Skip to main content

Initial Steps of Copper Detoxification: Outside and Inside of the Plant Cell

  • Chapter
  • First Online:
Book cover Detoxification of Heavy Metals

Part of the book series: Soil Biology ((SOILBIOL,volume 30))

Abstract

The analysis of modern data about the mechanisms of copper detoxification and regulation of its homeostasis in plant cells under conditions of its excess in ambient medium is presented. Copper (Cu) is most toxic heavy metal, which trace amounts are required to sustain plant life (so-called essential elements), but its high concentrations cause plant death. In plants, copper occurs in reduced (Cu+) and oxidized (Cu2+) states, and also as nanoparticles of metallic copper. In the cytoplasm of the plant cell, free Cu ions are essentially absent, which indicates functioning of the efficient system of its detoxification. This system comprises phytochelatins, metallothioneins, metallochaperons, and membrane transporters. The emphasis is on discussion of poorly studied problem of copper ion detoxification in the apoplast. It is demonstrated that apoplastic Cu pool may comprise a great, sometimes dominating part of Cu absorbed by the plant, especially at its excess in medium. Chemical and structural changes occurring in the cell wall under the influence of excessive Cu concentrations allow consideration of the cell wall as an important component of the system of plant adaptation to copper. Discussing current methods and approaches used for quantification of apoplastic and symplastic copper pools has a significant place in the review. The role of arbuscular mycorrhizal fungi producing an extraradical mycelium in metal ion immobilization is considered. Finally, few available experimental data concerning the effects of metallic copper nanoparticles on plants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andres-Colas N, Sancenon V, Rodriguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Penarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in root copper detoxification. Plant J 45:225–236

    Article  PubMed  CAS  Google Scholar 

  • Arru L, Regnoni S, Baroncini M, Bonatti PM, Perata P (2002) Copper localization in Cannabis sativa L. grown in copper-rich solution. Euphytica 140:33–38

    Article  Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53:214–222

    Article  Google Scholar 

  • Bernal M, Sanches-Testillano P, Risueno MD, Yruela I (2006) Excess copper induces structural changes in cultured photosynthetic soybean cells. Funct Plant Biol 33:1001–1012

    Article  CAS  Google Scholar 

  • Bernal M, Cases R, Picorel R, Yruela I (2007) Foliar and root supply affect differentially Fe- and Zn- uptake and photosynthetic activity in soybean plants. Environ Exp Bot 60:145–150

    Article  CAS  Google Scholar 

  • Branquinho C, Brown DH, Catarino F (1997) The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. Environ Exp Bot 38:165–179

    Article  CAS  Google Scholar 

  • Carpita N, Tierney M, Campbell M (2001) Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol Biol 47:1–5

    Article  PubMed  CAS  Google Scholar 

  • Carvalho LM, Cacador I, Martins-Loucao MA (2006) Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant Soil 285:161–169

    Article  CAS  Google Scholar 

  • Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragorn A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387

    Article  PubMed  CAS  Google Scholar 

  • Chen BD, Zhu Y-G, Duan J, Xiao XY, Smith SE (2007) Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollut 147:374–380

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Cohu CM, Pilon M (2010) Cell biology of copper. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients, vol 17, Plant cell monographs. Heidelberg, Berlin

    Chapter  Google Scholar 

  • De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalis. Physiol Plant 82:523–528

    Article  Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    CAS  Google Scholar 

  • Faucon M-P, Shutcha MN, Meerts P (2007) Revising copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36

    Article  CAS  Google Scholar 

  • Faucon M-P, Colinet G, Mahy G, Ngongo M, Verbruggen N, Meerts P (2009) Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenius (Scrophulariaceae) in SC Africa. Plant Soil 317:201–212

    Article  CAS  Google Scholar 

  • Ferrol N, Gonzalez-Guerrero M, Valderas A, Benabdellah K, Azcon-Aguilar C (2009) Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochem Rev 8:551–559

    Article  CAS  Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking in the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838

    Article  PubMed  CAS  Google Scholar 

  • Fritioff A, Greger M (2006) Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Pomatogeton natans. Chemosphere 63:220–227

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Chavez C, D’Haen J, Vangronveld J, Dodd JC (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297

    Article  CAS  Google Scholar 

  • González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  PubMed  Google Scholar 

  • González-Guerrero M, Melville L-H, Ferrol N, Azcon-Aguilar C, Peterson R-L (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110

    Article  PubMed  Google Scholar 

  • Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306–314

    Article  PubMed  CAS  Google Scholar 

  • Guo W-J, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706

    Article  PubMed  CAS  Google Scholar 

  • Hall JL, Williams E (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  PubMed  CAS  Google Scholar 

