Skip to main content

Tolerance, Accumulation, and Detoxification Mechanism of Copper in Elsholtzia splendens

  • Chapter
  • First Online:
Book cover Detoxification of Heavy Metals

Part of the book series: Soil Biology ((SOILBIOL,volume 30))

  • 2561 Accesses

Abstract

Copper is an essential micronutrient for plant growth and development and yet can be toxic at elevated concentrations. Elsholtzia splendens has been proven to be a Cu-tolerant plant and can remarkably influence the behavior of Cu in root–soil interface by root exudates, rhizosphere bacteria, and arbuscular mycorrhizal fungi. Cu absorbed by plant might in turn interfere with biochemical and physiological process in E. splendens, which as a Cu-tolerant plant has evolved a series of defense strategies against Cu stress: (1) Cu compartmentation: E. splendens could detoxify excess Cu through compartmentation at the tissue and cellular level. (2) Speciation transformation: Histidine-like species probably participated in the transport of Cu from the roots to the shoots. Cu compartmented in the vacuole was not only bound to organic acids such as oxalate acid but also to ligands resembling histidine. Whether phytochelatins play a significant role in Cu detoxification should be further studied. (3) Molecular mechanism: The nonnormalized cDNA library of root tips of E. splendens under Cu stress was constructed. cDNA-AFLP expression profiling showed that a large number of genes in E. splendens were either up- or downregulated upon Cu treatment. Besides, a metallothionein gene was isolated from E. splendens and its function was validated by generating the recombinant E. coli cells and transgenic tobacco plants. The comparative proteomics study suggested that redirection of root cellular metabolism and redox homeostasis might be important survival mechanisms of E. splendens upon Cu stress. All these works lay a solid foundation for establishing engineering plants hyperaccumulating Cu in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams F (2003) Synchrotron radiation micro-X-ray fluorescence analysis: a tool to increase accuracy in microscopic analysis. Nucl Instrum Methods Phys Res B 199:375–381

    Article  CAS  Google Scholar 

  • Becker JS (2007) Inorganic mass spectrometry: principles and applications. Wiley, Chichester, UK

    Book  Google Scholar 

  • Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17:121–127

    Article  PubMed  CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Branquinho C, Brown DH, Catarino F (1997) The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. Environ Exp Bot 38:165–179

    Article  CAS  Google Scholar 

  • Brun LA, Le Corff J, Maillet J (2003) Effects of elevated soil copper on phenology, growth and reproduction of five ruderal plant species. Environ Pollut 122:361–368

    Article  PubMed  CAS  Google Scholar 

  • Chen YX, Wang YP, Lin Q, Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Int 31:861–866

    Article  PubMed  CAS  Google Scholar 

  • Chen YX, Wang YP, Wu WX, Lin Q, Xue SG (2006) Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Sci Total Environ 356:247–255

    Article  PubMed  CAS  Google Scholar 

  • Christie P, Li X, Chen B (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217

    Article  CAS  Google Scholar 

  • Chugh LK, Sawhney SK (1999) Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol Biochem 37:297–303

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  • Feldmann J (2005) What can the different current-detection methods offer for element speciation? TrAC: Trends Anal Chem 24:228–242

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Peralta-Videa JR, de la Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Heggo A, Angle JS, Chaney RL (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol Biochem 22:865–869

    Article  CAS  Google Scholar 

  • Hofstetter H, Schamböck A, Van Den Berg J, Weissmann C (1976) Specific excision of the inserted DNA segment from hybrid plasmids constructed by the poly(dA) poly(dT) method. Biochim Biophys Acta 454:587–591

    Article  PubMed  CAS  Google Scholar 

  • Hsieh I, Hsu H (1954) On Elsholtzia splendens: an indicator plant for copper (in Chinese). Bull Geol Soc China 32:360–367

    Google Scholar 

  • Hu NJ, Luo YM, Wu LH, Song J (2007) A field lysimeter study of heavy metal movement down the profile of soils with multiple metal pollution during chelate-enhanced phytoremediation. Int J Phytoremediation 9:257–268

    Article  PubMed  CAS  Google Scholar 

  • Jiang LY, Yang XE (2004) Chelators effect on soil Cu extractability and uptake by Elsholtzia splendens. J Zhejiang Univ Sci B 5:450–456

