Skip to main content

Nanocomposites as Bone Implant Material

  • Chapter
Springer Handbook of Nanomaterials

Part of the book series: Springer Handbooks ((SHB))

Abstract

The increasing demand for a suitable bone implant material has been forcing researchers to work on various man-made materials that may be used as a suitable replacement for natural bone and are affordable and easy to fabricate. In the past years, although significant efforts have been made in tissue engineering and regenerative medicine to put forward an ideal bone implant, they are far from meeting the real objective. Recent advances in nanobiotechnology in the field of therapeutics hold great promise to achieve the objective of an ideal implant in proper synchronization with tissue engineering. Nanocomposites, a product of synergistic efforts in nanobiotechnology and tissue engineering towards an ideal orthopedic implant, possess enormous potential for use as suitable bone implant material. Along with discussing the existing/conventional bone implant materials and their shortcomings, the main focus of this chapter is to elucidate nanocomposite as a potential next generation bone implant material. In this review, attempts have been made to deliver concise and relevant information about various nanofabrication technologies, characterization of nanocomposites, and their in vitro and in vivo biocompatibility study. Primary investigations support that nanocomposites are an ideal implant material for orthopedic applications; however, substantial developments are still highly needed to put nanocomposites into real practice, where current leanings in nanobiotechnology foreshadow a bright future through the use of nanocomposites in orthopedics. After defining the quest for bone implants, Sect. 26.2 gives a brief introduction to bone, and its structure and composition will be discussed. Section 26.3 gives a description and highlights shortcomings of conventional implant materials, followed by Sect. 26.4 describing the challenges posed by conventional and existing implants. In Sect. 26.5 a detailed study of the possible role of nanotechnology for suitable orthopedic implants are presented. Future perspectives in Sect. 26.6 close the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

ACP:

amorphous calcium phosphate

AFM:

atomic force microscopy

BCP:

biphasic calcium phosphate

BSA:

bovine serum albumina

BTCP:

β-tricalcium phosphate

CNF:

carbon nanofiber

CNT:

carbon nanotube

DNA:

deoxyribonucleic acid

DTE:

desaminotyrosyl-tyrosine ethyl ester

ECM:

extracellular matrix

ELISA:

enzyme-linked immuno sorbent assay

FDA:

Food and Drug Administration

HA:

humic acid

HPMC:

Hydroxypropylmethyl cellulose

HRN:

helical rosette nanotube

MHAP:

micron particulate hydroxyapatite

MWCNT:

multiwalled carbon nanotube

MWNT:

multiwalled nanotubes

NHAP:

nanohydroxyapatite

PA:

peptide amphiphile

PCL:

poly(ε-caprolactone)

PE:

polyethylene

PEEk:

produced poly(ether ether ketone)

PEG:

polyethylene glycol

PGA:

poly(glycolic acid)

PLA:

poly-ethylene oxide

PLGA:

poly(lactic-co-glycolic) acid

PLLA:

poly(l-lactic) acid

PMMA:

poly-methyl methacrylate

PP:

polypropylene

PPF:

propylene fumarate

PSU:

polysulfonate

PTFE:

polytetrafluoroethylene

PU:

polyurethane

PVA:

polyvinyl alcohol

PVDF:

polyvinyldifluoride

RGD:

Arg-Gly-Asp

RMS:

microscale surface roughness

SEM:

scanning electron microscopy

SFF:

solid freedom fabrication

SWCNT:

single-walled carbon nanotube

TEM:

transmission electron microscopy

TIPS:

thermally induced phase separation

TTCP:

tetracalcium phosphate

mRNA:

messenger RNA

References

  1. R. Lakes, S. Saha: Cement line motion in bone, Science 204(4392), 501–503 (1979)

    Article  CAS  Google Scholar 

  2. G.E. Bacon, P.J. Bacon, R.K. Griffiths: Neutron diffraction studies of lumbar vertebrae, J. Anat. 128, 277–283 (1979)

    CAS  Google Scholar 

  3. N. Sasaki, Y. Sudoh: X-ray pole figure analysis of apatite crystals and collagen molecules in bone, Calcif. Tissue Int. 60(4), 361–367 (1997)

    Article  CAS  Google Scholar 

  4. J.D. Bronzino: The Biomedical Engineering Handbook, 2nd edn. (CRC, Boca Raton 2000) pp. 274–706

    Google Scholar 

  5. M.C.H. van der Meulen, P.J. Prendergast: Mechanics in skeletal development, adaptation and disease, Philos. Trans. R. Soc. Lond. 358(6), 565–578 (2000)

    Google Scholar 

  6. X.E. Guo, S.A. Goldstein: Is trabecular bone tissue different from cortical bone?, Forma 12, 3–4 (1997)

    Google Scholar 

  7. T.J. Webster: Nanophase Ceramics: The Future Orthopedic and Dental Implant Material, Adv. Chem. Eng (Academic, New York 2001) pp. 125–166

    Google Scholar 

  8. J.Y. Rho, L. Kuhn-Spearing, P. Zioupos: Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys. 20(2), 92–102 (1998)

    Article  CAS  Google Scholar 

  9. L. Kuhn-Spearing, C. Rey, H.M. Kim, M.J. Glimcher: Carbonated apatite nanocrystals of bone. In: Synthesis and Processing of Nanocrystalline Powder, ed. by D.L. Bourell (The Minerals, Metals and Materials Society, Warrendale, PA 1996)

    Google Scholar 

  10. E.H. Burger, J. Klein-Nulend: Mechanotransduction in bone–role of the lacuno-canalicular network, FASEB J. 13(Suppl), S101–112 (1999)

    CAS  Google Scholar 

  11. R. Smith: Bone Health and Osteoporosis: A Report of the Surgeon General (US Department of Health and Human Services, Rockville 2004) pp. 68–70

    Google Scholar 

  12. G. Wei, P.X. Ma: Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials 25(19), 4749–4757 (2004)

    Article  CAS  Google Scholar 

  13. J.J. Tiedeman, K.L. Garvin, T.A. Kile, J.F. Connolly: The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects, Orthopedics 18(12), 1153–1158 (1995)

    CAS  Google Scholar 

  14. R. Gepstein, R.E. Weiss, T. Hallel: Bridging large defects in bone by demineralized bone matrix in the form of a powder. A radiographic, histological, and radioisotope-uptake study in rats, J. Bone Joint Surg. Am. 69(7), 984–992 (1987)

    CAS  Google Scholar 

  15. B.N. Summers, S.M. Eisenstein: Donor site pain from the ilium. A complication of lumbar spine fusion, J. Bone Joint Surg. Br. 71(4), 677–680 (1989)

    CAS  Google Scholar 

  16. M.B. Coventry, E.M. Tapper: Pelvic instability: A consequence of removing iliac bone for grafting, J. Bone Joint Surg. Am. 54(1), 83–101 (1972)

    CAS  Google Scholar 

  17. K.G. Marra, J.W. Szem, P.N. Kumta, P.A. DiMilla, L.E. Weiss: In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering, J. Biomed. Mater. Res. 47(3), 324–335 (1999)

    Article  CAS  Google Scholar 

  18. E.M. Younger, M.W. Chapman: Morbidity at bone graft donor site, J. Orthop. Trauma 3, 192–195 (1989)

    Article  CAS  Google Scholar 

  19. W.M. Saltzman: Engineering Principles for the Design of Replacement Organs and Tissues (Oxford Univ Press, New York 2004) pp. 6–7

    Google Scholar 

  20. A. Nather: Biology of healing of large deep-frozen cortical bone allografts, Bone Biol. Heal. 1, 50–65 (2003)

    Google Scholar 

  21. R.D. Bostrom, A.G. Mikos: Tissue engineering of bone. In: Synthetic Biodegradable Polymers Scaffolds, ed. by A. Atala, A.J. Mooney (Birkhäuser, Boston 1997) pp. 215–234

    Chapter  Google Scholar 

  22. K.E. Healy, P. Ducheyne.: Passive dissolution of titanium in biological environments (review). In: Medical Applications of Titanium and Its Alloys: The Material And Biological Issues, ed. by S.A. Brown, J.E. Lemons (ASTM STP, Philadelphia 1996)

    Google Scholar 

  23. R. Van Noort: Titanium: The implant material of today, J. Mater. Sci. 22(11), 3801–3811 (1987)

    Article  Google Scholar 

  24. L.Z. Zhuang, E.W. Langer: Determination of cyclic strain-hardening behaviour produced during fatigue crack growth in cast cocrmo alloy used for surgical implants, Mater. Sci. Eng. A 108(0), 247–252 (1989)

    Google Scholar 

  25. C.M. Agrawal, R.B. Ray: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, J. Biomed. Mater. Res. 55(2), 141–150 (2001)

    Article  CAS  Google Scholar 

  26. J.S. Temenoff, A.G. Mikos: Injectable biodegradable materials for orthopedic tissue engineering, Biomaterials 21(23), 2405–2412 (2000)

    Article  CAS  Google Scholar 

  27. E. Behravesh, A.W. Yasko, P.S. Engel, A.G. Mikos: Synthetic biodegradable polymers for orthopaedic applications, Clin. Orthop. Relat. Res. 367, S118–129 (1999)

    Article  Google Scholar 

  28. K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (Eds.): Encyclopedia of Materials (Elsevier, Amsterdam 2001) p. 11

    Google Scholar 

  29. Y.W. Li, J.C. Leong, W.W. Lu, K.D. Luk, K.M. Cheung, K.Y. Chiu, S.P. Chow: A novel injectable bioactive bone cement for spinal surgery: A developmental and preclinical study, J. Biomed. Mater. Res. 52(1), 164–170 (2000)

    Article  CAS  Google Scholar 

  30. H. McKellop, F.W. Shen, B. Lu, P. Campbell, R. Salovey: Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements, J. Orthop. Res. 17(2), 157–167 (1999)

    Article  CAS  Google Scholar 

  31. S.M. Kurtz, O.K. Muratoglu, M. Evans, A.A. Edidin: Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty, Biomaterials 20(18), 1659–1688 (1999)

    Article  CAS  Google Scholar 

  32. C.T. Laurencin, A.M. Ambrosio, M.D. Borden, J.A. Cooper Jr.: Tissue engineering: Orthopedic applications, Annu. Rev. Biomed. Eng. 1, 19–46 (1999)

    Article  CAS  Google Scholar 

  33. A.R. Boccaccini, J.J. Blaker: Bioactive composite materials for tissue engineering scaffolds, Expert Rev. Med. Devices 2(3), 303–317 (2005)

    Article  CAS  Google Scholar 

  34. A.U. Daniels, K.P. Andriano, W.P. Smutz, M.K. Chang, J. Heller: Evaluation of absorbable poly(ortho esters) for use in surgical implants, J. Appl. Biomater. 5(1), 51–64 (1994)

    Article  CAS  Google Scholar 

  35. K.P. Andriano, T. Pohjonen, P. Tormala: Processing and characterization of absorbable polylactide polymers for use in surgical implants, J. Appl. Biomater. 5(2), 133–140 (1994)

    Article  CAS  Google Scholar 

  36. K.A. Athanasiou, G.G. Niederauer, C.M. Agrawal: Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers, Biomaterials 17(2), 93–102 (1996)

    Article  CAS  Google Scholar 

  37. V. Thomas, D.R. Dean, Y.K. Vohra: Nanostructured biomaterials for regenerative medicine, Curr. Nanosci. 2(3), 155–177 (2006)

    Article  CAS  Google Scholar 

  38. S.M. Li, H. Garreau, M. Vert: Structure-property relationships in the case of the degradation of massive aliphatic poly-(α-hydroxy acids) in aqueous media, J. Mater. Sci. Mater. Med. 1(3), 123–130 (1990)

    Article  CAS  Google Scholar 

  39. R.C. Thomson, M.J. Yaszemski, J.M. Powers, A.G. Mikos: Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration, Biomaterials 19(21), 1935–1943 (1998)

    Article  CAS  Google Scholar 

  40. K.C. Dee, R. Bizios: Mini-review: Proactive biomaterials and bone tissue engineering, Biotechnol. Bioeng. 50(4), 438–442 (1996)

    Article  CAS  Google Scholar 

  41. N. Ignjatović, S. Tomić, M. Dakić, M. Miljković, M. Plavsić, D. Uskoković: Synthesis and properties of hydroxyapatite/poly-l-lactide composite biomaterials, Biomaterials 20(9), 809–816 (1999)

    Article  Google Scholar 

  42. N. Ignjatović, V. Savić, S. Najman, M. Plavšić, D. Uskoković: A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy, Biomaterials 22(6), 571–575 (2001)

    Article  Google Scholar 

  43. N. Ashammakhi, P. Rokkanen: Absorbable polyglycolide devices in trauma and bone surgery, Biomaterials 18(1), 3–9 (1997)

    Article  CAS  Google Scholar 

  44. G.O. Hofmann: Biodegradable implants in traumatology: A review on the state-of-the-art, Arch. Orthop. Trauma Surg. 114(3), 123–132 (1995)

    Article  CAS  Google Scholar 

  45. J.O. Hollinger, K. Leong: Poly(α-hydroxy acids): Carriers for bone morphogenetic proteins, Biomaterials 17(2), 187–194 (1996)

    Article  CAS  Google Scholar 

  46. L.G. Griffith: Polymeric biomaterials, Acta Mater. 48(1), 263–277 (2000)

    Article  CAS  Google Scholar 

  47. S.J. Peter, M.J. Miller, A.W. Yasko, M.J. Yaszemski, A.G. Mikos: Polymer concepts in tissue engineering, J. Biomed. Mater. Res. 43(4), 422–427 (1998)

    Article  CAS  Google Scholar 

  48. S.L. Ishaug, R.G. Payne, M.J. Yaszemski, T.B. Aufdemorte, R. Bizios, A.G. Mikos: Osteoblast migration on poly(α-hydroxy esters), Biotechnol. Bioeng. 50(4), 443–451 (1996)

    Article  CAS  Google Scholar 

  49. G.M. Crane, S.L. Ishaug, A.G. Mikos: Bone tissue engineering, Nat. Med. 1(12), 1322–1324 (1995)

    Article  CAS  Google Scholar 

  50. T. Matsuda, J.E. Davies: The in vitro response of osteoblasts to bioactive glass, Biomaterials 8(4), 275–284 (1987)

    Article  CAS  Google Scholar 

  51. H. Hayashi, A. Uchida, H. Hamada, H. Yoshikawa, Y. Shinto, K. Ono: Alumina ceramic prostheses for bone reactions to alumina oxide dental implants in man: A case report, Arch. Orthop. Trauma Surg. 112, 1–4 (1992)

    Article  CAS  Google Scholar 

  52. J.E. Davies, T. Matsuda: Extracellular matrix production by osteoblasts on bioactive substrate in vitro, Scanning Microsc. 2(1445), 52 (1988)

    Google Scholar 

  53. J.M. Sautier, J.R. Nefussi, N. Forest: Ultrasonic study of bone formation on synthetic hydroxyapatite in osteoblasts cultures, Cell Mater. 1, 209–217 (1991)

    CAS  Google Scholar 

  54. R.Z. LeGeros: Calcium phosphates in oral biology and medicine, Monogr. Oral Sci. 15, 1–201 (1991)

    CAS  Google Scholar 

  55. T. Kokubo, S. Ito, Z.T. Huang, T. Hayashi, S. Sakka, T. Kitsugi, T. Yamamuro: Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W, J. Biomed. Mater. Res. 24(3), 331–343 (1990)

    Article  CAS  Google Scholar 

  56. M. Nagano, T. Nakamura, T. Kokubo, M. Tanahashi, M. Ogawa: Differences of bone bonding ability and degradation behaviour in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating, Biomaterials 17(18), 1771–1777 (1996)

    Article  CAS  Google Scholar 

  57. T.J. Webster, J.U. Ejiofor: Increased osteoblast adhesion on nanophase metals: Ti, Ti_6AL_4V, and CoCrMo, Biomaterials 25(19), 4731–4739 (2004)

    Article  CAS  Google Scholar 

  58. G. Zhao, A.L. Raines, M. Wieland, Z. Schwartz, B.D. Boyan: Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography, Biomaterials 28(18), 2821–2829 (2007)

    Article  CAS  Google Scholar 

  59. T.P. Kunzler, T. Drobek, M. Schuler, N.D. Spencer: Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients, Biomaterials 28(13), 2175–2182 (2007)

    Article  CAS  Google Scholar 

  60. M.A. Dyer, K.M. Ainslie, M.V. Pishko: Protein adhesion on silicon-supported hyperbranched poly(ethylene glycol) and poly(allylamine) thin films, Langmuir 23(13), 7018–7023 (2007)

    Article  CAS  Google Scholar 

  61. D. Khang, J. Lu, C. Yao, K.M. Haberstroh, T.J. Webster: The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium, Biomaterials 29(8), 970–983 (2008)

    Article  CAS  Google Scholar 

  62. C. Yao, V. Perla, J.L. McKenzie, E.B. Slamovich, T.J. Webster: Anodized Ti and Ti_6AL_4V possessing nanometer surface features enhances osteoblast adhesion, J. Biomed. Nanotechnol. 1(1), 68–73 (2005)

    Article  CAS  Google Scholar 

  63. T.-W. Chung, D.-Z. Liu, S.-Y. Wang, S.-S. Wang: Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale, Biomaterials 24(25), 4655–4661 (2003)

    Article  CAS  Google Scholar 

  64. S. Sirivisoot, C. Yao, X. Xiao, B.W. Sheldon, T.J. Webster: Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications, Nanotechnology 18(36), 365102 (2007)

    Article  CAS  Google Scholar 

  65. M. Navarro, M.P. Ginebra, J.A. Planell, S. Zeppetelli, L. Ambrosio: Development and cell response of a new biodegradable composite scaffold for guided bone regeneration, J. Mater. Sci. Mater. Med. 15(4), 419–422 (2004)

    Article  CAS  Google Scholar 

  66. T. Niemelä, H. Niiranen, M. Kellomäki, P. Törmälä: Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity, Acta Biomater. 1(2), 235–242 (2005)

    Article  Google Scholar 

  67. J. Yao, S. Radin, G. Reilly, P.S. Leboy, P. Ducheyne: Solution-mediated effect of bioactive glass in poly (lactic-co-glycolic acid)-bioactive glass composites on osteogenesis of marrow stromal cells, J. Biomed. Mater. Res. A 75(4), 794–801 (2005)

    Article  CAS  Google Scholar 

  68. R. Zhang, P.X. Ma: Poly(α-hydroxyl acids)/hydroxy apatite porous composites for bone-tissue engineering. I. Preparation and morphology, J. Biomed. Mater. Res. 44(4), 446–455 (1999)

    Article  CAS  Google Scholar 

  69. Y. Shikinami, M. Okuno: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-l-lactide (plla): Part i. Basic characteristics, Biomaterials 20(9), 859–877 (1999)

    Article  CAS  Google Scholar 

  70. Y. Shikinami, Y. Matsusue, T. Nakamura: The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly l-lactide (f-u-ha/plla), Biomaterials 26(27), 5542–5551 (2005)

    Article  CAS  Google Scholar 

  71. M.J. Mondrinos, R. Dembzynski, L. Lu, V.K. Byrapogu, D.M. Wootton, P.I. Lelkes, J. Zhou: Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering, Biomaterials 27(25), 4399–4408 (2006)

    Article  CAS  Google Scholar 

  72. A.M. Ambrosio, J.S. Sahota, Y. Khan, C.T. Laurencin: A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization, J. Biomed. Mater. Res. 58(3), 295–301 (2001)

    Article  CAS  Google Scholar 

  73. A.A. Ignatius, O. Betz, P. Augat, L.E. Claes: In vivo investigations on composites made of resorbable ceramics and poly(lactide) used as bone graft substitutes, J. Biomed. Mater. Res. 58(6), 701–709 (2001)

    Article  CAS  Google Scholar 

  74. C.G. Simon Jr., C.A. Khatri, S.A. Wight, F.W. Wang: Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly(lactide-co-glycolide) microspheres, J. Orthop. Res. 20(3), 473–482 (2002)

    Article  CAS  Google Scholar 

  75. P.Q. Ruhe, E.L. Hedberg, N.T. Padron, P.H. Spauwen, J.A. Jansen, A.G. Mikos: rhBMP-2 release from injectable poly(dl-lactic-co-glycolic acid)/calcium-phosphate cement composites, J. Bone Joint Surg. Am. 85(Suppl 3), 75–81 (2003)

    Google Scholar 

  76. W.J. Habraken, J.G. Wolke, A.G. Mikos, J.A. Jansen: Injectable PLGA microsphere/calcium phosphate cements: Physical properties and degradation characteristics, J. Biomater. Sci. Polym. Ed. 17(9), 1057–1074 (2006)

    Article  CAS  Google Scholar 

  77. P.Q. Ruhe, E.L. Hedberg, N.T. Padron, P.H. Spauwen, J.A. Jansen, A.G. Mikos: Biocompatibility and degradation of poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites, J. Biomed. Mater. Res. A 74(4), 533–544 (2005)

    Article  CAS  Google Scholar 

  78. D.P. Link, J. van den Dolder, W.J. Jurgens, J.G. Wolke, J.A. Jansen: Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles, Biomaterials 27(28), 4941–4947 (2006)

    Article  CAS  Google Scholar 

  79. P.Q. Ruhe, E.L. Hedberg-Dirk, N.T. Padron, P.H. Spauwen, J.A. Jansen, A.G. Mikos: Porous poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects, Tissue Eng. 12(4), 789–800 (2006)

    Article  CAS  Google Scholar 

  80. Y. Takahashi, M. Yamamoto, Y. Tabata: Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and β-tricalcium phosphate, Biomaterials 26(23), 4856–4865 (2005)

    Article  CAS  Google Scholar 

  81. H.W. Kim, J.C. Knowles, H.E. Kim: Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds, J. Biomed. Mater. Res. A 72(2), 136–145 (2005)

    Article  CAS  Google Scholar 

  82. Y. Shibata, H. Yamamoto, T. Miyazaki: Colloidal β-tricalcium phosphate prepared by discharge in a modified body fluid facilitates synthesis of collagen composites, J. Dent. Res. 84(9), 827–831 (2005)

    Article  CAS  Google Scholar 

  83. F.H. Lin, C.H. Yao, J.S. Sun, H.C. Liu, C.W. Huang: Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde cross-linked gelatin, Biomaterials 19(10), 905–917 (1998)

    Article  CAS  Google Scholar 

  84. C. Du, F.Z. Cui, W. Zhang, Q.L. Feng, X.D. Zhu, K. de Groot: Formation of calcium phosphate/collagen composites through mineralization of collagen matrix, J. Biomed. Mater. Res. 50(4), 518–527 (2000)

    Article  CAS  Google Scholar 

  85. A. Tampieri, G. Celotti, E. Landi, M. Montevecchi, N. Roveri, A. Bigi, S. Panzavolta, M.C. Sidoti: Porous phosphate-gelatine composite as bone graft with drug delivery function, J. Mater. Sci. Mater. Med. 14(7), 623–627 (2003)

    Article  CAS  Google Scholar 

  86. A. Bigi, B. Bracci, S. Panzavolta: Effect of added gelatin on the properties of calcium phosphate cement, Biomaterials 25(14), 2893–2899 (2004)

    Article  CAS  Google Scholar 

  87. A. Bigi, P. Torricelli, M. Fini, B. Bracci, S. Panzavolta, L. Sturba, R. Giardino: A biomimetic gelatin-calcium phosphate bone cement, Int. J. Artif. Organs 27(8), 664–673 (2004)

    CAS  Google Scholar 

  88. A. Bigi, S. Panzavolta, L. Sturba, P. Torricelli, M. Fini, R. Giardino: Normal and osteopenic bone-derived osteoblast response to a biomimetic gelatin-calcium phosphate bone cement, J. Biomed. Mater. Res. A 78(4), 739–745 (2006)

    Article  CAS  Google Scholar 

  89. Y. Fujishiro, K. Takahashi, T. Sato: Preparation and compressive strength of α-tricalcium phosphate/gelatin gel composite cement, J. Biomed. Mater. Res. 54(4), 525–530 (2001)

    Article  CAS  Google Scholar 

  90. A. Bigi, E. Boanini, S. Panzavolta, N. Roveri: Biomimetic growth of hydroxyapatite on gelatin films doped with sodium polyacrylate, Biomacromolecules 1(4), 752–756 (2000)

    Article  CAS  Google Scholar 

  91. S. Rammelt, E. Schulze, M. Witt, E. Petsch, A. Biewener, W. Pompe, H. Zwipp: Collagen type I increases bone remodelling around hydroxyapatite implants in the rat tibia, Cells Tissues Organs 178(3), 146–157 (2004)

    Article  CAS  Google Scholar 

  92. B. Knepper-Nicolai, A. Reinstorf, I. Hofinger, K. Flade, R. Wenz, W. Pompe: Influence of osteocalcin and collagen I on the mechanical and biological properties of biocement D, Biomol. Eng. 19(2–6), 227–231 (2002)

    Article  CAS  Google Scholar 

  93. U. Hempel, A. Reinstorf, M. Poppe, U. Fischer, M. Gelinsky, W. Pompe, K.W. Wenzel: Proliferation and differentiation of osteoblasts on biocement D modified with collagen type I and citric acid, J. Biomed. Mater. Res. B 71(1), 130–143 (2004)

    Article  CAS  Google Scholar 

  94. D. Le Nihouannen, L.L. Guehennec, T. Rouillon, P. Pilet, M. Bilban, P. Layrolle, G. Daculsi: Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering, Biomaterials 27(13), 2716–2722 (2006)

    Article  CAS  Google Scholar 

  95. F. Jegoux, E. Goyenvalle, M. Bagot Dʼarc, E. Aguado, G. Daculsi: In vivo biological performance of composites combining micro-macroporous biphasic calcium phosphate granules and fibrin sealant, Arch. Orthop. Trauma Surg. 125(3), 153–159 (2005)

    Article  Google Scholar 

  96. U. Kneser, A. Voogd, J. Ohnolz, O. Buettner, L. Stangenberg, Y.H. Zhang, G.B. Stark, D.J. Schaefer: Fibrin gel-immobilized primary osteoblasts in calcium phosphate bone cement: In vivo evaluation with regard to application as injectable biological bone substitute, Cells Tissues Organs 179(4), 158–169 (2005)

    Article  CAS  Google Scholar 

  97. C.M. Vaz, M. Fossen, R.F. van Tuil, L.A. de Graaf, R.L. Reis, A.M. Cunha: Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications, J. Biomed. Mater. Res. A 65(1), 60–70 (2003)

    CAS  Google Scholar 

  98. J. Lin, S. Zhang, T. Chen, C. Liu, S. Lin, X. Tian: Calcium phosphate cement reinforced by polypeptide copolymers, J. Biomed. Mater. Res. B 76(2), 432–439 (2006)

    Article  CAS  Google Scholar 

  99. L. Leroux, Z. Hatim, M. Freche, J.L. Lacout: Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement, Bone 25(2 Suppl), 31S–34S (1999)

    Article  CAS  Google Scholar 

  100. S. Takagi, L.C. Chow, S. Hirayama, F.C. Eichmiller: Properties of elastomeric calcium phosphate cement-chitosan composites, Dent. Mater. 19(8), 797–804 (2003)

    Article  CAS  Google Scholar 

  101. H.H. Xu, J.B. Quinn, S. Takagi, L.C. Chow: Processing and properties of strong and non-rigid calcium phosphate cement, J. Dent. Res. 81(3), 219–224 (2002)

    Article  CAS  Google Scholar 

  102. H.H. Xu, C.G. Simon Jr.: Fast setting calcium phosphate-chitosan scaffold: Mechanical properties and biocompatibility, Biomaterials 26(12), 1337–1348 (2005)

    Article  CAS  Google Scholar 

  103. Y.M. Lee, Y.J. Park, S.J. Lee, Y. Ku, S.B. Han, S.M. Choi, P.R. Klokkevold, C.P. Chung: Tissue engineered bone formation using chitosan/tricalcium phosphate sponges, J. Periodontol. 71(3), 410–417 (2000)

    Article  CAS  Google Scholar 

  104. Y. Zhang, M. Zhang: Cell growth and function on calcium phosphate reinforced chitosan scaffolds, J. Mater. Sci. Mater. Med. 15(3), 255–260 (2004)

    Article  CAS  Google Scholar 

  105. Y. Zhang, M. Zhang: Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release, J. Biomed. Mater. Res. 62(3), 378–386 (2002)

    Article  CAS  Google Scholar 

  106. G. Daculsi, P. Weiss, J.M. Bouler, O. Gauthier, F. Millot, E. Aguado: Biphasic calcium phosphate/hydrosoluble polymer composites: A new concept for bone and dental substitution biomaterials, Bone 25(2 Suppl), 59S–61S (1999)

    Article  CAS  Google Scholar 

  107. B.H. Fellah, P. Weiss, O. Gauthier, T. Rouillon, P. Pilet, G. Daculsi, P. Layrolle: Bone repair using a new injectable self-crosslinkable bone substitute, J. Orthop. Res. 24(4), 628–635 (2006)

    Article  CAS  Google Scholar 

  108. E.F. Burguera, H.H. Xu, M.D. Weir: Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate, J. Biomed. Mater. Res. B 77(1), 126–134 (2006)

    Article  CAS  Google Scholar 

  109. B. Ongpipattanakul, T. Nguyen, T.F. Zioncheck, R. Wong, G. Osaka, L. DeGuzman, W.P. Lee, L.S. Beck: Development of tricalcium phosphate/amylopectin paste combined with recombinant human transforming growth factor beta 1 as a bone defect filler, J. Biomed. Mater. Res. 36(3), 295–305 (1997)

    Article  CAS  Google Scholar 

  110. L.F. Boesel, M.H. Fernandes, R.L. Reis: The behavior of novel hydrophilic composite bone cements in simulated body fluids, J. Biomed. Mater. Res. B 70(2), 368–377 (2004)

    Article  CAS  Google Scholar 

  111. E.L. Liljensten, A.G. Attaelmanan, C. Larsson, H. Ljusberg-Wahren, N. Danielsen, J.M. Hirsch, P. Thomsen: Hydroxyapatite granule/carrier composites promote new bone formation in cortical defects, Clin. Implant. Dent. Relat. Res. 2(1), 50–59 (2000)

    Article  CAS  Google Scholar 

  112. A.D. Augst, H.J. Kong, D.J. Mooney: Alginate hydrogels as biomaterials, Macromol. Biosci. 6(8), 623–633 (2006)

    Article  CAS  Google Scholar 

  113. I. Khairoun, F.C. Driessens, M.G. Boltong, J.A. Planell, R. Wenz: Addition of cohesion promotors to calcium phosphate cements, Biomaterials 20(4), 393–398 (1999)

    Article  CAS  Google Scholar 

  114. S.J. Peter, P. Kim, A.W. Yasko, M.J. Yaszemski, A.G. Mikos: Crosslinking characteristics of an injectable poly(propylene fumarate)/β-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement, J. Biomed. Mater. Res. 44(3), 314–321 (1999)

    Article  CAS  Google Scholar 

  115. J.L. Charvet, J.A. Cordes, H. Alexander: Mechanical and fracture behavior of a fiber-reinforced bioabsorbable material for orthopaedic applications, J. Mater. Sci. Mater. Med. 11(2), 101–109 (2000)

    Article  CAS  Google Scholar 

  116. S.K. Misra, S.P. Valappil, I. Roy, A.R. Boccaccini: Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications, Biomacromolecules 7(8), 2249–2258 (2006)

    Article  CAS  Google Scholar 

  117. H. Qiu, J. Yang, P. Kodali, J. Koh, G.A. Ameer: A citric acid-based hydroxyapatite composite for orthopedic implants, Biomaterials 27(34), 5845–5854 (2006)

    Article  CAS  Google Scholar 

  118. R.A. Mickiewicz, A.M. Mayes, D. Knaack: Polymer–calcium phosphate cement composites for bone substitutes, J. Biomed. Mater. Res. 61(4), 581–592 (2002)

    Article  CAS  Google Scholar 

  119. L.A. dos Santos, R.G. Carrodeguas, A.O. Boschi, A.C. Fonseca de Arruda: Fiber-enriched double-setting calcium phosphate bone cement, J. Biomed. Mater. Res. A 65(2), 244–250 (2003)

    Google Scholar 

  120. H.H. Xu, F.C. Eichmiller, A.A. Giuseppetti: Reinforcement of a self-setting calcium phosphate cement with different fibers, J. Biomed. Mater. Res. 52(1), 107–114 (2000)

    Article  CAS  Google Scholar 

  121. J.R. Jones, L.M. Ehrenfried, L.L. Hench: Optimising bioactive glass scaffolds for bone tissue engineering, Biomaterials 27(7), 964–973 (2006)

    Article  CAS  Google Scholar 

  122. H.W. Kim, J.C. Knowles, H.E. Kim: Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic vancomycin release, J. Mater. Sci. Mater. Med. 16(3), 189–195 (2005)

    Article  CAS  Google Scholar 

  123. E.B. Giesen, M. Ding, M. Dalstra, T.M. van Eijden: Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic, J. Biomech. 34(6), 799–803 (2001)

    Article  CAS  Google Scholar 

  124. H. Shin, S. Jo, A.G. Mikos: Biomimetic materials for tissue engineering, Biomaterials 24(24), 4353–4364 (2003)

    Article  CAS  Google Scholar 

  125. W.S. Koegler, L.G. Griffith: Osteoblast response to PLGA tissue engineering scaffolds with peo modified surface chemistries and demonstration of patterned cell response, Biomaterials 25(14), 2819–2830 (2004)

    Article  CAS  Google Scholar 

  126. S. Ladron de Guevara-Fernandez, C.V. Ragel, M. Vallet-Regi: Bioactive glass-polymer materials for controlled release of ibuprofen, Biomaterials 24(22), 4037–4043 (2003)

    Article  CAS  Google Scholar 

  127. W.L. Murphy, M.C. Peters, D.H. Kohn, D.J. Mooney: Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering, Biomaterials 21(24), 2521–2527 (2000)

    Article  CAS  Google Scholar 

  128. C.T. Laurencin, M.A. Attawia, L.Q. Lu, M.D. Borden, H.H. Lu, W.J. Gorum, J.R. Lieberman: Poly(lactide-co-glycolide)/hydroxyapatite delivery of BMP-2-producing cells: A regional gene therapy approach to bone regeneration, Biomaterials 22(11), 1271–1277 (2001)

    Article  CAS  Google Scholar 

  129. G.A. Silva, F.J. Costa, O.P. Coutinho, S. Radin, P. Ducheyne, R.L. Reis: Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles, J. Biomed. Mater. Res. A 70(3), 442–449 (2004)

    CAS  Google Scholar 

  130. K. Anselme: Osteoblast adhesion on biomaterials, Biomaterials 21(7), 667–681 (2000)

    Article  CAS  Google Scholar 

  131. M. Mrksich: What can surface chemistry do for cell biology?, Curr. Opin. Chem. Biol. 6(6), 794–797 (2002)

    Article  CAS  Google Scholar 

  132. A. Ito, K. Ino, T. Kobayashi, H. Honda: The effect of RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting, Biomaterials 26(31), 6185–6193 (2005)

    Article  CAS  Google Scholar 

  133. F. Yang, C.G. Williams, D.-A. Wang, H. Lee, P.N. Manson, J. Elisseeff: The effect of incorporating rgd adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells, Biomaterials 26(30), 5991–5998 (2005)

    Article  CAS  Google Scholar 

  134. T.A. Linkhart, S. Mohan, D.J. Baylink: Growth factors for bone growth and repair: IGF, TGFβ and BMP, Bone 19(1 Suppl.), 1S–12S (1996)

    Article  CAS  Google Scholar 

  135. J.A. Jansen, J.W. Vehof, P.Q. Ruhe, H. Kroeze-Deutman, Y. Kuboki, H. Takita, E.L. Hedberg, A.G. Mikos: Growth factor-loaded scaffolds for bone engineering, J. Control Release 101(1–3), 127–136 (2005)

    Article  CAS  Google Scholar 

  136. J.E. Babensee, L.V. McIntire, A.G. Mikos: Growth factor delivery for tissue engineering, Pharm. Res. 17(5), 497–504 (2000)

    Article  CAS  Google Scholar 

  137. J.D. Currey: Strength of bone, Nature 195(4840), 513–514 (1962)

    Article  Google Scholar 

  138. X. Zong, S. Ran, K.S. Kim, D. Fang, B.S. Hsiao, B. Chu: Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane, Biomacromolecules 4(2), 416–423 (2003)

    Article  CAS  Google Scholar 

  139. Y.K. Luu, K. Kim, B.S. Hsiao, B. Chu, M. Hadjiargyrou: Development of a nanostructured DNA delivery scaffold via electrospinning of plga and pla-peg block copolymers, J. Control Release 89(2), 341–353 (2003)

    Article  CAS  Google Scholar 

  140. R.W. Siegel, G.E. Fougere: Mechanical properties of nanophase metals, Nanostruct. Mater. 6(1–4), 205–216 (1995)

    Article  CAS  Google Scholar 

  141. J.W. Freeman, L.D. Wright, C.T. Laurencin, S. Bhattacharyya: Nanofabrication techniques. In: Biomedical Nanostructures (Wiley, Hoboken 2008) pp. 3–24

    Google Scholar 

  142. V.J. Chen, P.X. Ma: Nano-fibrous poly(l-lactic acid) scaffolds with interconnected spherical macropores, Biomaterials 25(11), 2065–2073 (2004)

    Article  CAS  Google Scholar 

  143. J.R. Venugopal, S. Low, A.T. Choon, A.B. Kumar, S. Ramakrishna: Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration, Artif. Organs 32(5), 388–397 (2008)

    Article  CAS  Google Scholar 

  144. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306(5700), 1362–1364 (2004)

    Article  CAS  Google Scholar 

  145. S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li: Monodisperse MFe_2O_4 (M=Fe, Co, Mn) nanoparticles, J. Am. Chem. Soc. 126(1), 273–279 (2004)

    Article  CAS  Google Scholar 

  146. M. Wang: Developing bioactive composite materials for tissue replacement, Biomaterials 24(13), 2133–2151 (2003)

    Article  CAS  Google Scholar 

  147. J.D. Currey: Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content, J. Biomech. 37(4), 549–556 (2004)

    Article  Google Scholar 

  148. J.S. Nyman, A. Roy, X. Shen, R.L. Acuna, J.H. Tyler, X. Wang: The influence of water removal on the strength and toughness of cortical bone, J. Biomech. 39(5), 931–938 (2006)

    Article  Google Scholar 

  149. S. Lenhert, M.B. Meier, U. Meyer, L. Chi, H.P. Wiesmann: Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir–Blodgett lithography, Biomaterials 26(5), 563–570 (2005)

    Article  CAS  Google Scholar 

  150. J.M. Rice, J.A. Hunt, J.A. Gallagher, P. Hanarp, D.S. Sutherland, J. Gold: Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro, Biomaterials 24(26), 4799–4818 (2003)

    Article  CAS  Google Scholar 

  151. K.M. Woo, V.J. Chen, P.X. Ma: Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment, J. Biomed. Mater. Res. A 67(2), 531–537 (2003)

    Google Scholar 

  152. B.G. Keselowsky, D.M. Collard, A.J. Garcia: Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion, J. Biomed. Mater. Res. A 66(2), 247–259 (2003)

    Google Scholar 

  153. C. Dahmen, J. Auernheimer, A. Meyer, A. Enderle, S.L. Goodman, H. Kessler: Improving implant materials by coating with nonpeptidic, highly specific integrin ligands, Angew. Chem. Int. Engl. Ed. 43(48), 6649–6652 (2004)

    Article  CAS  Google Scholar 

  154. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios: Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics, J. Biomed. Mater. Res. 51(3), 475–483 (2000)

    Article  CAS  Google Scholar 

  155. S. Faghihi, F. Azari, A.P. Zhilyaev, J.A. Szpunar, H. Vali, M. Tabrizian: Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion, Biomaterials 28(27), 3887–3895 (2007)

    Article  CAS  Google Scholar 

  156. G.M. Whitesides, J.P. Mathias, C.T. Seto: Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures, Science 254(5036), 1312–1319 (1991)

    Article  CAS  Google Scholar 

  157. G.A. Silva, C. Czeisler, K.L. Niece, E. Beniash, D.A. Harrington, J.A. Kessler, S.I. Stupp: Selective differentiation of neural progenitor cells by high-epitope density nanofibers, Science 303(5662), 1352–1355 (2004)

    Article  CAS  Google Scholar 

  158. S. Zhang: Fabrication of novel biomaterials through molecular self-assembly, Nat. Biotechnol. 21(10), 1171–1178 (2003)

    Article  CAS  Google Scholar 

  159. T.D. Sargeant, M.O. Guler, S.M. Oppenheimer, A. Mata, R.L. Satcher, D.C. Dunand, S.I. Stupp: Hybrid bone implants: Self-assembly of peptide amphiphile nanofibers within porous titanium, Biomaterials 29(2), 161–171 (2008)

    Article  CAS  Google Scholar 

  160. P. Berndt, G.B. Fields, M. Tirrell: Synthetic lipidation of peptides and amino acids: Monolayer structure and properties, J. Am. Chem. Soc. 117(37), 9515–9522 (1995)

    Article  CAS  Google Scholar 

  161. R. Vasita, D.S. Katti: Nanofibers and their applications in tissue engineering, Int. J. Nanomed. 1(1), 15–30 (2006)

    Article  CAS  Google Scholar 

  162. Z. Ma, M. Kotaki, R. Inai, S. Ramakrishna: Potential of nanofiber matrix as tissue-engineering scaffolds, Tissue Eng. 11(1–2), 101–109 (2005)

    Article  Google Scholar 

  163. M. Zhou, A.M. Smith, A.K. Das, N.W. Hodson, R.F. Collins, R.V. Ulijn, J.E. Gough: Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells, Biomaterials 30(13), 2523–2530 (2009)

    Article  CAS  Google Scholar 

  164. T.P. Kraehenbuehl, P. Zammaretti, A.J. Van der Vlies, R.G. Schoenmakers, M.P. Lutolf, M.E. Jaconi, J.A. Hubbell: Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: Systematic modulation of a synthetic cell-responsive PEG-hydrogel, Biomaterials 29(18), 2757–2766 (2008)

    Article  CAS  Google Scholar 

  165. Y. Park, M.P. Lutolf, J.A. Hubbell, E.B. Hunziker, M. Wong: Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair, Tissue Eng. 10(3/4), 515–522 (2004)

    Article  CAS  Google Scholar 

  166. R.W. Baker: Membrane Technology and Applications (Wiley, New York 2004)

    Book  Google Scholar 

  167. P.X. Ma, R. Zhang: Synthetic nano-scale fibrous extracellular matrix, J. Biomed. Mater. Res. 46(1), 60–72 (1999)

    Article  CAS  Google Scholar 

  168. C.P. Barnes, S.A. Sell, E.D. Boland, D.G. Simpson, G.L. Bowlin: Nanofiber technology: Designing the next generation of tissue engineering scaffolds, Adv. Drug Deliv. Rev. 59(14), 1413–1433 (2007)

    Article  CAS  Google Scholar 

  169. V.J. Chen, L.A. Smith, P.X. Ma: Bone regeneration on computer-designed nano-fibrous scaffolds, Biomaterials 27(21), 3973–3979 (2006)

    Article  CAS  Google Scholar 

  170. G. Wei, P.X. Ma: Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres, J. Biomed. Mater. Res. A 78(2), 306–315 (2006)

    Article  CAS  Google Scholar 

  171. R. Zhang, P.X. Ma: Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures, J. Biomed. Mater. Res. 52(2), 430–438 (2000)

    Article  CAS  Google Scholar 

  172. Y.X. Huang, J. Ren, C. Chen, T.B. Ren, X.Y. Zhou: Preparation and properties of poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCS culture on scaffolds, J. Biomater. Appl. 22(5), 409–432 (2008)

    Article  CAS  Google Scholar 

  173. J.D. Fromstein, P.W. Zandstra, C. Alperin, D. Rockwood, J.F. Rabolt, K.A. Woodhouse: Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology, Tissue Eng. A 14(3), 369–378 (2008)

    Article  CAS  Google Scholar 

  174. T. Cui, Y. Yan, R. Zhang, L. Liu, W. Xu, X. Wang: Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration, Tissue Eng. C 15(1), 1–9 (2009)

    Article  CAS  Google Scholar 

  175. Y. Cao, B. Zhang, T. Croll, B.E. Rolfe, J.H. Campbell, G.R. Campbell, D. Martin, J.J. Cooper-White: Engineering tissue tubes using novel multilayered scaffolds in the rat peritoneal cavity, J. Biomed. Mater. Res. A 87(3), 719–727 (2008)

    Article  CAS  Google Scholar 

  176. J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin: Electrospinning of collagen nanofibers, Biomacromolecules 3(2), 232–238 (2002)

    Article  CAS  Google Scholar 

  177. E.D. Boland, J.A. Matthews, K.J. Pawlowski, D.G. Simpson, G.E. Wnek, G.L. Bowlin: Electrospinning collagen and elastin: Preliminary vascular tissue engineering, Front. Biosci. 9, 1422–1432 (2004)

    Article  CAS  Google Scholar 

  178. C.Y. Xu, R. Inai, M. Kotaki, S. Ramakrishna: Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering, Biomaterials 25(5), 877–886 (2004)

    Article  CAS  Google Scholar 

  179. L.S. Nair, S. Bhattacharyya, C.T. Laurencin: Development of novel tissue engineering scaffolds via electrospinning, Expert Opin. Biol. Ther. 4(5), 659–668 (2004)

    Article  CAS  Google Scholar 

  180. H. Yoshimoto, Y.M. Shin, H. Terai, J.P. Vacanti: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials 24(12), 2077–2082 (2003)

    Article  CAS  Google Scholar 

  181. F. Yang, R. Murugan, S. Wang, S. Ramakrishna: Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials 26(15), 2603–2610 (2005)

    Article  CAS  Google Scholar 

  182. E.D. Boland, G.E. Wnek, D.G. Simpson, K.J. Pawlowski, G.L. Bowlin: Tailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly(glycolic acid) electrospinning, J. Macromol. Sci. A 38(12), 1231–1243 (2001)

    Article  Google Scholar 

  183. C. Li, C. Vepari, H.J. Jin, H.J. Kim, D.L. Kaplan: Electrospun silk-BMP-2 scaffolds for bone tissue engineering, Biomaterials 27(16), 3115–3124 (2006)

    Article  CAS  Google Scholar 

  184. C. Ayres, G.L. Bowlin, S.C. Henderson, L. Taylor, J. Shultz, J. Alexander, T.A. Telemeco, D.G. Simpson: Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast fourier transform, Biomaterials 27(32), 5524–5534 (2006)

    Article  CAS  Google Scholar 

  185. T.J. Webster, R.W. Siegel, R. Bizios: Osteoblast adhesion on nanophase ceramics, Biomaterials 20(13), 1221–1227 (1999)

    Article  CAS  Google Scholar 

  186. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios: Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials 21(17), 1803–1810 (2000)

    Article  CAS  Google Scholar 

  187. P.T. de Oliveira, A. Nanci: Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells, Biomaterials 25(3), 403–413 (2004)

    Article  CAS  Google Scholar 

  188. T.W. Chung, D.Z. Liu, S.Y. Wang, S.S. Wang: Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale, Biomaterials 24(25), 4655–4661 (2003)

    Article  CAS  Google Scholar 

  189. T.J. Webster, L.S. Schadler, R.W. Siegel, R. Bizios: Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin, Tissue Eng. 7(3), 291–301 (2001)

    Article  CAS  Google Scholar 

  190. G. Balasundaram, T.J. Webster: An overview of nano-polymers for orthopedic applications, Macromol. Biosci. 7(5), 635–642 (2007)

    Article  CAS  Google Scholar 

  191. A. Thapa, D.C. Miller, T.J. Webster, K.M. Haberstroh: Nano-structured polymers enhance bladder smooth muscle cell function, Biomaterials 24(17), 2915–2926 (2003)

    Article  CAS  Google Scholar 

  192. R.L. Price, L.G. Gutwein, L. Kaledin, F. Tepper, T.J. Webster: Osteoblast function on nanophase alumina materials: Influence of chemistry, phase, and topography, J. Biomed. Mater. Res. A 67(4), 1284–1293 (2003)

    Google Scholar 

  193. R.L. Price, K. Ellison, K.M. Haberstroh, T.J. Webster: Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts, J. Biomed. Mater. Res. A 70(1), 129–138 (2004)

    Google Scholar 

  194. T.J. Webster, M.C. Waid, J.L. McKenzie, R.L. Price, J.U. Ejiofor: Nano-biotechnology: Carbon nanofibers as improved neural and orthopaedic implants, Nanotechnology 15, 48 (2004)

    Article  CAS  Google Scholar 

  195. D.W. Hutmacher: Scaffolds in tissue engineering bone and cartilage, Biomaterials 21(24), 2529–2543 (2000)

    Article  CAS  Google Scholar 

  196. A.R. Boccaccini, V. Maquet: Bioresorbable and bioactive polymer/bioglass® composites with tailored pore structure for tissue engineering applications, Compos. Sci. Technol. 63(16), 2417–2429 (2003)

    Article  CAS  Google Scholar 

  197. H. Liu, E.B. Slamovich, T.J. Webster: Increased osteoblast functions on nanophase titania dispersed in poly-lactic-co-glycolic acid composites, Nanotechnology 16(7), S601–S608 (2005)

    Article  CAS  Google Scholar 

  198. C. Du, F.Z. Cui, Q.L. Feng, X.D. Zhu, K. de Groot: Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity, J. Biomed. Mater. Res. 42(4), 540–548 (1998)

    Article  CAS  Google Scholar 

  199. C. Du, F.Z. Cui, X.D. Zhu, K. de Groot: Three-dimensional nano-hap/collagen matrix loading with osteogenic cells in organ culture, J. Biomed. Mater. Res. 44(4), 407–415 (1999)

    Article  CAS  Google Scholar 

  200. P.X. Ma, R. Zhang, G. Xiao, R. Franceschi: Engineering new bone tissue in vitro on highly porous poly(α-hydroxyl acids)/hydroxyapatite composite scaffolds, J. Biomed. Mater. Res. 54(2), 284–293 (2001)

    Article  CAS  Google Scholar 

  201. J.J. Blaker, J.E. Gough, V. Maquet, I. Notingher, A.R. Boccaccini: In vitro evaluation of novel bioactive composites based on bioglass-filled polylactide foams for bone tissue engineering scaffolds, J. Biomed. Mater. Res. A 67(4), 1401–1411 (2003)

    CAS  Google Scholar 

  202. S. Kalita, J. Finley, S. Bose, H. Hosick, A. Bandyopadhyay: Development of porous polymer-ceramic composites as bone grafts, MRS Online Proc. Libr. 726, 91–96 (2002)

    CAS  Google Scholar 

  203. A.R. Boccaccini, J.A. Roelher, L.L. Hench, V. Maquet, R. Jérome: A composites approach to tissue engineering, Proc. 26th Annu Conf. on Compos., Adv. Ceram. Mater. Struct. B (Wiley, New York 2008) pp. 805–816

    Google Scholar 

  204. L. Zhang, T.J. Webster: Nanotechnology and nanomaterials: Promises for improved tissue regeneration, Nano Today 4(1), 66–80 (2009)

    Article  CAS  Google Scholar 

  205. S.P. Nukavarapu, S.G. Kumbar, J.L. Brown, N.R. Krogman, A.L. Weikel, M.D. Hindenlang, L.S. Nair, H.R. Allcock, C.T. Laurencin: Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering, Biomacromolecules 9(7), 1818–1825 (2008)

    Article  CAS  Google Scholar 

  206. G. Colon, B.C. Ward, T.J. Webster: Increased osteoblast and decreased staphylococcus epidermidis functions on nanophase ZnO and TiO2, J. Biomed. Mater. Res. A 78(3), 595–604 (2006)

    Article  CAS  Google Scholar 

  207. T.J. Webster, E.L. Hellenmeyer, R.L. Price: Increased osteoblast functions on theta + delta nanofiber alumina, Biomaterials 26(9), 953–960 (2005)

    Article  CAS  Google Scholar 

  208. J.D. Hartgerink, E. Beniash, S.I. Stupp: Self-assembly and mineralization of peptide-amphiphile nanofibers, Science 294(5547), 1684–1688 (2001)

    Article  CAS  Google Scholar 

  209. L. Zhang, S. Ramsaywack, H. Fenniri, T.J. Webster: Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds, Tissue Eng. 14(8), 1353–1364 (2008)

    Article  CAS  Google Scholar 

  210. T. Osathanon, M.L. Linnes, R.M. Rajachar, B.D. Ratner, M.J. Somerman, C.M. Giachelli: Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering, Biomaterials 29(30), 4091–4099 (2008)

    Article  CAS  Google Scholar 

  211. T.J. Webster, T.A. Smith: Increased osteoblast function on PLGA composites containing nanophase titania, J. Biomed. Mater. Res. A 74(4), 677–686 (2005)

    Article  CAS  Google Scholar 

  212. A.J. McManus, R.H. Doremus, R.W. Siegel, R. Bizios: Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites, J. Biomed. Mater. Res. A 72(1), 98–106 (2005)

    Google Scholar 

  213. S. Iijima: Carbon nanotubes: Past, present, and future, Physica B 323(1–4), 1–5 (2002)

    Article  CAS  Google Scholar 

  214. D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363(6430), 605–607 (1993)

    Article  CAS  Google Scholar 

  215. L. Zhang, B. Ercan, T.J. Webster (Eds.): Carbon Nanotubes and Nanofibers for Tissue Engineering Applications (Research Signpost, Trivandrum 2009)

    Google Scholar 

  216. R.L. Price, M.C. Waid, K.M. Haberstroh, T.J. Webster: Selective bone cell adhesion on formulations containing carbon nanofibers, Biomaterials 24(11), 1877–1887 (2003)

    Article  CAS  Google Scholar 

  217. L.P. Zanello, B. Zhao, H. Hu, R.C. Haddon: Bone cell proliferation on carbon nanotubes, Nano Lett. 6(3), 562–567 (2006)

    Article  CAS  Google Scholar 

  218. B. Sitharaman, X. Shi, X.F. Walboomers, H. Liao, V. Cuijpers, L.J. Wilson, A.G. Mikos, J.A. Jansen: In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering, Bone 43(2), 362–370 (2008)

    Article  CAS  Google Scholar 

  219. P.R. Supronowicz, P.M. Ajayan, K.R. Ullmann, B.P. Arulanandam, D.W. Metzger, R. Bizios: Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation, J. Biomed. Mater. Res. 59(3), 499–506 (2002)

    Article  CAS  Google Scholar 

  220. D. Khang, G.E. Park, T.J. Webster: Enhanced chondrocyte densities on carbon nanotube composites: The combined role of nanosurface roughness and electrical stimulation, J. Biomed. Mater. Res. A 86(1), 253–260 (2008)

    Article  CAS  Google Scholar 

  221. D. Khang, S.Y. Kim, P. Liu-Snyder, G.T. Palmore, S.M. Durbin, T.J. Webster: Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: Independent role of surface nano-roughness and associated surface energy, Biomaterials 28(32), 4756–4768 (2007)

    Article  CAS  Google Scholar 

  222. X. Shi, J.L. Hudson, P.P. Spicer, J.M. Tour, R. Krishnamoorti, A.G. Mikos: Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering, Biomacromolecules 7(7), 2237–2242 (2006)

    Article  CAS  Google Scholar 

  223. S.K. Misra, F. Ohashi, S.P. Valappil, J.C. Knowles, I. Roy, S.R. Silva, V. Salih, A.R. Boccaccini: Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications, Acta Biomater. 6(3), 735–742 (2010)

    Article  CAS  Google Scholar 

  224. D. Lahiri, F. Rouzaud, S. Namin, A.K. Keshri, J.J. Valdes, L. Kos, N. Tsoukias, A. Agarwal: Carbon nanotube reinforced polylactide-caprolactone copolymer: Mechanical strengthening and interaction with human osteoblasts in vitro, ACS Appl. Mater. Interfaces 1(11), 2470–2476 (2009)

    Article  CAS  Google Scholar 

  225. J. Pelto, S. Haimi, E. Puukilainen, P.G. Whitten, G.M. Spinks, M. Bahrami-Samani, M. Ritala, T. Vuorinen: Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite, J. Biomed. Mater. Res. A 93(3), 1056–1067 (2010)

    Google Scholar 

  226. K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, A. Agarwal: Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro, Biomaterials 28(4), 618–624 (2007)

    Article  CAS  Google Scholar 

  227. B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin, H.E. Kim: Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on ti by aerosol deposition, Acta Biomater. 5(8), 3205–3214 (2009)