  • Harrison SJ, Lepp NW, Phipps DA (1979) Uptake of copper by excised roots. II. Copper desorption from the free space. Z Pflanzenphysiol 49:27–34

    Google Scholar 

  • Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11:1453–1463

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  PubMed  CAS  Google Scholar 

  • Ivanova EM, Kholodova VP, VlV K (2010) Biological effects of high copper and zinc concentrations and their interaction in rapeseed plants. Russ J Plant Physiol 57:864–873

    Article  Google Scholar 

  • Jha AK, Prasad K, Prasad K, Kulkarni AR (2009) Plant system: nature’s nanofactory. Colloids Surf B Biointerfaces 73:219–223

    Article  PubMed  CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Ke W, Xiong Z, Xie M, Luo Q (2007) Accumulation, subcellular localization and ecophysiological responses to copper stress in two Daucus carota L. populations. Plant Soil 292:291–304

    Article  CAS  Google Scholar 

  • Kholodova VP, Volkov KS, Abdeeva AR, Kusnetzov VlV (2011) Water relations in Mesembryanthemum crystallinum as affected by heavy metal stress. Environ Exp Bot 71:382–389

    Google Scholar 

  • Konno H, Nakato T, Nakashima S, Katoh K (2005) Lygodium japonicum fern accumulates copper in the cell wall pectin. J Exp Bot 56:1923–1931

    Article  PubMed  CAS  Google Scholar 

  • Krämer U, Clemens S (2006) Functions and homeostasis of zinc, copper, and nickel in plants. In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification, vol 14, Topics in current genetics. Heidelberg, Berlin

    Chapter  Google Scholar 

  • Krämer U, Talkea IN, Hanikenneb M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  Google Scholar 

  • Kulikova AL, Kuznetsova NA, Kholodova VP (2011) Copper excesses influence to root cell vitality and root morphology of soybean plants. Russ J Plant Physiol 58:836–843

    Google Scholar 

  • Lee J, Adle D, Kim H (2006) Molecular mechanisms of copper homeostasis in yeast. In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification, vol 14, Topics in current genetics. Heidelberg, Berlin, pp 1–36

    Chapter  Google Scholar 

  • Lee W-M, An Y-J, Yoon H, Kweon H-S (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Technol Chem 27:1915–1921

    CAS  Google Scholar 

  • Liu DH, Kottke I (2004) Subcellular localization of copper in the root cells of Allium sativum by electron energy loss spectroscopy (EELS). Bioresour Technol 94:53–158

    Article  CAS  Google Scholar 

  • Llugany M, Lombini A, Poschenrieder C, Dinelli E, Barcelo J (2003) Different mechanisms account for enhanced copper resistance in Silene armeria ecotypes from mine spoil and serpentine sites. Plant Soil 251:55–63

    Article  CAS  Google Scholar 

  • Lou L-q, Shen Z-g, Li X-d (2004) The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ Exp Bot 51:111–120

    Article  CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  PubMed  CAS  Google Scholar 

  • MacFarlane GR, Burchett MD (2000) Cellular distribution of copper, lead and zinc in the grey mangrove Avicennia marina (Forks.). Vierh Aquat Bot 68:45–69

    Article  CAS  Google Scholar 

  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008) Formation of metallic copper nanoparticles at the soil-root interface. Environ Sci Technol 42:1766–1772

    Article  PubMed  CAS  Google Scholar 

  • Mari S, Lebrun M (2006) Metal immobilization: where and how? In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification, vol 14, Topics in current genetics. Heidelberg, Berlin, pp 273–298

    Chapter  Google Scholar 

  • McKenna BA, Kopittke PM, Wehr B, Blamey FPC, Menzies NW (2010) Metal ion effects on hydraulic conductivity of bacterial cellulose-pectin composites used as plant cell wall analogs. Physiol Plant 138:205–214

    Article  PubMed  CAS  Google Scholar 

  • Meychik NR, Yermakov IP (2001) Ion exchange properties of plant root cell walls. Plant Soil 234:181–193

    Article  CAS  Google Scholar 

  • Meychik NR, Yermakov IP, Khonarmand SD, Nikolaeva YuI (2010) Ion-exchange properties of cell walls in chickpea cultivars with different sensitivities to salinity. Russ J Plant Physiol 57:620–630

    Article  CAS  Google Scholar 

  • Monnet F, Bordas F, Deluchat V, Chatenet P, Botineau M, Baudu M (2005) Use of the aquatic lichen Dermatocarpon luridum as bioindicator of copper pollution: accumulation and cellular distribution tests. Environ Pollut 138:455–461

    Article  PubMed  CAS  Google Scholar 

  • Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes correlation with copper tolerance. Plant Physiol 109:945–954