    Article  CAS  Google Scholar 

  • Jiang LY, Yang XE, He ZL (2004) Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere 55:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Jiang LY, Yang XE, Chen JM (2008) Copper tolerance and accumulation of Elsholtzia splendens Nakai in a pot environment. J Plant Nutr 31:1382–1392

    Article  CAS  Google Scholar 

  • Kang SX, Sun X, Ju X, Huang YY, Yao K, Wu ZQ, Xian DC (2002) Measurement and calculation of escape peak intensities in synchrotron radiation X-ray fluorescence analysis. Nucl Instrum Methods Phys Res B 192:365–369

    Article  CAS  Google Scholar 

  • Kärenlampi S, Schat H, Vangronsveld J, Verkleij JAC, van der Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231

    Article  PubMed  Google Scholar 

  • Ke WS, Xiong ZT, Chen SJ, Wang ZH (2008) Differences of Cu accumulation and cu- induced ATPase activity in roots of two populations of Elsholtzia haichowensis Sun. Environ Toxicol 23:193–199

    Article  PubMed  CAS  Google Scholar 

  • Kennedy CD, Gonsalves FAN (1987) The action of divalent zinc, cadmium, mercury, copper and lead on the trans-root potential and H+, efflux of excised roots. J Exp Bot 38:800–817

    Article  CAS  Google Scholar 

  • Kim ND, Fergusson JE (1991) Effectiveness of a commonly used sequential extraction technique in determining the speciation of cadmium in soils. Sci Total Environ 105:191–209

    Article  CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  Google Scholar 

  • Krämer U, Grime GW, Smith JAC, Hawes CR, Baker AJM (1997) Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl Instrum Methods Phys Res B 130:346–350

    Article  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  PubMed  CAS  Google Scholar 

  • Küpper H, Jie Zhao F, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–312

    Article  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  PubMed  Google Scholar 

  • Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue- and age- dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757

    Article  PubMed  Google Scholar 

  • Landberg T, Greger M (2002) Differences in oxidative stress in heavy metal resistant and sensitive clones of Salix viminalis. J Plant Physiol 159:69–75

    Article  CAS  Google Scholar 

  • Leyval C, Berthelin J (1993) Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol Fertil Soils 15:259–267

    Article  CAS  Google Scholar 

  • Li F (2009) Study of transcriptomics and proteomics on uptake and tolerance mechanism of copper in Elsholtzia splendens and its cDNA library construction. Environment Engineering. Doctoral Thesis, Zhejiang University, Hang Zhou

    Google Scholar 

  • Li X, Coles BJ, Ramsey MH, Thornton I (1995) Sequential extraction of soils for multielement analysis by ICP-AES. Chem Geol 124:109–123

    Article  CAS  Google Scholar 

  • Li F, Xiong Z, Hu H (2003a) Copper toxicity and accumulation in Elsholtzia splendens (in Chinese). Environ Sci 24:30–34

    CAS  Google Scholar 

  • Li F, Xiong Z, Hu H (2003b) Effects of chelating agents on toxicity of copper to Elsholtzia splendens (in Chinese). Environ Sci 24:96–100

    CAS  Google Scholar 

  • Li MJ, Xiong ZT, Dai LP, Huang Y (2007) Effects of copper on nitrogen assimilation in copper-tolerant and non-tolerant populations of Elsholtzia haichowensis S. Water Air Soil Pollut 184:323–333

    Article  CAS  Google Scholar 

  • Liao M, Hedley M, Woolley D, Brooks R, Nichols M (2000) Copper uptake and translocation in chicory (Cichorium intybus L. cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv Rondy) plants grown in NFT system. II. The role of nicotianamine and histidine in xylem sap copper transport. Plant Soil 223:245–254

    Article  Google Scholar 

  • Lidon CF, Ramalho CJ, Henriques SF (1993) Copper inhibition of rice photosynthesis. Elsevier, Munich, Allemagne

    Google Scholar 

  • Liu J, Xiong ZT (2005) Differences in accumulation and physiological response to copper stress in three populations of Elsholtzia haichowensis S. Water Air Soil Pollut 168:5–16

    Article  CAS  Google Scholar 

  • Long X, Yang XE, Ni W (2002) Current situation and prospect on the remediation of soils contaminated by heavy metals. Chin J Appl Ecol 13:757–762

    CAS  Google Scholar 

  • Lou LQ, Shen ZG, Li XD (2004) The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ Exp Bot 51:111–120

