
Chapter 31
Unbending of Curved Tube by Internal Pressure

Alexei M. Kolesnikov

Abstract In this work the effect of the unbending of a curved tube under a uniform
normal pressure is investigated. The problem is considered within the framework
of the nonlinear membrane theory. It is shown that the inflation of a curved tube
is the special case of pure bending. The tube with a circular cross section made
of a Mooney-Rivlin material is studied numerically. The dependencies between
the curvature of the centerline of deformed curved tube and the internal pressure
are obtained. It is found that there are the maximum pressures for the considered
materials.
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31.1 Introduction

A membrane that is a sector of a torus is called a curved tube. The problem of
pure bending of pressurized curved tubes is considered within the framework of the
nonlinear shell theory by Libai and Simmonds [5] and by Zubov [7]. In [5, 7] the
approach is proposed to solve the problem of pure bending. The approach allows us
to decompose the deformation into two parts: an in-plane deformation of meridional
cross section, plus a rigid rotation of each of these meridional planes about some
axis by linearly varying angles. In this case the equilibrium equations are reduced
to the ordinary differential equations.

This approach is used to solve the pure bending problem of a straight tube (cylin-
drical membrane) [4, 7]. The change of curvature is the result of the application of
the bending moments to a straight tube. The feature of curved tube is the unbending
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under internal pressure in the absence of bending moments. This phenomenon is
investigated in the presented work.

In Sect. 31.2 the problem of pure bending is considered. Using the semi-inverse
method the system of the ordinary differential equations are derived. It is shown that
the inflation of a curved tube is the special case of a pure bending. In Sect. 31.3 we
consider the inflation of a straight tube.

The aim of this investigation is to produce curves of dimensionless pressure ver-
sus dimensionless curvature of the tube. The results are presented for the tube of a
circular cross section made of a Mooney–Rivlin material in Sect. 31.4. The inflation
of curved tube is compared with the inflation of straight tube. It is obtained that there
are the maximum pressures for the considered materials. The maximum pressures
for straight and curved tubes are closely.

31.2 Pure Bending Deformation

Denote by o the surface of membrane in the reference configuration. The position
of a point on o is given by

r = χ1(q1)i1 +χ2(q1)e2, q1 ∈ [q1
1;q1

2], q2 ∈ [q2
1;q2

2], (31.1)

e2 = i2 sinβq2+ i3 cosβq2.

Here q1 and q2 are the Gaussian surface coordinates, the basis {ik} (k = 1,2,3) is the
Cartesian basis. We assume that the cross section (q2 = const) is a closed and it is
given by the functions χ1(q1) and χ2(q1). The parameter β is the curvature of the
centerline of the torus sector. It is called the initial curvature of curved tube.

We assume that the deformed membrane is a sector of torus. Denote by O the
surface of deformed membrane. The position of a point on O is given by

R = Χ1(q1)i1+Χ2(q1)E2, E2 = i2 sinΒq2+ i3 cosΒq2. (31.2)

Here the deformed cross section is given by the unknown function Χ1(q1) and
Χ2(q1). The unknown parameter Β is the curvature of the deformed centerline. It
is called the curvature of deformed curved tube.

The covariant components of the metric tensors of o and O are independent of
the Gaussian coordinate q2 and they form the diagonal matrices [4]

g11 = χ1
′2
+χ2

′2, g12 = 0, g22 = β2χ2
2, (31.3)

G11 = Χ1
′2
+Χ2

′2, G12 = 0, G22 = Β2Χ2
2, (31.4)

B11 =
Χ1

′′Χ2
′ −Χ1

′Χ2
′′√

Χ1
′2
+Χ2

′2
, B12 = 0, B22 =

Β2Χ2Χ1
′√

Χ1
′2
+Χ2

′2
. (31.5)
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Here the prime denotes differentiation with respect to q1, gαγ (α,γ = 1,2) are the
covariant components of the first metric tensor of o, Gαγ are the covariant compo-
nents of the first metric tensor of O and Bαγ are the covariant components of the
second metric tensor of O.

If the thickness h of the membrane is a constant and the conditions (31.3)–(31.5)
are satisfied then the deformation is called the one-dimensional deformation. In this
case the equilibrium equations reduce to the system of ordinary equilibrium equa-
tions [4]. The conditions (31.3)–(31.5) put some restrictions on an external surface
load. It is independent of q2 and its component is equal zero along the coordinate
lines q2. We assume that the external surface load is constant normal pressure p.
The equilibrium equations may be reduced to the form [4]

dL11

dq1
+ L11

(
2Γ1

11+Γ
2
21

)
+ L22Γ1

22 = 0, (31.6)

L11B11+ L22B22+ p = 0. (31.7)

Here Lαγ are the components of the Cauchy stress resultant tensor [4, 6].
We introduce the principal stretches λ1(q1), λ2(q1) and the function ψ(q1)

λ1(q1) =

√
G11

g11
, λ2(q1) =

√
G22

g22
, tanψ(q1) =

Χ2
′(q1)

Χ1
′(q1)

. (31.8)

Denote by W the strain energy density of the membrane. The strain energy
density can be expressed as function of the principal stretches for incompressible
isotropic elastic material: W = W(λ1,λ2). Therefore, using (31.4) and (31.8), the
constitutive relations may be written in the form [4]

L11 =
h

g11λ2
1λ2

∂W
∂λ1

, L22 =
h

g22λ1λ2
2

∂W
∂λ2

, L12 = L21 = 0. (31.9)

Finally, using (31.8) and the constitutive relations (31.9), the equilibrium equa-
tions (31.6) and (31.7) reduce to the following system

∂2W

∂λ2
1

λ1
′ −

(
∂W
∂λ2

−λ1
∂2W
∂λ1∂λ2

) √
g11

g22
Βsinψ+

+

(
∂W
∂λ1

−λ2
∂2W
∂λ1∂λ2

)
g22

′

2g22
= 0, (31.10)

λ2
′ −Β

√
g11

g22
λ1 sinψ+

g22
′

2g22
λ2 = 0, (31.11)

∂W
∂λ1

ψ′ −Β
√
g11

g22
λ1 cosψ− p

h
√
g22λ1λ2 = 0, (31.12)

Χ1
′ = √

g11λ1 cosψ, (31.13)

Χ2
′ =

√
g11λ1 sinψ. (31.14)
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If the parameter Β is fixed then the Eqs (31.10)–(31.14) and periodicity condi-
tions are the boundary-value problem to determine the unknown functions Χ1(q1)
and Χ2(q1).

A solution can be satisfied integral edge conditions at the edge of torus sector
(q2 = q2

1 and q2 = q2
2) [5, 7]. It can be shown that the resultant force F and the

resultant moment M are independent of the cross section, F = 0 and M = M1(q1)i1
[4]. Denote by Y2C the coordinate of the center mass of surface which is bounded
by the membrane at cross section. Then we have [4]

M1 =

∫ q1
2

q1
1

√
G11G22L22 (Y2C −Χ2)dq1.

The considered deformation is the pure bending deformation. If the membrane is
loaded by the uniformly normal pressure then M1 = 0. From this condition we may
determine the curvature Β of the deformed torus sector.

Thus, the problem of the unbending a curved tube by an internal pressure reduces
to the boundary-value problem with the parameter Β. The boundary-value problem
is solved numerically using a shooting method together with a Runge-Kutta integra-
tion process. The parameterΒ is determined by the condition M1 = 0 using shooting
method.

31.3 Cylindrical Membrane

We now consider the limiting case when the membrane is a cylinder (straight tube)
with a closed cross section in the reference configuration . The external load is the
uniformly normal pressure p. We use the integral edge conditions F = 0 and M = 0

A closed cross section of the undeformed cylindrical membrane may be given
as a circle of radius r0 [2]. If a cylindrical membrane is subjected by the uniformly
distributed pressure only then the deformed membrane is the cylinder with a circle
cross section of radius R0 [1, 2]

R0 =
L11G11

p
. (31.15)

It follows from symmetry that the consition M= 0 is satisfied. The resultant force
at the edge is represented as the sum of the pressure p and the stress L22. Hence we
have

R2
0πp− L22G222R0π = 0. (31.16)

Using the constitutive relations (31.9) and

λ1 =
R0

r0
, λ2 = γ,
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the Eqs (31.15) and (31.16) may be rewritten in the form

p =
r0h
λ1λ2

∂W
∂λ1

, p =
2r0h

λ2
1

∂W
∂λ2

. (31.17)

Here the unknown parameter γ determines the change of the cylinder length.
If we shall give the strain energy density W and the pressure p then the unknown

geometric parameters R0 and γ of the deformed cylindrical membrane are deter-
mined from the Eqs (31.17).

31.4 Circular Cross Section

Let the cross section of undeformed curved tube is the circle of radius r0

χ1(q1) = r0 sinq1,χ2(q1) = β−1 − r0 cosq1, q1 ∈ [0;2π],q2 ∈
[
0;

π
2β

]
.

In this work we consider the three initial curvature β = 0.05,0.1,0.2.
Consider a Mooney–Rivlin material. The strain energy density may be written in

the form

W =
μ
4

⎡⎢⎢⎢⎢⎢⎣(1+ν)

⎛⎜⎜⎜⎜⎜⎝λ2
1+λ

2
2+

1

λ2
1λ

2
2

−3

⎞⎟⎟⎟⎟⎟⎠+ (1−ν)

⎛⎜⎜⎜⎜⎜⎝ 1

λ2
1

+
1

λ2
2

+λ2
1λ

2
2 −3

⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦ .
We assume that

r0 = 1, h = 0.001, μ = 1.

The numeric results are obtained for ν = 1 and ν = 0.5. In case ν = 1 a Mooney–
Rivlin material is also called a Neo–Hookean material.

We introduce the dimensionless parameters

p∗ =
pr0

μh
, Β∗ =

Β
β
.

The dependencies between the curvature and the pressure are shown in Fig. 31.1.
The X-axis is the dimensionless curvature of the deformed tubeΒ∗. The Y-axis is the
dimensionless pressure p∗. The solid lines correspond to the Neo–Hookean material
(ν = 1). The dashed lines correspond to the Mooney–Rivlin material (ν = 0.5). For
small strains (Β∗ > 0.85) the influence of the material parameter ν on curves Β∗ − p∗
is very small. The initial curvature β has a small influence to the curves Β∗ − p∗.

It is found that there is a maximum pressure for each considered material.
The maximum pressures p∗

max and the corresponding curvatures are presented in
Table 31.1. The limiting case of the inflation of a straight tube has a maximum pres-
sure. It is presented for β = 0 in Table 31.1. The value of p∗

max slightly decreases
when the initial curvature β increases.
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Fig. 31.1 Curvature vs.
pressure. The solid lines
correspond to the Neo–
Hookean material (ν = 1).
The dashed lines correspond
to the Mooney–Rivlin mate-
rial (ν = 0.5)
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Table 31.1 Maximum pressure

ν β Β∗ p∗
max

0 – 0.750

0.05 0.681 0.749

1.0 0.1 0.683 0.749

0.2 0.692 0.745

0 – 0.894

0.05 0.634 0.893

0.5 0.1 0.633 0.892

0.2 0.630 0.888

The planforms of the deformed curved tubes for the undeformed curvatures β =
0.05, β = 0.1 and β = 0.2 are shown in Fig. 31.2. The gray dotted lines are the
initial configuration. The black solid lines correspond to the Neo–Hookean material
(ν= 1). The black dashed lines correspond to the Mooney–Rivlin material (ν = 0.5).
The deformed curvatures are Β∗ = 0.9, Β∗ = 0.8 and Β∗ = 0.7. For small strain the
influence of the material parameter ν on the shape of a deformed tube is very small.

The cross sections of the deformed curved tubes are shown in Fig. 31.3. The
gray dotted line is the initial configuration. The left side corresponds to the Neo–
Hookean material (ν= 1). The right side corresponds to the Mooney–Rivlin material
(ν= 0.5). The black solid lines correspond to the initial curvature β= 0.05. The gray
dashed lines correspond to β = 0.2. The influence of the initail curvature to the cross
section is insignificant for the Neo–Hookean material. The influence of the initail
curvature to the cross section is small for the Mooney–Rivlin material. The cross
sections differ for the different materials under the high pressures.
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Fig. 31.2 Plane forms of
the deformed curved tubes
for Β∗ = 0.9, Β∗ = 0.8, Β∗ =
0.7: (a) β = 0.05; (b) β =
0.1; (c) β = 0.2. The gray
dotted lines are the initial
configuration. The black solid
lines correspond to ν = 1. The
black dashed lines correspond
to ν = 0.5

a)

b)

c)

Fig. 31.3 Cross sections of
the deformed curved tubes.
The gray dotted line is the
initial configuration. The left
side corresponds to ν = 1.
The right side corresponds to
ν = 0.5 The black solid lines
correspond to β = 0.05. The
gray dashed lines correspond
to β = 0.2
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31.5 Conclusions

In this work we study the inflation of membrane which is a sector of torus (curved
tube). The problem is considered within the framework of the nonlinear membrane
theory. The inflation of curved tube is a special case of pure bending deformation.
The governing equations are derived for the tube with arbitrary cross section made of
incompressible elastic material. We also consider the inflation of cylindrical mem-
brane (straight tube) to compare with the inflation of curved tube.

The numerical results are presented for the circular cross section and the Mooney-
Rivlin material. We obtain that the influence of initial curvature of tube is small to
the dependence deformed curvature versus pressure. It is found that there are the
maximum pressure for the considered materials. The material parameter ν has a
significant influence on the maximum pressure. But for small strains the influence
of the material parameter ν is very small. These influence grows when the internal
pressure increases and the curvature of the deformed tube decreases. The initial cur-
vature has a small influence on the relation pressure – deformed curvature. If the
initial curvature increases then the maximum pressure slightly decreases. It is found
that the maximum pressure for straight tube is slightly higher one in curved tube.
For lower pressures the shapes of the deformed tubes are closely for the different
materials. The difference in the shapes increases with the internal pressure.
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