
12. Conclusion

For natural language communication to be comfortable, the use of the signs
must be flexible (robust). Therefore, one challenge in building a talking robot
is to reproduce the flexibility which is integral to human communication.

In DBS, this flexibility has three aspects. The first is the ability (i) to change
levels of abstraction effortlessly and (ii) to use language indirectly as in analo-
gies, metaphors, and so on. This aspect is based on inferences. Derived and ap-
plied automatically, the inferences are triggered by the evaluated data stream
provided by the agent’s cognition.

The second aspect inheres in the nature of pattern matching. This aspect
of flexibility is handled by schemata which utilize restricted variables, core
values, and the semantic relations of structure, enabling highly differentiated
retrieval. Pattern matching is used, for example, in recognition, when raw data
are classified by concept types, and in retrieval, when schemata activate rele-
vant contents in the database.

The third aspect is the ability of the hearer to ask for clarification. This is
another aspect handled by inferences.

These aspects of flexibility result combined in practically unlimited expres-
sive power, for example, in data mining. In an alert DBS robot, recognition,
subactivation, intersection, and inferencing are continuously running and pro-
vide autonomous control with the stored world knowledge and the experiences
relevant for maintaining the agent in a state of balance.

12.1 Level of Abstraction

The construction of an artificial agent with language may be compared to the
construction of an airplane. For both, there is a natural prototype with which
they share certain crucial properties and from which they differ in others.

An airplane (artificial model) and a bird (natural prototype) have in common
that both stay airborne according to the same principles of the theory of aero-
dynamics. They differ, however, in that lift and propulsion are combined in the
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flapping wings of birds, but separated in planes into the fixed wing for lift and
the propeller or jet engine for propulsion.

Correspondingly, an artificial DBS agent and its human prototype have in
common that both have a memory connected to external interfaces. An ex-
ample of their many differences, in contrast, is that DBS uses the equality of
core values for sorting proplets into certain token lines of a Word Bank, while
the natural counterpart presumably uses a more differentiated similarity metric
and different principles of storage and retrieval.

Orthogonal to this analogy between artificial flying and artificial cognition
is a crucial difference regarding their interaction with the human user. In an
airplane, the method of being airborne is completely separate from its user-
friendliness for humans. The latter concerns the size of the doors and the seats,
the cabin pressure, the service, etc., while the former concerns the shape of the
wings, the manner of propulsion, the technique of takeoff and landing, etc.

For DBS as a computational theory of cognition, in contrast, maximizing
the similarity between the artificial agent and its natural prototype amounts
directly to maximizing the user-friendliness for humans.1 This correlation be-
tween the artificial agent and its natural prototype has been preformulated as
the Equation Principle in NLC’06, 1.3.1: 2

12.1.1 THE EQUATION PRINCIPLE OF DATABASE SEMANTICS

1. The more realistic the reconstruction of natural cognition, the better the
functioning of the artificial model.

2. The better the functioning of the artificial model, the more realistic the
reconstruction of natural cognition.

The principle is aimed at long-term upscaling. It applies at a level of abstrac-
tion at which it does not matter for completeness of function and data cov-
erage whether cognition is based on natural wetware or electronic hardware.3

The principle applies to the communication and reasoning aspects4 of a talking
agent which are (i) concretely observable and (ii) impact directly the quality
of free human-machine communication in natural language.

1 Without giving up any of the applications provided by computers already.
2 The principles presented in Chap. 1 of NLC’06 are (1) the Verification Principle, (2) the Equation

Principle (12.1.1), (3) the Objectivation Principle, (4) the Equivalence Principle for Interfaces (2.6.2),
and (5) the Equivalence Principle for Input/Output (2.6.3).

3 As for “true feelings,” they are equally inaccessible in natural and artificial agents. In fact, they may
be more accessible technically in artificial agents due to their service channel (Chap. 2).

4 It applies less to other aspects of the artificial agent, such as looks – as shown by C3PO and Ripley.
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The flexibility required by the human user depends in part on what the part-
ners in discourse accept as communication. For example, high brow journals
will accept only papers which exhibit the correct use of the current buzz words
in their domain, some bureaucrats are interested only in a small range of topics,
such as last name, first name, date of birth, and place of birth, the customers
in a bar, who will accept a stranger only if (s)he is a certain type, and so on. In
linguistics, these restrictions of a domain to a certain, well-defined protocol are
called register (Halliday and Hasan 1976). Register is important for commu-
nication, natural or artificial, because it defines the channel of communication
from a social point of view.

