Skip to main content

Interactive Visualization–A Key Prerequisite for Reconstruction and Analysis of Anatomically Realistic Neural Networks

  • Conference paper
Visualization in Medicine and Life Sciences II

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Recent progress in large-volume microscopy, tissue-staining, as well as in image processing methods and 3D anatomy reconstruction allow neuroscientists to extract previously inaccessible anatomical data with high precision. For instance, determination of neuron numbers, 3D distributions and 3D axonal and dendritic branching patterns support recently started efforts to reconstruct anatomically realistic network models of many thousand neurons. Such models aid in understanding neural network structure, and, by numerically simulating electro-physiological signaling, also to reveal their function. We illustrate the impact of visual computing on neurobiology at the example of important steps that are required for the reconstruction of large neural networks. In our case, the network to be reconstructed represents a single cortical column in the rat brain, which processes sensory information from its associated facial whisker hair. We demonstrate how analysis and reconstruction tasks, such as neuron somata counting and tracing of neuronal branches, have been incrementally accelerated – finally leading to efficiency gains of orders of magnitude. We also show how steps that are difficult to automatize can now be solved interactively with visual support. Additionally, we illustrate how visualization techniques have aided computer scientists during algorithm development. Finally, we present visual analysis techniques allowing neuroscientists to explore morphology and function of 3D neural networks. Altogether, we demonstrate that visual computing techniques make an essential difference in terms of scientific output, both qualitatively, i.e., whether particular

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dercksen, V.J., Broser, P.J., Sakmann, B., Hege, H.C., Oberlaender, M.: Efficient 3D reconstruction of single neuron morphology from stacks of transmitted light brightfield microscopy images. In preparation

    Google Scholar 

  2. Dercksen, V.J., Weber, B., Günther, D., Oberlaender, M., Prohaska, S., Hege, H.C.: Automatic alignment of stacks of filament data. In: Proc. IEEE International Symposium on Biomedical Imaging, Boston, USA, 971-974 (2009)

    Google Scholar 

  3. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press (2002)

    Book  MATH  Google Scholar 

  4. Göbel, W., Kampa, B., Helmchen, F.: Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods 4, 73-79 (2007)

    Google Scholar 

  5. Hege, H.C., Seebaß, M., Stalling, D., Zöckler, M.: A generalized marching cubes algorithm based on non-binary classifications. Tech. rep., ZIB Preprint SC-97-05 (1997)

    Google Scholar 

  6. Helmstaedter, M., de Kock, C.P.J., Feldmeyer, D., Bruno, R.M., Sakmann, B.: Reconstruction of an average cortical column in silico. Brain Research Reviews 55(2), 193-203 (2007)

    Article  Google Scholar 

  7. Hille, B.: Ionic channels of excitable membranes, 2nd edn. Sinauer Associates, Inc., Publishers (1992)

    Google Scholar 

  8. Markram, H.: The blue brain project. Nat Rev Neurosci 7(2), 153-160 (2006)

    Article  MathSciNet  Google Scholar 

  9. Meijering, E.: Neuron tracing in perspective. Cytometry. Part A 77(7), 693-704 (2010)

    Article  MathSciNet  Google Scholar 

  10. Meyer, H.S., Wimmer, V.C., Oberlaender, M., de Kock, C.P.J., Sakmann, B., Helmstaedter, M.: Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex. Cerebral Cortex 20(10), 2277-2286 (2010)

    Article  Google Scholar 

  11. MicroBrightField Inc.: Neurolucida. www.mbfbioscience.com/neurolucida (2011)

  12. Oberlaender, M.: Three-dimensional reengineering of neuronal microcircuits. the cortical column in silico. Ph.D. thesis, Univ. of Heidelberg, Germany (2009)

    Google Scholar 

  13. Oberlaender, M., Broser, P.J., Sakmann, B., Hippler, S.: Shack-Hartmann wave front measurements in cortical tissue for deconvolution of large three-dimensional mosaic transmitted light brightfield micrographs. J. Microsc. 233(2), 275-289 (2009)

    Article  MathSciNet  Google Scholar 

  14. Oberlaender, M., Bruno, R.M., Sakmann, B., Broser, P.J.: Transmitted light brightfield mosaic microscopy for three-dimensional tracing of single neuron morphology. J. Biomed. Opt. 12(6), 1-19 (2007)

    Article  Google Scholar 

  15. Oberlaender, M., Dercksen, V.J., Egger, R., Gensel, M., Sakmann, B., Hege, H.C.: Automated three-dimensional detection and counting of neuron somata. J. Neurosci. Methods 180(1), 147-160 (2009)

    Article  Google Scholar 

  16. Peng, H., Ruan, Z., Long, F., Simpson, J.H., Myers, E.W.: V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature biotechnology 28(4), 348-53 (2010)

    Article  Google Scholar 

  17. Petersen, C.C.H.: The functional organization of the barrel cortex. Neuron 56(2), 339-355 (2007)

    Article  Google Scholar 

  18. Rall, W., Agmon-Snir, H.: Methods in neuronal modeling: from ions to networks, chap. Cable Theory for Dendritic Neurons, 27-92. C. Koch and I. Segev (eds.) (1998)

    Google Scholar 

  19. Schutter, E.D., Bower, J.M.: An active membrane model of the cerebellar Purkinje cell: II. Simulation of synaptic responses. J Neurophysiol 71(1), 401-419 (1994)

    Google Scholar 

  20. Stalling, D., Westerhoff, M., Hege, H.C.: Amira: A highly interactive system for visual data analysis. In: C. Hansen, C. Johnson (eds.) The Visualization Handbook, chap. 38, 749-767. Elsevier (2005)

    Google Scholar 

  21. Sterio, D.C.: The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134(2), 127-136 (1984)

    Article  Google Scholar 

  22. Wimmer, V.C., Bruno, R.M., De Kock, C.P.J., Kuner, T., Sakmann, B.: Dimensions of a Projection Column and Architecture of VPM and POm Axons in Rat Vibrissal Cortex. Cerebral Cortex 20(10), 2265-2276 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent J. Dercksen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dercksen, V.J., Oberlaender, M., Sakmann, B., Hege, HC. (2012). Interactive Visualization–A Key Prerequisite for Reconstruction and Analysis of Anatomically Realistic Neural Networks. In: Linsen, L., Hagen, H., Hamann, B., Hege, HC. (eds) Visualization in Medicine and Life Sciences II. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21608-4_2

Download citation

Publish with us

Policies and ethics