Skip to main content

Geometrical Regular Languages and Linear Diophantine Equations

  • Conference paper
Descriptional Complexity of Formal Systems (DCFS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6808))

Included in the following conference series:

Abstract

We present a new method for checking whether a regular language over an arbitrarily large alphabet is semi-geometrical or whether it is geometrical. This method makes use first of the partitioning of the state diagram of the minimal automaton of the language into strongly connected components and secondly of the enumeration of the simple cycles in each component. It is based on the construction of systems of linear Diophantine equations the coefficients of which are deduced from the the set of simple cycles. This paper addresses the case of a strongly connected graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanpain, B., Champarnaud, J.-M., Dubernard, J.P.: Geometrical languages. In: Martin-Vide, C. (ed.) International Conference on Language Theory and Automata (LATA 2007). GRLMC Universitat Rovira I Virgili, vol. 35(07), pp. 127–138 (2007)

    Google Scholar 

  2. Brauer, A.: On a problem of partitions. Amer. J. Math. 64, 299–312 (1942)

    Article  MATH  Google Scholar 

  3. Carpentier, F.: Systèmes d’équations diophantiennes et test de géométricité sur un langage rationnel. Rapport de master, Université de Rouen, France (2008)

    Google Scholar 

  4. Champarnaud, J.-M., Dubernard, J.P., Jeanne, H.: Geometricity of binary regular languages. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 178–189. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Champarnaud, J.-M., Dubernard, J.P., Jeanne, H.: Regular geometrical languages and tiling the plane. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 69–78. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Champarnaud, J.-M., Hansel, G.: Puissances des matrices booléennes. Unsubmitted manuscript, Université de Rouen, France (2005)

    Google Scholar 

  7. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3), 149–158 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. d’Alessandro, F., Intrigila, B., Varricchio, S.: On some counting problems for semi-linear sets. CoRR, abs/0907.3005 (2009)

    Google Scholar 

  9. Eilenberg, S.: Automata, languages and machines, vol. B. Academic Press, New York (1976)

    MATH  Google Scholar 

  10. Geldenhuys, J., van der Merwe, B., van Zijl, L.: Reducing nondeterministic finite automata with SAT solvers. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.) FSMNLP 2009. LNCS, vol. 6062, pp. 81–92. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Geniet, D., Largeteau, G.: WCET free time analysis of hard real-time systems on multiprocessors: A regular language-based model. Theor. Comput. Sci. 388(1-3), 26–52 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Golomb, S.W.: Polyominoes: Puzzles, patterns, problems, and packings. Princeton Academic Press, London (1996)

    MATH  Google Scholar 

  13. LinBox Group. Linbox project: Exact computational linear algebra (2002), http://www.linalg.org

  14. Holladay, J.C., Varga, R.S.: On powers of non negative matrices. Proc. Amer. Math. Soc. 9(4), 631–634 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kleene, S.: Representation of events in nerve nets and finite automata. Automata Studies 34, 3–41 (1956); Ann. Math. Studies

    MathSciNet  Google Scholar 

  16. Mordell, L.: Diophantine equations. Academic Press, London (1969)

    MATH  Google Scholar 

  17. Mulders, T., Storjohann, A.: Certified dense linear system solving. J. Symb. Comput. 37(4), 485–510 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Myhill, J.: Finite automata and the representation of events. WADD TR-57-624, 112–137 (1957)

    Google Scholar 

  19. Nerode, A.: Linear automata transformation. Proceedings of AMS 9, 541–544 (1958)

    Article  MATH  Google Scholar 

  20. Paranthoën, T.: Génération aléatoire et structure des automates à états finis. PhD, Université de Rouen, France (2004)

    Google Scholar 

  21. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  22. Robinson, R.W.: Counting strongly connected finite automata. In: Alavi, Y., et al. (eds.) Graph Theory with Applications to Algorithms and Computer Science, pp. 671–685. Wiley, New York (1985)

    Google Scholar 

  23. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, New York (1986)

    MATH  Google Scholar 

  24. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tarjan, R.E.: Enumeration of the elementary circuits of a directed graph. SIAM J. Comput. 2, 211–216 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  26. The Polylib Team. Polylib User’s Manual. IRISA, France (2002), www.irisa.fr/polylib/doc/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Champarnaud, JM., Dubernard, JP., Guingne, F., Jeanne, H. (2011). Geometrical Regular Languages and Linear Diophantine Equations. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2011. Lecture Notes in Computer Science, vol 6808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22600-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22600-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22599-4

  • Online ISBN: 978-3-642-22600-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics