Skip to main content

Organellar Proteomics: A High-Throughput Approach for better Understanding of Heavy Metal Accumulation and Detoxification in Plants

  • Chapter
  • First Online:
Detoxification of Heavy Metals

Part of the book series: Soil Biology ((SOILBIOL,volume 30))

Abstract

Tolerance of plants to heavy metals, as well as the accumulation and detoxification of these substances, depends on a number of organ-specific pathways, wherein the cell wall, plasma membrane, cytosol, and vacuoles play vital roles. Identification of the proteins involved in these organ-specific heavy metal response pathways is a fundamental step in the process of understanding the molecular mechanisms leading to accumulation and detoxification of toxic heavy metals in plant cells. This chapter provides an overview of the current status of organellar proteomics applications in the study of heavy metal toxicity and detoxification in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007a) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–1193

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH (2007b) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol 330:735–746

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Renaut J, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9:2602–2621

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Lee DG, Kim KH, Alam I, Lee SH, Lee KW, Lee H, Lee BH (2010) Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 78:224–231

    Article  PubMed  CAS  Google Scholar 

  • Alexandersson E, Gustavsson N, Bernfur K, Karlsson A, Kjellbom P, Larsson C (2008) Purification and proteomic analysis of plant plasma membranes. Methods Mol Biol 432:161–173

    Article  PubMed  CAS  Google Scholar 

  • Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9:2419–2431

    Article  PubMed  CAS  Google Scholar 

  • Bona E, Marsano F, Cavaletto M, Berta G (2007) Proteomic characterization of copper stress response in Cannabis sativa roots. Proteomics 7:1121–1130

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9:3100–3114

    Article  PubMed  CAS  Google Scholar 

  • Chivasa S, Simon WJ, Yu XL, Yalpani N, Slabas AR (2005) Pathogen elicitor-induced changes in the maize extracellular matrix proteome. Proteomics 5:4894–4904

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS, Hussain D, Haydon MJ (2003) Structural and functional relationships between type 1B heavy metal-transporting P-type ATPases in Arabidopsis. New Phytol 159:315–321

    Article  CAS  Google Scholar 

  • Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15:1131–1142

    Article  PubMed  CAS  Google Scholar 

  • Douchiche O, Rihouey C, Schaumann A, Driouich A, Morvan C (2007) Cadmium-induced alterations of the structural features of pectins in flax hypocotyl. Planta 225:1301–1312

    Article  PubMed  CAS  Google Scholar 

  • Douchiche O, Driouich A, Morvan C (2010) Spatial regulation of cell-wall structure in response to heavy metal stress: cadmium-induced alteration of the methyl-esterification pattern of homogalacturonans. Ann Bot 105:481–491

    Article  PubMed  CAS  Google Scholar 

  • Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103:6518–6523

    Article  PubMed  CAS  Google Scholar 

  • Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG (2006) Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol 141:196–207

    Article  PubMed  CAS  Google Scholar 

  • Eubel H, Lee CP, Kuo J, Meyer EH, Taylor NL, Millar AH (2007) Free-flow electrophoresis for purification of plant mitochondria by surface charge. Plant J 52:583–594

    Article  PubMed  CAS  Google Scholar 

  • Fagioni M, D’Amici GM, Timperio AM, Zolla L (2009) Proteomic analysis of multiprotein complexes in the thylakoid membrane upon cadmium treatment. J Proteome Res 8:310–326

    Article  PubMed  CAS  Google Scholar 

  • Führs H, Hartwig M, Molina LE, Heintz D, Van Dorsselaer A, Braun HP, Horst WJ (2008) Early manganese-toxicity response in Vigna unguiculata L.-a proteomic and transcriptomic study. Proteomics 8:149–159

    Article  PubMed  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  PubMed  CAS  Google Scholar 

  • Hanikenne M, Krämer U, Demoulin V, Baurain D (2005) A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol 137:428–446

    Article  PubMed  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Isaacson T, Rose JK (2006) Surveying the plant cell wall proteome or secretome. In: Christine F (ed) Plant proteomics. Ann Plant Rev 28:212–243

    Google Scholar 

  • Jamet E, Albenne C, Boudart G, Irshad M, Canut H, Pont-Lezica R (2008) Recent advances in plant cell wall proteomics. Proteomics 8:893–908

    Article  PubMed  CAS  Google Scholar 

  • Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 6:394–412

    PubMed  CAS  Google Scholar 

  • Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40

    Article  PubMed  Google Scholar 

  • Jorrín JV, Maldonado AM, Castillejo MA (2007) Plant proteome analysis: a 2006 update. Proteomics 7:2947–2962

    Article  PubMed  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530

    Article  PubMed  CAS  Google Scholar 

  • Komatsu S (2007) Extraction of nuclear proteins. Methods Mol Biol 355:73–77

    PubMed  CAS  Google Scholar 

  • Komatsu S (2008) Plasma membrane proteome in Arabidopsis and rice. Proteomics 8:4137–4145

    Article  PubMed  CAS  Google Scholar 

  • Konishi H, Maeshima M, Komatsu S (2005) Characterization of vacuolar membrane proteins changed in rice root treated with gibberellin. J Proteome Res 4:1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Kovácik J, Klejdus B (2008) Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep 27:605–615

    Article  PubMed  Google Scholar 

  • Kung CC, Huang WN, Huang YC, Yeh KC (2006) Proteomic survey of copper-binding proteins in Arabidopsis roots by immobilized metal affinity chromatography and mass spectrometry. Proteomics 6:2746–2758

    Article  PubMed  CAS  Google Scholar 

  • Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E (2006) Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere 62:1234–1244

    Article  PubMed  CAS  Google Scholar 

  • Lanquar V, Kuhn L, Lelièvre F, Khafif M, Espagne C, Bruley C, Barbier-Brygoo H, Garin J, Thomine S (2007) 15N-metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells. Proteomics 7:750–754

    Article  PubMed  CAS  Google Scholar 

  • Le Lay P, Isaure MP, Sarry JE, Kuhn L, Fayard B, Le Bail JL, Bastien O, Garin J, Roby C, Bourguignon J (2006) Metabolomic, proteomic and biophysical analyses of Arabidopsis thaliana cells exposed to a caesium stress. Influence of potassium supply. Biochimie 88:1533–1547

    Article  PubMed  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  PubMed  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  PubMed  CAS  Google Scholar 

  • Mitra SK, Walters BT, Clouse SD, Goshe MB (2009) An efficient organic solvent based extraction method for the proteomic analysis of Arabidopsis plasma membranes. J Proteome Res 8:2752–2767

    Article  PubMed  CAS  Google Scholar 

  • Ndimba BK, Chivasa S, Hamilton JM, Simon WJ, Slabas AR (2003) Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3:1047–1059

    Article  PubMed  CAS  Google Scholar 

  • Nilsson R, Bernfur K, Gustavsson N, Bygdell J, Wingsle G, Larsson C (2010) Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation. Mol Cell Proteomics 9:368–387

    Article  PubMed  CAS  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2007) Cadmium induced oxidative stress in soybean plants also by the accumulation of delta-aminolevulinic acid. Biometals 20:841–851

    Article  PubMed  CAS  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276

    Article  PubMed  CAS  Google Scholar 

  • Nouri MZ, Komatsu S (2010) Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches. Proteomics 10:1930–1945

    Article  PubMed  CAS  Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    Article  PubMed  CAS  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  • Pan SQ, Caeter CJ, Raikhel NV (2005) Understanding protein trafficking in plant cells through proteomics. Expert Rev Proteomics 2:781–792

    Article  PubMed  CAS  Google Scholar 

  • Patterson J, Ford K, Cassin A, Natera S, Bacic A (2007) Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley. Plant Physiol 144:1612–1631

    Article  PubMed  CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 8:1532–1544

    Article  Google Scholar 

  • Ross JK, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  Google Scholar 

  • Roth U, von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013

    Article  PubMed  CAS  Google Scholar 

  • Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  PubMed  CAS  Google Scholar 

  • Salvi D, Rolland N, Joyard J, Ferro M (2008) Purification and proteomic analysis of chloroplasts and their sub-organellar compartments. Methods Mol Biol 432:19–36

    Article  PubMed  CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198

    Article  PubMed  CAS  Google Scholar 

  • Schmidt UG, Endler A, Schelbert S, Brunner A, Schnell M, Neuhaus HE, Marty-Mazars D, Marty F, Baginsky S, Martinoia E (2007) Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiol 145:216–229

    Article  PubMed  CAS  Google Scholar 

  • Schneider T, Schellenberg M, Meyer S, Keller F, Gehrig P, Riedel K, Lee Y, Eberl L, Martinoia E (2009) Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Proteomics 9:2668–2677

    Article  PubMed  CAS  Google Scholar 

  • Smith AP, DeRidder BP, Guo WJ, Seeley EH, Regnier FE, Goldsbrough PB (2004) Proteomic analysis of Arabidopsis glutathione s-transferases from benoxacor- and copper-treated seedlings. J Biol Chem 279:26098–26104

    Article  PubMed  CAS  Google Scholar 

  • Szponarski W, Sommerer N, Boyer JC, Rossignol M, Gibart R (2004) Large-scale characterization of integral proteins from Arabidopsis vacuolar membrane by two-dimensional liquid chromatography. Proteomics 4:397–406

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Fujita M, Hanada H, Murayama S, Uemura M, Kawamura Y, Mitsui T, Mikami S, Tozawa Y, Yoshinaga T, Komatsu S (2004) Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments. Mol Genet Genomics 271:566–576

    Article  PubMed  CAS  Google Scholar 

  • Thelen JJ, Peck SC (2007) Quantitative proteomics in plants: choices in abundance. Plant Cell 19:3339–3346

    Article  PubMed  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) A biological test system for the evaluation of the phytotoxicity of metal-contaminated soils. Environ Pollut 66:157–172

    Article  PubMed  Google Scholar 

  • van Wijk KJ, Peltier JB, Giacomelli L (2007) Isolation of chloroplast proteins from Arabidopsis thaliana for proteome analysis. Methods Mol Biol 355:43–48

    PubMed  Google Scholar 

  • Wang W, Ballatori N (1998) Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol Rev 50:335–356

    PubMed  CAS  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal reponses in Arabodopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    Article  PubMed  CAS  Google Scholar 

  • Wen F, VanEtten HD, Tsaprailis G, Hawes MC (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143:773–783

    Article  PubMed  CAS  Google Scholar 

  • Whiteman SA, Nühse TS, Ashford DA, Sanders D, Maathuis FJ (2008) A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. Plant J 56:146–156

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    PubMed  CAS  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Wang Y, Zhang J, Shi W, Qian C, Peng X (2007) Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 7:737–749

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nagib Ahsan or Setsuko Komatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahsan, N., Lee, BH., Komatsu, S. (2011). Organellar Proteomics: A High-Throughput Approach for better Understanding of Heavy Metal Accumulation and Detoxification in Plants. In: Sherameti, I., Varma, A. (eds) Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_14

Download citation

Publish with us

Policies and ethics