In this sense, the construction of a talking robot must solve the task of
register adaptation. The system should be able to smoothly agree with the
partner in discourse on a certain level of abstraction, to switch the level of
abstraction up or down, accompanied by adjustments of dialect and of into-
nation, to select between a declarative, interrogative, or imperative sentential
mood, to present content in a certain way, etc. This is the most fertile field of
Conversation Analysis, founded by Sacks and Schegloff (Schegloff 2007).5

The DBS robot requires a computational model of the motivational struc-
tures behind the actions of the partners in discourse and of the strategies guid-
ing these actions. For this, the Schegloff corpus provides many authentic ex-
amples. A DBS interpretation of the Schegloff corpus would have to translate
such founding notions as “pre,” “post,” “pre-pre,” etc., (time-linear!) into DBS
inferences with certain goals.

To overcome the inflexibility of current systems. Mohammadzadeh et al.
(2005) propose “template guided association,” aimed at XML. The DBS ap-
proach is similar: the templates are the schemata built from pattern proplets. In
addition to a highly effective primary key, DBS provides the option to search
for continuation values, morphosyntactic categories, base forms, matching in-
ferences, memorable outcomes, n-grams, frequencies, and so on.

The conceptual backbone of DBS is storing proplets in the order of their
arrival6 in combination with the “no-change” rule of a content-addressable
memory. Because the processing of content never modifies what is stored in
memory, there is a strict separation between the storage of content and its
processing. The storage operations, like the inferences, always write to the now

5 Schegloff’s examples are interesting and carefully analyzed, but a computational implementation
was not one of Schegloff’s goals. The observable facts are well documented, but the difficulties of
interpretation or of choosing between several possible interpretations are pointed out repeatedly.

6 In DBS, time is represented solely by the proplets’ relative order of arrival. There are three possibili-
ties: proplet A is earlier than than proplet B, proplet A is later than proplet B, or proplets A and B are
simultaneous. This order is reflected by the prn values of the proplets.



238 12. Conclusion

front, using the same, simple, transparent procedure (4.1.1) to ensure historical
accuracy and to conform to the structure of a content-addressable memory.

For correcting stored content, a comment is written to the now front, like
a diary entry noting a change in temperature (cf. 4.4.2 for an analogous ex-
ample). The comment refers to the content by means of addresses, providing
instant access. When subactivation lights up a content, any and all addresses
pointing at it are activated as well. When subactivation lights up an address,
the original and all the other addresses pointing at it are also subactivated. In
short, originals and their addresses are systematically co-subactivated in DBS.

12.2 RMD Corpus

While the core values, the semantic relations, and the levels of abstraction are
agent-internal constructs of cognition, the language data are agent-external
objects, collected, for example, as a corpus. Like any contemporary linguistic
theory, DBS requires corpora to obtain frequency distributions of various kinds
in a standardized framework. For example, when expanding automatic word
form recognition, recognition rates will improve best if the most frequent word
forms are integrated into the software first, and similarly for parsing syntactic-
semantic constructions, and so on.

The frequency information should be obtained from a standardized RMD
corpus, i.e., a Reference Monitor corpus structured into Domains. The refer-
ence corpus consists of a subcorpus for everyday language, complemented by
subcorpora for different domains such as law, medicine, physics, sport, poli-
tics (cf. von der Grün 1998), including fiction, e.g., movie scripts. Their sizes
may be determined by methods evolved from those used for the Brown corpus
(Kučera and Francis 1967, Francis and Kučera 1982).

The reference corpus is continued with monitor corpora following every year
(Sinclair 1991, p. 24–26). The annual monitor corpora resemble the reference
corpus in every way: overall size, choice of domains, domain sizes, etc. The
reference corpus and the monitor corpora use texts from a carefully selected
set of renewable language data: newspapers for everyday language, established
journals for specific domains, and a selection of fiction which appeared in the
year in question.

Most of the corpus building and analysis may be done completely automati-
cally. This holds (i) for the collecting of texts for the monitor corpora once the
initial set of sources has been settled on, (ii) for the statistical analysis once a
useful routine as been established. and (iii) for automatic word form recogni-
tion as well as syntactic-semantic parsing. Such automatic corpus processing
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replaces markup by hand, ensuring the quality of standardization necessary
for meaningful comparisons, and saving the labor of instructing and the cost
of remunerating large groups of markup personnel.7

A succession of monitor corpora allows a detailed view of how the language
and the culture are developing, in different domains and over many decades.
Statistical analysis will show, for example, how politics and natural disasters
cause a temporary frequency increase of certain words in certain domains.

A carefully built long-term RDM corpus is in the interest of the whole lan-
guage community and should be entrusted to the care of a national academy.
This would secure the necessary long-term funding, though much of the cost
could be recovered from commercial use of the continuously upgraded RDM
corpus of the natural language in question (Sect. 12.6).

In DBS, the routine of analyzing a corpus begins with running the corpus
through automatic word form recognition.8 The result is a set of proplets called
a content and stored in the content-addressable database of a Word Bank. Next,
semantic relations are established between proplets by means of syntactic-
semantic parsing. Finally, LA-think, inferences, and LA-speak are added.

Just as there is no limit to the amount of content stored in a Word Bank, at
least in principle, there is no limit to the amount of information that can be
added to the content. The information is integrated as a system of footnotes
and subfootnotes. The “footnotes” are realized as interpreted pointers to other
contents in the Word Bank. This does not increase the number of proplets in
the Word Bank, only the number of addresses connecting them.

The user may query the Word Bank content in natural language (provided
that the language software is available). Once an LA-think and an LA-speak
grammar have been added, the answers may be in the natural language of the
query. This method, though developed with carefully constructed input sen-
tences, may eventually be applied to free text such as pages in the Internet.
One benefit would be a quality of recall and precision unachievable by a sta-
tistical approach (cf. FoCL’99, Sects. 15.4, 15.5) or by manual markup.

12.3 Evolution

A computational model of natural language communication, defined at a level
of abstraction which applies to natural and artificial agents alike, need not
necessarily include the dimension of evolution. Instead, the software machine
could be built as a purely “synchronic” framework of computational function.
7 See Sect. 8.5 for the use of a corpus for the purpose of search space reduction in DBS.
8 The usual preprocessing assumed.
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Nevertheless, it would shed doubt on DBS as a theory if it turned out to be
incompatible with the mechanisms of evolution. By the same token, if DBS
can be shown to be analogous to evolution in some relevant process, this may
increase interest in DBS for aspects other than synchronic performance alone.

The DBS analysis of learning9 resembles evolution in that it starts from fixed
behavior patterns (FAPs) and reconstructs learning by disassembling the parts
and recombining them into adaptive behavior. For such a metamorphosis to be
automatic, the steps from one state to the other must (i) be small enough to be
driven by the interaction with the environment, (ii) be suitable for both “ag-
gregate states,” (iii) and evolve in a meaningful time-linear sequence, parallel
branches not excluded. The software would be a kind of genetic algorithm,
from which much could be learned for applications.

Another question raised by evolution is whether the language component
evolved from (i) a nonlanguage component or from (ii) a non-communication
component. This is in part a terminological question. The two dichotomies are
language and nonlanguage and communication and non-communication.

For example, a chameleon picking up an insect with its long tongue uses
a non-communication as well as a nonlanguage ability. Yet, like all liv-
ing beings, chameleons also have an ability to communicate with their con-
specifics.10 As far as we know, the chameleon kind of communication does not
satisfy criteria 3 and 4 for being a natural language listed in 2.2.3. Thus, the
chameleon uses nonlanguage communication abilities, for example, by chang-
ing the color of its skin to attract a mate (Karsten et al. 2009).

The two dichotomies may be used to construct two hypotheses about the
evolution of natural language, shown graphically as follows:

12.3.1 CONSECUTIVE VS. CONCURRENT HYPOTHESIS

language 
ability

ability
language communication 

ability

time line

transition to language
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non−language
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language ability evolves from non−language abilities   

b. Concurrent hypothesis:
language ability evolves from communication ability
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According to the consecutive hypothesis, the language ability evolved from
nonlanguage abilities. Theoretically, these could be divided into nonlanguage
communication and nonlanguage non-communication abilities. However,
because the consecutive hypothesis does not provide for a communication
component, language seems to evolve from non-communication abilities,
which is wrong.

The concurrent hypothesis, in contrast, assumes that the communication and
the non-communication abilities co-evolved from the outset. This provides the
two abilities with the same amount of time to evolve. Thus, when language
finally arrives as the last stage of the communication ability, it can rely on
many nonlanguage communication abilities evolved earlier. It can also rely
on a continuous, systematic interaction between the communication and the
non-communication (context) components.

Communication ability is necessary to all living beings at least to the de-
gree that reproduction is ensured. In evolution, reproduction is more impor-
tant than the survival of individual members because reproduction serves the
survival of the species as a whole. Communication is at the heart of evolution
because reproduction is the motor driving evolution, and communication with
conspecifics is at the heart of reproduction.

The concurrent hypothesis is in concord with modern work in ethology
(M. D. Hauser 1996). It suggests that the communication and the non-com-
munication abilities of an animal not only evolve in parallel, but also have
matching degrees of development. Accordingly, the cognitive abilities of a
squirrel to communicate with other squirrels, for example, are just as evolved
as its abilities for locomotion and behavior control.11

Furthermore, because even nonlanguage communication refers,12 the com-
munication and the non-communication abilities do not just grow in parallel,
but are continuously in close interaction. In DBS, this interaction is modeled
as a collaboration between the language and the context components. Natu-
ral language signs and contextual data interact in a software-mechanical way
during interpretation in the hear mode and production in the speak mode. In
short, designing the DBS robot in an evolutionary manner is another way of
broadening the empirical base.