    Article  CAS  Google Scholar 

  228. S.K. Yadav, T. Bera, P.S. Saxena, A.K. Maurya, R.S. Garbyal, R. Vajtai, P. Ramachandrarao, A. Srivastava: Mwcnts as reinforcing agent to the hap–gel nanocomposite for artificial bone grafting, J. Biomed. Mater. Res. 93(3), 886–896 (2010)

    Google Scholar 

  229. L. Bacakova, L. Grausova, J. Vacik, A. Fraczek, S. Blazewicz, A. Kromka, M. Vanecek, V. Svorcik: Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles, Diam. Relat. Mater. 16(12), 2133–2140 (2007)

    Article  CAS  Google Scholar 

  230. L. Bacakova, L. Grausova, M. Vandrovcova, J. Vacik, A. Frazcek, S. Blazewicz, A. Kromka, M. Vanecek, M. Nesladek, V. Svorcik, M. Kopecek: Carbon nanoparticles as substrates for cell adhesion and growth. In: Nanoparticles: New Research, ed. by S.L. Lombardi (Nova Science, Hauppauge 2008) pp. 39–107

    Google Scholar 

  231. K. Zhang, Y. Ma, L.F. Francis: Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces, J. Biomed. Mater. Res. 61(4), 551–563 (2002)

    Article  CAS  Google Scholar 

  232. R. Orefice, A. Clark, J. West, A. Brennan, L. Hench: Processing, properties, and in vitro bioactivity of polysulfone-bioactive glass composites, J. Biomed. Mater. Res. A 80(3), 565–580 (2007)

    Article  CAS  Google Scholar 

  233. C. Jan, K. Grzegorz: The study of lifetime of polymer and composite bone joint screws under cyclical loads and in vitro conditions, J. Mater. Sci. Mater. Med. 16(11), 1051–1060 (2005)

    Article  CAS  Google Scholar 

  234. N. Aoki, T. Akasaka, F. Watari, A. Yokoyama: Carbon nanotubes as scaffolds for cell culture and effect on cellular functions, Dent. Mater. J. 26(2), 178–185 (2007)

    Article  CAS  Google Scholar 

  235. J. Holy, E. Perkins, X. Yu: Differentiation of pluripotent stem cells on multiwalled carbon nanotubes, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 6022–6025 (2009)

    Google Scholar 

  236. M. Terada, S. Abe, T. Akasaka, M. Uo, Y. Kitagawa, F. Watari: Multiwalled carbon nanotube coating on titanium, Biomed. Mater. Eng. 19(1), 45–52 (2009)

    Google Scholar 

  237. M. Matsuoka, T. Akasaka, T. Hashimoto, Y. Totsuka, F. Watari: Improvement in cell proliferation on silicone rubber by carbon nanotube coating, Biomed. Mater. Eng. 19(2–3), 155–162 (2009)

    CAS  Google Scholar 

  238. X. Li, H. Gao, M. Uo, Y. Sato, T. Akasaka, Q. Feng, F. Cui, X. Liu, F. Watari: Effect of carbon nanotubes on cellular functions in vitro, J. Biomed. Mater. Res. A 91(1), 132–139 (2009)

    Article  CAS  Google Scholar 

  239. E. Hirata, M. Uo, H. Takita, T. Akasaka, F. Watari, A. Yokoyama: Development of a 3D collagen scaffold coated with multiwalled carbon nanotubes, J. Biomed. Mater. Res. B 90(2), 629–634 (2009)

    Article  CAS  Google Scholar 

  240. K.L. Elias, R.L. Price, T.J. Webster: Enhanced functions of osteoblasts on nanometer diameter carbon fibers, Biomaterials 23(15), 3279–3287 (2002)

    Article  CAS  Google Scholar 

  241. K. Ekstrand, J.M. Hirsch: Malignant tumors of the maxilla: Virtual planning and real-time rehabilitation with custom-made R-zygoma fixtures and carbon-graphite fiber-reinforced polymer prosthesis, Clin. Implant. Dent. Relat. Res. 10(1), 23–29 (2008)

    Article  Google Scholar 

  242. H. Yildiz, S.K. Ha, F.K. Chang: Composite hip prosthesis design. I. Analysis, J. Biomed. Mater. Res. 39(1), 92–101 (1998)

    Article  CAS  Google Scholar 

  243. H. Yildiz, F.K. Chang, S. Goodman: Composite hip prosthesis design. II. Simulation, J. Biomed. Mater. Res. 39(1), 102–119 (1998)

    Article  CAS  Google Scholar 

  244. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim: Room-temperature quantum hall effect in graphene, Science 315(5817), 1379 (2007)

    Article  CAS  Google Scholar 

  245. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M. Peres, J.M. dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Neto: Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect, Phys. Rev. Lett. 99(21), 216802 (2007)

    Article  CAS  Google Scholar 

  246. F. Scarpa, S. Adhikari, A. Srikantha Phani: Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology 20(6), 065709 (2009)

    Article  CAS  Google Scholar 

  247. C.N. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj: Graphene: The new two-dimensional nanomaterial, Angew. Chem. Int. Engl. Ed. 48(42), 7752–7777 (2009)

    Article  CAS  Google Scholar 

  248. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim: Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)

    Article  CAS  Google Scholar 

  249. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov: Electric field effect in atomically thin carbon films, Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  250. W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan: Graphene-based antibacterial paper, ACS Nano 4(7), 4317–4323 (2010)

    Article  CAS  Google Scholar 

  251. S. Park, N. Mohanty, J.W. Suk, A. Nagaraja, J. An, R.D. Piner, W. Cai, D.R. Dreyer, V. Berry, R.S. Ruoff: Biocompatible, robust free-standing paper composed of a tween/graphene composite, Adv. Mater. 22(15), 1736–1740 (2010)

    Article  CAS  Google Scholar 

  252. S. Agarwal, X. Zhou, F. Ye, Q. He, G.C. Chen, J. Soo, F. Boey, H. Zhang, P. Chen: Interfacing live cells with nanocarbon substrates, Langmuir 26(4), 2244–2247 (2010)

    Article  CAS  Google Scholar 

  253. H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li: Mechanically strong, electrically conductive, and biocompatible graphene paper, Adv. Mater. 20(18), 3557–3561 (2008)

    Article  CAS  Google Scholar 

  254. G. Eda, M. Chhowalla: Graphene-based composite thin films for electronics, Nano Lett. 9(2), 814–818 (2009)

    Article  CAS  Google Scholar 

  255. D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng: Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode, ACS Nano 3(7), 1745–1752 (2009)

    Article  CAS  Google Scholar 

  256. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff: Graphene-based composite materials, Nature 442(7100), 282–286 (2006)

    Article  CAS  Google Scholar 

  257. B. Das, K. Eswar Prasad, U. Ramamurty, C.N. Rao: Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene, Nanotechnology 20(12), 125705 (2009)

    Article  CAS  Google Scholar 

  258. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar: Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano 3(12), 3884–3890 (2009)

    Article  CAS  Google Scholar 

  259. H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, Z. Jin: Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites, Biomacromolecules 11(9), 2345–2351 (2010)

    Article  CAS  Google Scholar 

  260. V. Wagner, A. Dullaart, A.K. Bock, A. Zweck: The emerging nanomedicine landscape, Nat. Biotechnol. 24(10), 1211–1217 (2006)

    Article  CAS  Google Scholar 

  261. M. Arruebo, R. Fernández-Pacheco, M.R. Ibarra, J. Santamaría: Magnetic nanoparticles for drug delivery, Nano Today 2(3), 22–32 (2007)

    Article  Google Scholar 

  262. P.P. Macaroff, A.R. Simioni, Z.G.M. Lacava, E.C.D. Lima, P.C. Morais, A.C. Tedesco: Studies of cell toxicity and binding of magnetic nanoparticles with blood stream macromolecules, J. Appl. Phys. 99(8), 08S102–08S102–3 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinod Kumar , Bipul Tripathi , Anchal Srivastava or Preeti S. Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag

About this chapter

Cite this chapter

Kumar, V., Tripathi, B., Srivastava, A., Saxena, P.S. (2013). Nanocomposites as Bone Implant Material. In: Vajtai, R. (eds) Springer Handbook of Nanomaterials. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20595-8_26

Download citation

Publish with us

Policies and ethics