    Article  CAS  Google Scholar 

  • Luna CM, González CA, Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  • Macfie SM, Welbourn PM (2000) The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch Environ Contam Toxicol 39:413–419

    Article  PubMed  CAS  Google Scholar 

  • Mench M, Morel JL, Guckert A, Guillet B (1988) Metal binding with root exudates of low molecular weight. J Soil Sci 39:521–527

    Article  CAS  Google Scholar 

  • Merdy P, Guillon E, Dumonceau J, Aplincurt M (2002) Spectroscopic study of copper(II) – wheat straw cell wall residue surface complexes. Environ Sci Technol 36:1728–1733

    Article  PubMed  CAS  Google Scholar 

  • Monni S, Salemaa M, Millar N (2000) The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut 109:221–229

    Article  PubMed  CAS  Google Scholar 

  • Morel JL, Mench M, Guckert A (1986) Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soils 2:29–34

    Article  Google Scholar 

  • Ni CY (2004) Response and rhizosphere mechanism of accumulator and non-accumulator under copper Stress. Environment Engineering. Doctoral thesis, Hang Zhou, Zhejiang University

    Google Scholar 

  • Ni CY, Chen YX, Lin Q, Tian GM (2005) Subcellular localization of copper in tolerant and non-tolerant plant (in Chinese). J Environ Sci 17:452–456

    CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  • Ouzounidou G (1994) Root growth and pigment composition in relationship to element uptake in Silene compacta plants treated with copper. J Plant Nutr 17:933–943

    Article  CAS  Google Scholar 

  • Ouzounidou G, Ciamporová M, Moustakas M, Karataglis S (1995) Responses of maize (Zea mays L.) plants to copper stress-I. Growth, mineral content and ultrastructure of roots. Environ Exp Bot 35:167–176

    Article  CAS  Google Scholar 

  • Padmaja KPD, Parsad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica 24:399–404

    CAS  Google Scholar 

  • Peng HY, Yang XE (2007) Characteristics of copper and lead uptake and accumulation by two species of Elsholtzia. Bull Environ Contam Toxicol 78:142–147

    Article  Google Scholar 

  • Peng HY, Tian SK, Yang XE (2005a) Changes of root morphology and Pb uptake by two species of Elsholtzia under Pb toxicity. J Zhejiang Univ Sci B 6:546–552

    PubMed  Google Scholar 

  • Peng HY, Yang XE, Jiang LY, He ZL (2005b) Copper phytoavailability and uptake by Elsholtzia splendens from contaminated soil as affected by soil amendments. J Environ Sci Health A Tox Hazard Subst Environ Eng 40:839–856

    Article  PubMed  CAS  Google Scholar 

  • Peng HY, Yang XE, Tian SK (2005c) Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. J Zhejiang Univ Sci B 6:311–318

    PubMed  Google Scholar 

  • Persans MW, Yan X, Patnoe J-MML, Kramer U, Salt DE (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Halacsy). Plant Physiol 121:1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Plette ACC, Benedetti MF, van Riemsdijk WH (1996) Competitive binding of protons, calcium, cadmium, and zinc to isolated cell walls of a gram-positive soil bacterium. Environ Sci Technol 30:1902–1910

    Article  CAS  Google Scholar 

  • Polette LA, Gardea-Torresdey JL, Chianelli RR, George GN, Pickering IJ, Arenas J (2000) XAS and microscopy studies of the uptake and bio-transformation of copper in Larrea tridentata (creosote bush). Microchem J 65:227–236

    Article  CAS  Google Scholar 

  • Qian M (2005) The mechanisms of Cu tolerance and the potential in the phytoremediation of Elsholtzia Haichowensis. Plant Nutrition. Master Thesis, Nanjing Agricultural University, Nan Jing

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–6683

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ (2002) Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy. Microchem J 71:255–259

    Article  CAS  Google Scholar 

  • Schat H, Kalff MMA (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99:1475–1480

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal‐induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Shi JY (2004) Study on uptake mechanism and molecular speciation of copper in Elsholtzia splendens and Commelina communis. Environmental Engineering. Doctoral thesis, Zhejiang University, Hang Zhou

    Google Scholar 

  • Shi JY, Chen YX, Huang YY, He W (2004) SRXRF microprobe as a technique for studying elements distribution in Elsholtzia splendens. Micron 35:557–564