The above considerations regarding the evolution of natural language have
a direct effect on the software design of DBS: if the communication and the

9 Sects. 6.1–6.3.
10 In addition to communication between conspecifics there is also the communication between different

species, for example, between a plant and an insect for pollination (symbiosis).
11 It would be thrilling to know what the little critters all have to communicate about.
12 For example, a warning call makes reference to a predator.
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noncommunication components are in such close functional interaction and
at such equal levels of evolutionary development, the simplest approach is to
program the two components essentially alike while paying close attention to
their interaction with each other and with their external interfaces. Designing,
using, and reusing software constructs which are as uniform and simple as
possible is also regarded as good programming practice.

12.4 Semantics

Is DBS really a semantics? Let us answer this question by a point by point
comparison with the reigning queen of semantics, Symbolic Logic.

The most important property common to Symbolic Logic and Database Se-
mantics is that they are both Aristotelian. At the core of the Aristotelian ap-
proach is the use of only two basic semantic relations of structure, namely (i)
coordination and (ii) functor-argument.

In Symbolic Logic, this fundamental insight is realized by (i) proposi-
tional calculus for extrapropositional coordination and (ii) predicate calculus
for intrapropositional functor-argument. These may be extended into (iii) ex-
trapropositional functor-argument 13and (iv) intrapropositional coordination.14

Extrapropositional coordination is represented in Symbolic Log by expres-
sions like ((p∧q)∨r). They are composed by the syntactic-semantic rules of
propositional calculus (cf. FoCL’99, 19.3.2).

In DBS, the logical connectives are introduced by function words, lexically
analyzed by automatic word form recognition. Called conjunctions, they carry
their semantic contribution as a value inside their proplet representation. In
DBS, the extrapropositional coordination corresponding to f(a)∧f’(a’)∧f”(a”)
is shown by example in 3.2.1 and abstractly as the schema 3.2.6.

Intrapropositional functor-arguments are represented in Symbolic Logic by
expressions like f(a,b), where f is a functor and a and b are arguments. These

13 However, the Donkey sentence 11.5.5 shows that the extension to subclauses is not always possible.
Though a lower level defect, it has been regarded as serious enough to spawn a massive body of
literature trying to repair it – within, or almost within, the tradition of predicate calculus.

14 Extending propositional calculus from extrapropositional to intrapropositional coordination also cre-
ates a problem for Symbolic Logic. It arises with examples like All the students gathered; John
and Mary are a happy couple; Suzy mixed the flower, the sugar, and the eggs; etc., which
intuitively suggest a collective, and not a distributive, reading (see Zweig 2008 for a overview; see
also Hausser 1974; Kempson et al. 1981).

The “mix” problem does not arise in extrapropositional coordination, just as the “donkey” prob-
lem does not occur in intrapropositional functor-argument. Within Symbolic Logic, the “mix prob-
lem” can be solved by proposing new quantifiers and/or connectives, while the “donkey” problem is
caused by failing scope and cannot be solved without uprooting the quantifier-based syntax and the
bracketing structure of predicate calculus. The DBS solution is based on the use of addresses (11.5.7).
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may be viewed as rudimentary parts of speech: f is like a two-place verb, while
a and b are like nouns serving as subject and object.15

The corresponding constructs in DBS are features, defined as attribute-value
pairs, using noun, verb, and adj as the core attributes of proplets. By distin-
guishing between the attribute and the value(s), there may be features such as
[noun: dog] which are more differentiated and intuitive than the individual
constants a1, a2, a2, . . . of Symbolic Logic, without any loss of generality.16 In
DBS, a functor-argument like f(a,b) of predicate calculus is shown by example
in 3.2.5 and represented abstractly as the schema 3.2.6.

In any semantics, there are two kinds of meaningful elements, (i) logical and
(ii) contingent. In predicate calculus, the logical elements are the connectives,
the quantifiers, the variables, and a certain bracket syntax, while the contingent
elements are letters for constants. In Database Semantics, the logical elements
are the attributes and the variables in the proplets, while the non-variable val-
ues, i.e., the symbols, indexicals, and names, are contingent.

The traits common to Symbolic Logic and DBS may be increased further by
taking the liberty to reinterpret the semantic interpretation of a sign-oriented
approach as the hear mode of an agent-oriented approach.17 In this way, the
sign-oriented approach may be taken to cover one of the three steps of the
natural language communication cycle.

This holds especially for Montague (1974), who shows in PTQ how to se-
mantically interpret surfaces of English by translating them into formulas of
predicate calculus. The translation is quasi-mechanical in that the reader can
go mentally through the rule applications and the lambda reductions as if going
through the steps of a proof. Montague formalizes the translation mechanism
as a Categorial Grammar with (i) a cleverly structured set-theoretical inter-
pretation and (ii) the reduction mechanism of typed lambda calculus (lambda
reduction).18

From the viewpoint of this agent-oriented reinterpretation, DBS may be seen
as completing Montague grammar in two ways. One completion is the exten-
sion of Montague grammar to the full cycle of natural natural language com-
munication by adding the think and the speak mode. The other completion is

15 Using typed lambda calculus, Montague (1974) worked hard to formalize functors and arguments set-
theoretically as semantic types with corresponding syntactic categories, fitting into the rule schemata
of Categorial Grammar. Lambda reduction in a typed lambda calculus may be viewed as a souped-up
version of the categorial canceling rules.

16 If needed, a feature may be represented abstractly as a pattern with the attribute and the values repre-
sented by variables. Cf. NLC’06, Sect. 4.1.

17 This reinterpretation is the founding assumption of SCG’84.
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replacing Montague’s quasi-mechanical interpretation method with the com-
putational automation provided by efficiently running software.

These two completions, however, have necessitated many solutions differ-
ent from Montague grammar in particular and Symbolic Logic in general. For
example, predicate calculus uses the logical elements to construct a syntac-
tic exoskeleton, while DBS integrates the logical and the contingent elements
into flat feature structures with ordered attributes (proplets) which code inter-
proplet relations solely by addresses, and are therefore order-free (3.2.4).

The difference between DBS and predicate calculus, in particular regarding
the role of quantifiers, may be shown in more detail with the following exam-
ple from Montague (1974, PTQ):

12.4.1 PREDICATE CALCULUS ANALYSIS OF Every man loves a woman.

reading 1: ∀x[man′(x) → ∃y[woman′(y) & love′(x, y)]]

reading 2: ∃y[woman′(y) & [∀x[man′(x) → love′(x, y)]]

This standard19 analysis of predicate calculus treats the English surface as syn-
tactically ambiguous. The reason is a scope ambiguity suggested by the creak-
ing hinges of its quasi-mechanical exoskeleton. The contingent elements are
man′, woman′, and love′.

In DBS the ambiguity alleged in 12.4.1 is not syntactic-semantic, but at best
pragmatic.20 The content of the sentence is shown as a set of proplets:

12.4.2 DBS ANALYSIS OF Every man loves a woman.
⎡
⎢⎢⎢⎣

noun: man
cat: snp
sem: exh pl
fnc: love
prn: 23

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

verb: love
cat: decl
sem: pres
arg: man woman
prn: 23

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

woman
cat: snp
sem: indef sg
fnc: love
prn: 23

⎤
⎥⎥⎥⎦

In DBS, the logical quantifier ∀x is represented alternatively by the sem val-
ues exh pl (exhaustive plural) of the man proplet, while the quantifier ∃y is

18 When writing SCG’84 we had to learn the hard way that a typed calculus is not very practical. Even
worse, the small fragment we had managed to define in SCG’84 turned out to be unprogrammable.
The solution, published as NEWCAT’86, is a strictly time-linear derivation order.

19 Montague’s main contribution is the quasi-mechanical translation of the English surface into formulas
of predicate calculus. The number of grammatical constructions is rather small, and motivated in part
by concerns of analytic philosophy, such as de dicto and de re.

20 The distinction between syntactic, semantic, and pragmatic ambiguities is explained in FoCL’99,
Sect. 12.5. Only syntactic ambiguities are of complexity-theoretic relevance. The syntactic ambiguity
of the example 12.4.1 seems to originate mostly in classes on predicate calculus.
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represented by the sem values indef sg (indef singular) of the woman pro-
plet.21 The verb’s cat value decl (for declarative) and its sem value pres (for
present tense) complete the picture. The proplets form an order-free set, and
are held together by a common prn value, here 23.

In summary, predicate calculus uses (i) variables within formulas represent-
ing content and (ii) quantifiers (a) to bind the variables horizontally and (b)
to replicate determiners at the same time. DBS, in contrast, (i) replaces the
binding function of quantifiers by a prn value, (ii) employs variables solely
for a vertical binding between pattern and content proplets, and (iii) codes the
determiner function of quantifiers as values of the cat and sem attributes.

With the elimination of quantifiers, DBS can restrict the use of all kinds
of variables to the definition of pattern proplets. The pattern proplets are
combined into schemata and are used for matching with content by the LA-
grammar rules and for retrieval (activation) in the content-addressable mem-
ory of a Word Bank. Using restricted variables as proplet values is a simple,
powerful method of under-specification,22 with many uses in DBS.

Up to this point, DBS may be regarded as a modern reconstruction of pred-
icate calculus, though with special emphasis on automatic natural language
interpretation, processing of content, and natural language production – rather
than on truth, satisfiability, consistency, and completeness. The latter are im-
portant, but they are neither intended nor sufficient for building a model of
natural language communication.

