Web page), title (text within HTML elements) heading
(text within h1, h2, h3, and h4 elements), and anchor (all of the anchor text
that points to a page). The collection was stemmed using the Porter stemmer and
a standard list of 418 stopwords was applied. The MRF model parameters were
estimated by maximizing mean reciprocal rank. No more than 1000 results were
returned for each query.

Little research has been done on term dependence and non-bag of words mod-
els for named page finding. Hence, for experimental purposes, we use the mixture
of language models approach as the baseline. In order to ensure fairness, the LM-
Mixture model uses the same fields, mixing parameters (αf ), and smoothing pa-
rameters (μt

f ) as the MRF-NP model. In addition, we also use the inlink count and
PageRank document priors with the LM-Mixture model. The two priors are com-
bined into a single prior as described in Kraaij et al. (2002).

The results of the experiments are given in Table 3.21. We report results for mean
reciprocal rank (MRR), success at rank 10 (S@10), and not found. See Appendix B
for definitions of these metrics.

Table 3.21 Summary of named page finding results

LM-Mixture MRF-NP

MRR S@10 Not Found MRR S@10 Not Found

TREC 2005 0.414 0.563 0.175 0.441 0.583 0.171

TREC 2006 0.472 0.657 0.133 0.512 0.696 0.138
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Table 3.22 Results
comparing the mean
reciprocal rank of the
LM-Mixture and MRF-NP
models with and without
document priors

LM-Mixture MRF-NP

No Prior Prior No Prior Prior

0.463 0.472 0.498 0.512

The results show that the MRF-NP model outperforms the baseline language
modeling mixture model in terms of MRR on both data sets. There is 6.5% im-
provement on the 2005 queries and a 8.5% improvement on the 2006 queries.
Both of these results are statistically significant. Furthermore, the S@10 metric
is improved on both data sets, as well, indicating that the MRF-NP model pulls
relevant documents into the top 10. The last metric, not found, does not change
significantly for the two models, which indicates that they are both relatively
stable in terms of completely failing to find any relevant documents. Although
these numbers are relatively good, there is still considerable room for improve-
ment.

One thing that these results do not reveal, however, is how much of the increase
in effectiveness comes from the term proximity features and how much comes from
the document priors. In Table 3.22, we report the results of an ablation test that at-
tempts to quantify the importance of each type of feature. The results show that doc-
ument priors improve effectiveness 1.9% on for the LM-Mixture model and 2.8%
for the MRF-NP model. This indicates that the MRF model does a better job at
combining the evidence from the document priors than the LM-Mixture model. As
for the term proximity features, there is an improvement of 7.6% when no priors are
used, and an improvement of 8.5% when priors are used. These results show that
the term proximity features account for most of the improvement in effectiveness
and that, when used in conjunction with the document priors, there is a small addi-
tive effect. Therefore, despite what Google would like you to think about PageRank
being the heart of their ranking function4, it appears as though, in reality, PageRank
is far less important than fundamental information retrieval features, such as term
proximity.

As with the previous analysis, we are interested in developing a better under-
standing of the types of queries the MRF-based model excels at, and those it fails at.
Table 3.23 lists the 10 most helped and 10 most hurt queries from the 2006 data set.
These examples do not show any clear trends as to which types of queries are likely
to be helped or hurt by the model. In the future, it may be valuable to do an analysis
to determine if the most helped queries can be automatically detected using more
sophisticated techniques, such as the so-called notion of concept density (Diaz and
Metzler 2006).

Finally, we examine the robustness of the MRF-NP method. The results are given
in Fig. 3.13. These results are similar to the ad hoc retrieval results, with many
queries experiencing a large increase in reciprocal rank, and a small number expe-

4http://www.google.com/technology/.

http://www.google.com/technology/
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Table 3.23 The 10 most improved and 10 most hurt queries on the TREC 2006 Terabyte Track
named page finding data set. Effectiveness is measured in terms of reciprocal rank

Topic Query LM-Mixture MRF-NP % Change

980 medline search 0.00 0.00 −100.0%

962 us iraq rebuilding accomplishments 0.01 <0.00 −80.0%

1038 USPTO Guide and manuals 0.33 0.09 −72.7%

922 marine mammal gray whale 0.33 0.11 −66.6%

906 kickstart deviceprobe 0.33 0.17 −50.00%

943 american folklife center homepage 1.00 0.50 −50.0%

1033 Coastal & Marine Geology InfoBank 0.06 0.04 −33.3%

916 Texas Department of Banking, Agency
Philosophy

0.02 0.01 −31.5%

1005 bay trail map 0.20 0.14 −28.6%

1006 olympic games salt lake city new jobs 0.01 0.01 −26.6%

· · ·
1041 CDC homepage <0.00 0.01 204.2%

936 patent DRAM cell constructions 0.14 0.50 250.0%

939 Sun Earth student section 0.14 0.50 250.0%

951 us embassy vienna 0.14 0.50 250.0%

984 informal personal caregiver employment 0.13 0.50 300.0%

1030 Space Shuttle Mission #75 0.03 0.14 442.9%

912 Tips for Mobile Homes Residents in
Wisconsin

0.03 0.25 650.0%

903 reasons to reduce waste 0.13 1.00 700.0%

1008 land use bill december 2003 0.02 0.17 816.7%

1027 1997 Surface Flows to Nevada from
Canadian Province of Origin, by Truck

0.10 1.00 900.0%

Fig. 3.13 Robustness of the MRF-NP models for the 2005 and 2006 Terabyte Track named page
finding data sets. The LM-Mixture model is used as the baseline by which the improvements were
computed. The evaluation metric used is reciprocal rank
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riencing less significant decreases. The reason why there is a large peak in the [0%,
25%] bin is because the effectiveness of a large number of queries do not change
at all. The large peak around [50%, 75%] is likely the result of how the recipro-
cal rank is computed. If a relevant document moves up in the ranked list by a very
small number of positions, then, depending on where in the ranked list it original
appeared, the increase in reciprocal rank is likely to fall into this range.
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