    Article  PubMed  Google Scholar 

  • Shi JY, Wu B, Yuan XF, Cao YY, Chen XC, Chen YX, Hu TD (2008) An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant Soil 302:163–174

    Article  CAS  Google Scholar 

  • Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H (2004) Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ Pollut 128:307–315

    Article  PubMed  CAS  Google Scholar 

  • Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur JV (2005) Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ Sci Technol 39:3671–3678

    Article  PubMed  CAS  Google Scholar 

  • Strange J, Macnair MR (1991) Evidence for a role for the cell membrane in copper tolerance of Mimulus guttatus Fischer ex DC. New Phytol 119:383–388

    Article  CAS  Google Scholar 

  • Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101:501–509

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Wilke BM, Huang C (1999) The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People’s Republic of China. Plant Soil 209:225–232

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Tewari R, Kumar P, Sharma P (2006) Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Tian SK (2005) Characteristics of Cu/Pb tolerance and accumulation by Elsholtzia plants and their effectiveness of heavy metal removal from polluted water. Plant Nutrition. Master thesis, Sichuan Agricultural University, Si Chuan

    Google Scholar 

  • Tian SK, Lu LL, Yang XE, Webb SM, Du YH, Brown PH (2010) Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation. Environ Sci Technol 44:5920–5926

    Article  PubMed  CAS  Google Scholar 

  • Vivas A, Biró B, Ruíz-Lozano JM, Barea JM, Azcón R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn- toxicity. Chemosphere 62:1523–1533

    Article  PubMed  CAS  Google Scholar 

  • Wang YP (2006) Molecular microbial ecology of heavy metals polluted soil and its effect on phytoremediation. Environmental Engineering. Doctor thesis, Zhejiang University, Hang Zhou

    Google Scholar 

  • Wang FY, Lin XG, Yin R (2005a) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens; and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232

    Article  CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2005b) Influence of arbuscular mycorrhizal fungi on growth and Cu uptake of Elsholtzia splendens (in Chinese). Environ Sci 26:174–180

    CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007) Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens – a field case. Environ Pollut 147:248–255

    Article  PubMed  CAS  Google Scholar 

  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Eletrophoresis 16:1090–1094

    Article  CAS  Google Scholar 

  • Webb SM, Gaillard JF, Ma LQ, Tu C (2003) XAS speciation of arsenic in a hyper-accumulating fern. Environ Sci Technol 37:754–760

    Article  PubMed  CAS  Google Scholar 

  • Weng G, Wu L, Wang Z, Luo Y, Christie P (2005) Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture. Environment International 31(6):880–884

    Google Scholar 

  • Wu B (2009) Study of mechanisms for Cu tolerance and accumulation in Elsholtzia splendens. Environmental Engineering. Doctor thesis, Zhejiang University, Hang Zhou

    Google Scholar 

  • Wu LH, Sun XF, Luo YM, Xing XR, Christie P (2007) Influence of S, S -EDDS on phytoextraction of copper and zinc by Elsholtzia splendens from metal-contaminated soil. Int J Phytoremediation 9:227–241

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Chen YX, Becker JS (2009a) Study of essential element accumulation in the leaves of a Cu-tolerant plant Elsholtzia splendens after Cu treatment by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Anal Chim Acta 633:165–172

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Zoriy M, Chen YX, Becker JS (2009b) Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 78:132–137

    Article  PubMed  CAS  Google Scholar 

  • Xia Y (2007) The copper tolerance, cloning and functional analysis of metallothione in gene in Elsholtzia haichowensis. College of Life Science. Doctor thesis, Nanjing Agricultural University, Nan Jing

    Google Scholar 

  • Yang MJ, Yang XE, Romheld V (2002) Growth and nutrient composition of Elsholtzia splendens Nakai under copper toxicity (in Chinese). J Plant Nutr 25:1359–1375

    Article  CAS  Google Scholar 

  • Yang XE, Peng HY, Jiang LY (2005) Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost. Int J Phytoremediation 7:69–83

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Xia Y, Wang GP, Shen ZG (2008) Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total activity of copper-zinc superoxide dismutase in roots of Elsholtzia haichowensis. Planta 227:465–475

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, Y., Yu, M., Duan, D. (2011). Tolerance, Accumulation, and Detoxification Mechanism of Copper in Elsholtzia splendens . In: Sherameti, I., Varma, A. (eds) Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_17

Download citation

Publish with us

Policies and ethics