Finally, let us consider meaning, which is what semantics is all about. Lo-
gicians take great care to give their formulas a semantic interpretation. It is a
conceptual construction in which “the world” is defined in principle as a set-
theoretical model structure, and the surfaces of the variables and constants of
a formula are defined by hand to refer to these set-theoretical constructs using
a metalanguage. The purpose is inferencing and theorem proving.

Instead of treating concepts in terms of metalanguage definitions, DBS treats
concepts as the basic procedures of the agent’s recognition and action. Declar-
ative representations of these procedures are reused23 as the meanings of lan-
guage, with the type/token relation serving in pattern matching (4.3.3). This
procedural approach to concepts and meanings demands the switch from a

21 The values exh, sel, def, indef, sg, and pl are defined set-theoretically in NLC’06, 6.2.9.
22 Restricted variables are inherently open-ended. When used for matching, variables may be bound

tentatively to values not in their restriction set. Also, when new selectional constellations (Chap. 8)
have been found, these must be added to the relevant restriction sets.

23 Cf. Roy 2005 for a similar approach.
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sign-oriented [-sense, -constructive] ontology to an agent-oriented [+sense,
+constructive] ontology (cf. FoCL’99, Sect. 20.4).24

12.5 Autonomous Control

An agent-oriented approach requires an autonomous control for sensible be-
havior, including natural language production. In DBS, autonomous control is
driven by the principle of balance. A state of balance is an absolute like truth,
and like truth it provides the fix point necessary for a system of semantic in-
terpretation. But while truth is (at least25) bipolar, balance is monopolar. This
may be the reason why balance, unlike truth, is a dynamic principle, suitable
for driving the cognitive agent trying to survive, and to survive comfortably,
in a constantly changing world, short-, mid-, and long-term.

In DBS, the agent’s search for balance is implemented as a set of inferences.
An inference is triggered by an activated content matching the antecedent.
After binding the variables of the antecedent to constants in the input, e.g.,
core values, the consequent of the inference derives a blueprint for action as
output. The output is written to the now front of the agent’s Word Bank.

This new approach to inferencing is based on the belated insight that the
database schema of a Word Bank, designed before FoCL’99, is in fact a
content-addressable memory.26 Content-addressable memories happen to be
the most efficient for content written once and never changed. By structuring
the memory like sediment, written once and never changed, all processing for
real-time behavior control is restricted to the now front.

Stored content which never changes makes practically27 no processing de-
mands on the system. At the same time, the personal history contained in an
agent’s static sediment provides an individual notion of what is true and what
is right. The agent’s current state is defined by the most recent data, stored last
(rightmost) in the token lines.

The agent’s overall moment to moment behavior may be viewed as regulated
by of a basket of weights which represent the current options for maintaining

24 The binary feature notation without attributes used here, e.g., [+constructive], resembles the
“feature bundles” of Chomsky and Halle (1968).

25 Cf. FoCL, Sect. 20.5.
26 Originally, the Word Bank had been naively derived from classic (i.e., record-based) network

databases as described in Elmasri and Navathe (1989). Driven by functional concerns, our interest
was focused primarily on a running program, working as intended. Over the years, the implementa-
tion of a Word Bank has been explored in a sequence of at least four projects at the CLUE.

27 With the exception of occasional cleanups, cf. Sect. 5.6.
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or regaining balance.28 Which blueprint for action is selected for realization
is determined by continuously recalculating the weights associated with the
agent’s current needs and the consequences of available options. The calcula-
tion is based on a cost-benefit analysis, computed in real-time.

Fine-tuning the DBS system to simulate the balance of a robot in a terrain,
i.e., in a co-designed changing environment, requires an actual robot. After all,
without the robot’s external and internal interfaces we would have to recreate
every nook and cranny of the changing environment by hand (as in Model
Theory, cf. 4.3.1). This would violate a basic principle of nouvelle A.I., namely
that The world is its own best model (Brooks 1989).

To manage the massive, multiple, parallel search required for operating a
DBS robot in real time, retrieval must be based on efficient database operations
and provide highly differentiated recall.29 This task may and must be solved
theoretically, i.e., without any need for actual robot hardware. The following
aspects may be distinguished: (i) the organization of competing retrieval tasks
at any given moment and (ii) the quality of the search mechanism itself.

For the synchronization of competing retrieval tasks, DBS uses the time-
linear derivation order (cf. Herlihy and Shavit, in press, for related issues).
All parallel derivation strands apply their current step, e.g., a rule application,
simultaneously. An example of time-linear derivation strands running in par-
allel is the simultaneous operation of (i) the hear mode, (ii) subactivation, (iii)
intersection, and (iv) inferencing.