    Article  PubMed  CAS  Google Scholar 

  • Naftel SJ, Martin RR, Macfie SM, Courchesne F, Seguin V (2007) An investigation of metals at the soil/root interface using synchrotron radiation analysis. Can J Anal Sci Spect 52:18–24

    CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  PubMed  CAS  Google Scholar 

  • Neumann D, zur Nieden U, Lichtenberger O, Leopold I (1995) How does Armeria maritima tolerate high heavy metal concentrations? J Plant Physiol 146:704–717

    Article  CAS  Google Scholar 

  • Nishizono H, Ichikawa H, Suziki S, Ishii F (1987) The role of root cell wall in the heavy metal tolerance of Athrium yokoscense. Plant Soil 101:15–20

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  PubMed  CAS  Google Scholar 

  • Ouzounidou G, Chiamporova M, Moustakas M, Karatsglis S (1995) Responses of maize (Zea mays L.) plants to copper stress. I. Growth, mineral content and ultrastructure of roots. Environ Exp Bot 35:167–176

    Article  CAS  Google Scholar 

  • Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54

    Article  PubMed  CAS  Google Scholar 

  • Panou-Filotheou H, Bosabalidis AM (2004) Root structural aspects associated with copper toxicity in oregano (Oreganum vulgare sudsp. hirtum). Plant Sci 166:1497–1504

    Article  CAS  Google Scholar 

  • Peng H-Y, Yang XE, Tian SK (2005) Accumulation and ultrastructural distribution of copper in Elsholzia splendens. J Zhejiang Univ 6B:311–318

    Article  CAS  Google Scholar 

  • Purin S, Rillig MS (2008) Immunolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol Biochem 40:1000–1003

    Article  CAS  Google Scholar 

  • Ranathunge K, Steudle E, Lafitte R (2005) A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.). Plant Cell Environ 28:1450–1462

    Article  CAS  Google Scholar 

  • Russo M, Sgherri C, Izzo R, Navari-Izzo F (2008) Brassica napus subjected to copper excess: phospholipases C and D and glutathione system in signaling. Environ Exp Bot 62:238–246

    Article  CAS  Google Scholar 

  • Sattlemacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  Google Scholar 

  • Schäfer HJ, Greiner S, Rausch T, Haag-Kerwer A (1997) In seedlings of the heavy metal accumulator Brassica juncea Cu2+ deferentially affects transcript amounts for γ-glutamylcysteine synthetase (γ-ECS) and metallothionein (MT2). FEBS Lett 404:216–220

    Article  PubMed  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Soil Pollut 192:143–148

    Article  Google Scholar 

  • Shi JY, Wu B, Yuan XF, Cao YY, Chen XC, Chen YX, Hu TD (2008) An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant Soil 302:163–174

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  PubMed  CAS  Google Scholar 

  • Sudova R, Doubkova P, Vosatka M (2008) Mycorrhizal association of Agrostis capillaries and Glomus intraradices under heavy metal stress: combination of plant clones and fungal isolates from contaminated and uncontaminated substrates. Appl Soil Ecol 40:19–29

    Article  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    Article  PubMed  CAS  Google Scholar 

  • Wehr JB, Blamey FPC, Menzies NW (2010) Comparison between methods using copper, lanthanum, and colorimetry for the determination of the cation exchange capacity of plant cell walls. J Agric Food Chem 58:4554–4559

    Article  PubMed  CAS  Google Scholar 

  • Wei L, Luo C, Li X, Shen Z (2008) Copper accumulation and tolerance in Chrysanthemum coronarium L. and Sorghum sudanense L. Arch Environ Contam Toxicol 55:230–246

    Article  Google Scholar 

  • Yang MJ, Yang XE, Roemheld V (2002) Growth and nutrient composition of Elsholtia splendens Nakai under copper toxicity. J Plant Nutr 25:1359–1375

    Article  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430

    Article  CAS  Google Scholar 

  • Zhang X-H, Lin A-J, Gao Y-L, Reid RJ, Wong M-H, Zhu Y-G (2009) Arbuscular mycorrhizal colonization increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41:930–993

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Nella L. Klaychko from the Institute of Plant Physiology (Moscow, Russia) for valuable discussions and interesting ideas. This work was partially supported by the grants of the Russian Foundation for Basic Research (No. 10-04-00799_a and No. 10-04-90456-ukr_a) and by the Program of the Presidium of RAS “Molecular and Cell Biology.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina P. Kholodova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kholodova, V.P., Ivanova, E.M., Kuznetsov, V.V. (2011). Initial Steps of Copper Detoxification: Outside and Inside of the Plant Cell. In: Sherameti, I., Varma, A. (eds) Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_8

Download citation

Publish with us

Policies and ethics