In a step, each strand produces a set of retrieval tasks, specified by the DBS
rules and database operations to be applied. These jobs may be executed in
parallel or sequentially in some suitable order, depending on the hardware
and the operating system. This approach to organizing parallel operations is
not only efficient but also transparent – which is essential for debugging and
optimization of the DBS robot.

The other aspect of optimal retrieval is the quality of the individual search
operations. In DBS, it (i) depends on the speed of the retrieval mechanism
and (ii) must have the expressive power needed for the kind of queries to be
expected. For speed, DBS uses the schema of a content-addressable database
(Word Bank) and the use of pointers. For expressive power, DBS utilizes the

28 As shown in Chaps. 5 and 6, this is based in part on rule-governed and goal-governed inferencing,
fixed behavior, and trial and error.

29 In the hear mode, retrieval is used to determine the correct token line for storing proplets at the now
front. In the think mode, retrieval must activate a successor proplet somewhere in the Word Bank,
using an address. In the speak mode, the content to be realized must be mapped into a sequence
of language surfaces, written to the now front, which again requires finding the proper token line.
Activated content must find inferences with a matching antecedent.
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semantic relations of coordination and functor-argument, defined at (a) the
content and (b) the schema (rule) levels. Introduced to model the cycle of
natural language communication, the semantic relations provide the structural
basis also for subactivation, intersection, and inferencing.

Because the content in a Word Bank is structured by the semantic relations
of natural language, the system can respond in kind, i.e., it can be as specific or
general as formulated in the query or any other search request. This ability to
respond to language questions with language answers, developed for natural
language dialogue with a talking robot, may also be used for more conven-
tional applications. For example, a database structured as a Word Bank, sitting
on a standard computer in some geographically remote warehouse, may be
queried, and may answer, in natural language.

12.6 Applications

The DBS approach to practical (commercial) applications of natural language
processing is based on solving the most important theoretical question first:
How does the mechanism of natural language communication work?

To protect against accidentally neglecting some crucial interface, compo-
nent, or ability, the overall design of a DBS robot aims at functional complete-
ness. By modeling all essential structural aspects of natural language com-
munication by humans it is hoped that there will be no application-motivated
requests which cannot be satisfied.

If a functional framework works properly at all levels of abstraction, though
with small (and highly relevant) data coverage only, then all that remains to
be done is to increase the data coverage. For natural language communication,
this is a mammoth project, though nothing compared to projects in physics
(CERN) or biology (human genome project), for example.

Extending the data coverage as a form of upscaling has immediate conse-
quences on commercial applications using the system for their natural lan-
guage processing needs. Take for example LA-morph, the automatic word
form recognition software, running with a certain natural language of choice.

The data coverage of such an instance of LA-morph may be extended by
adding to the lexicon and by optimizing the allo- and combi-rules for the nat-
ural language at hand. This broadens the base for syntactic-semantic analysis
and inferencing. It also provides practical applications with better results for
retrieval based on content words.

A second area for completing data coverage is extending the syntactic-
semantic analysis. When applied to a new (i.e., previously unanalyzed) natural
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language, the LA-hear parser will at first handle only a few constructions. As
the language is being studied, more and more constructions (like infinitives,
prepositional phrases, relative clauses, etc.) are added to the grammar, tested,
and revised. When the LA-hear parser encounters input it cannot yet handle,
the passage may be traversed at a lower level of detail until proper parsing can
resume (robustness). For this, LA-grammar is especially suitable because it
computes possible continuations in a time-linear derivation order.

Expanding syntactic-semantic parsing in the agent’s hear mode is more de-
manding than automatic word form recognition. This effort should not go un-
rewarded from the application side, however. The coding of functor-argument
and coordination extends recall and precision from lexically analyzed word
forms to phrases and clauses, and from there to sentences, paragraphs, and
text. Technically, this amounts to an extension from matching lexically ana-
lyzed content words stored within token lines in the Word Bank, to matching
semantic relations between content words defined across token lines.30

The think mode is a third area for extending the data coverage. The agent’s
think mode combines two mechanisms, LA-think and inferencing. The basic
mechanism of LA-think is selective activation by navigating along the seman-
tic relations in a Word Bank.31 The navigation is used to activate and report
self-contained content.

Inferences are used for deriving the different perspectives of the speaker and
the hearer on content,32 and to compute blueprints for action, including lan-
guage action. Together with current and stored data, LA-think and inferencing
constitute the agent’s autonomous control, which has many practical applica-
tions, with and without language.

Finally, consider LA-speak. It takes content as input and produces corre-
sponding surfaces as output. If the content has already been serialized by the
navigation along the semantic relations in the Word Bank, the task of LA-
speak is confined to adjusting to the word order of the language and to pro-
viding proper lexicalization with proper perspective (e.g., tense) and proper
morphosyntactic adjustments (e.g., agreement).

30 In addition, the user may load the proplets in a proprietary database with additional attributes and val-
ues as needed for the application. One such application of LA-morph and LA-hear is speech recogni-
tion; it could well benefit from the search space reduction resulting from an LA-hear parser computing
possible continuations (Sect. 2.4).

31 A Word Bank may be viewed as a syntactic-semantic network. For some questions and results of
linguistic networks, see Liu (2011), Solé et al. (2010), Sowa (1987/1992), Brachman (1979), and
others.

32 The interaction between LA-think, LA-speak, and inferencing is shown in Chap. 10 with an example
of dialogue.
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This work will not go unrewarded from the application side either. The obvi-
ous application is query answering in natural language. Thereby the LA-speak
part is only the tip of the iceberg. Prior to answering, the query is converted
automatically into several schemata which are used to subactivate correspond-
ing contents. These data are processed into the content for the query answer
by means of intersection and inferencing. Once the resulting answer content
has been derived, it is passed to LA-speak for realization as an unanalyzed
external surface.

While specific applications may benefit selectively from the nurturing of a
particular component, all applications will benefit simultaneously from a me-
thodical upscaling of the DBS robot as a whole. An application which does
not require certain abilities may be run with a DBS version in which they have
been switched off.33

The systematic, theory-driven upscaling of a talking robot is of general inter-
est for the following reasons. First, it provides the opportunity to ensure com-
patibility between the system’s components in a declarative manner.34 Sec-
ond, the neighboring sciences, for example, psychology, ethology, neurology,
philosophy, etc., may use the computational model to test some of their own
issues, which may in turn contribute to the long-term effort of upscaling the
talking robot.35 Third, by making regular version updates available to the pub-
lic, progress in pure research may quasi automatically improve the language
processing of participating applications.

The orderly transfer from a continuously improving DBS system to com-
mercial applications of human-machine communication may be illustrated by
the following vision. Every year, when the current monitor corpus (Sect. 12.2)
has been put through the automatic software grinder of word form recognition,
parsing, frequency analysis, and comparison with preceding monitor corpora,
the results are used for a software version with improved data coverage.

By making new versions available to paying subscribers for their natural lan-
guage processing needs, all or most of the research costs may be recovered.
For this to work long-term, a new release must not require any labor from the
subscriber (e.g., additional personnel training), except for the routine installa-
tion. Also, each new version must enhance service directly and noticeably, so
that subscribers are attracted and kept in sufficient numbers.

33 For example, a dialogue system over the phone may omit the ability to read.
34 In addition, typing (in the sense of computer science) could be used in DBS. It is not really needed,

however, because of the simplicity and formal uniformity of proplets and the associated interfaces
and algorithm.

35 For example, a system of control implemented in analogy to the sympaticus/parasympaticus nerve
network.
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Improvements from one version to the next may be achieved rather eas-
ily because there are large fields of empirical data which merely need to be
“harvested.” The software machine for the systematic collection, analysis, and
interpretation of the language data is the DBS robot, originally designed to
model the mechanism of natural language communication.

For example, when applied to a new language, the DBS robot’s off-the-
shelf components for the lexicon, automatic word form recognition, syntactic-
semantic parsing, and so on, hold no language-dependent data. As a new lan-
guage is being analyzed, words are added to the robot’s lexicon component,
just as compositional structures are added to the LA-Morph, LA-hear, LA-
think, and LA-speak grammars in the robot’s rule component. Also, culture-
dependent content may be added to the Word Bank.

Storing the analysis of a natural language directly in the DBS robot makes
the analysis available right away for computational testing by the scientists
and for computational applications by the users. This works not only for the
hear mode, as in testing on a corpus, but for the full cycle of natural language
communication. The testing is designed (i) to automatically enhance the robots
performance by learning, and (ii) to provide the scientists with insights for
improving the robot’s learning abilities.

For long-term linguistic research, there is no lack of renewable language
data, namely (i) the natural changes year to year within the domains of a given
language and (ii) a wide, constantly extending range of applications in human-
machine communication. In addition, there is (iii) the great number of natural
languages not yet charted, or not yet charted completely (including English, in
any theory). The harvesting of each of these kinds of data will be of interest to
its own group of users.

Charting a new natural language is a standard procedure, but it has to deal
with relatively large amounts of data. As more and more languages are an-
alyzed, however, charting is accelerated because software constructs may be
reused, based on similarities in lexicalization, in productive syntactic-semantic
structures, in collocations, constructions, and idioms, and in inferencing. To
better support day-to-day research,36 these standardized software constructs
and their declarative specifications may be stored in system libraries, orga-
nized for families of languages.

36 For example, in work on typology or on expanding a given language to new constructions.
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