Skip to main content

Ultrafast Semiconductor Laser Sources

  • Chapter
  • First Online:
  • 3197 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

Abstract

This chapter reviews recent technological progress in the development of ultrafast light sources for achieving small footprint and low-power consumption optical transceivers. The focus is on various important light sources, for example, directly modulated diode lasers with high optical-gain materials, low-chirp externally modulated diode lasers, and ultrafast diode lasers with new structure and modulation scheme. The coverage of the topics starts with an in-depth theoretical treatment of key characteristics and dependences, illustrates typical realizations of ultrafast diode lasers and integrated laser-modulators, and includes relevant operation and performance characteristics as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. http://www.300pinmsa.org/

  2. http://www.xenpak.org/

  3. http://www.xpak.org/

  4. http://www.x2msa.org/

  5. http://www.xfpmsa.org/

  6. SFF-8431 Specifications for enhanced 8.5 and 10 Gigabit small form factor pluggable module “SFP+”, Revision 2.1, 30 August 2007

    Google Scholar 

  7. http://www.ieee802.org/3/ba/index.html

  8. H. Statz, G. de Mars, Quantum Electronics, ed. by C.H. Townes (Columbia University Press, New York, 1960), pp. 530

    Google Scholar 

  9. M. Aoki, T.K. Sudo, T. Tsuchiya, D. Takemoto, S. Tsuji, 85 °C 10 Gbit/s operation of 1.3 µm InGaAlAs MQW-DFB laser, Proc. 26th Europ. Conf. Opt. Commun. (ECOC'00), Munich, Germany (2000), vol. 1, pp. 123–124

    Google Scholar 

  10. M. Ishikawa, R. Nagarajan, T. Fukushima, J.G. Wasserbauer, J.E. Bowers, Long wavelength high-speed semiconductor lasers with carrier transport effects. IEEE J. Quantum Electron. 28, 2230–2241 (1992)

    Article  ADS  Google Scholar 

  11. K. Uomi, T. Tsuchiya, H. Nakano, M. Aoki, M. Suzuki, N. Chinone, High-speed and ultralow-chirp 1.55 µm multiquantum well λ/4-shifted DFB lasers. IEEE J. Quantum Electron. 27, 1705–1713 (1991)

    Article  ADS  Google Scholar 

  12. D. Marcuse, T.H. Wood, Time-dependent simulation of a laser-modulator combination. IEEE J. Quantum Electron. 30, 2743–2755 (1994)

    Article  ADS  Google Scholar 

  13. D. Marcuse, T.H. Wood, Simulation of a laser modulator driven by NRZ pulses. J. Lightw. Technol. 14, 860–866 (1996)

    Article  ADS  Google Scholar 

  14. P.J. Corvini, T.L. Koch, Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers. J. Lightw. Technol. LT-5, 1591–1595 (1987)

    Article  ADS  Google Scholar 

  15. F. Koyama, Y. Suematsu, Analysis of dynamic spectral width of dynamic-single-mode (DSM) lasers and related transmission bandwidth of single-mode fibers. IEEE J. Quantum Electron. QE-21, 292–297 (1985)

    Article  ADS  Google Scholar 

  16. H. Temkin, N.K. Dutta, T. Tanbun-Ek, R.A. Logan, A.M. Sergent, InGaAs/InP quantum well lasers with sub-mA threshold current. Appl. Phys. Lett. 57, 1610–1612 (1990)

    Article  ADS  Google Scholar 

  17. P.J.A. Thijs, L.F. Tiemeijer, P.I. Kuindersma, J.J.M. Binsma, T. van Dongen, High-performance 1.5 µm InGaAs-InGaAsP strained quantum well lasers and amplifiers. IEEE J. Quantum Electron. 27, 1426–1439 (1991)

    Article  ADS  Google Scholar 

  18. E. Zah, R. Bhat, F.J. Favire, S.G. Menocal, N.C. Andreakis, K.W. Cheung, D.D. Hwang, M.A. Koza, T.P. Lee, Low-threshold 1.5 µm compressive-strained multiple- and single-quantum-well lasers. IEEE J. Quantum Electron. 27, 1440–1450 (1991)

    Article  ADS  Google Scholar 

  19. T. Namegaya, A. Kasukawa, N. Iwai, T. Kikuta, High temperature operation of 1.3 µm GaInAsP/InP GRINSCH strained-layer quantum well lasers. Electron. Lett. 29, 392–393 (1992)

    Article  Google Scholar 

  20. J.S. Osinski, P. Grodzinski, Y. Zou, P.D. Dapkus, Z. Karim, A.R. Tanguay, Low threshold current 1.5 µm buried heterostructure lasers using strained quaternary quantum wells. IEEE Photon. Technol. Lett. 4, 1313–1315 (1992)

    Article  ADS  Google Scholar 

  21. T. Tsuchiya, M. Komori, K. Uomi, A. Oka, T. Kawano, A. Oishi, Investigation of effect of strain on low-threshold 1.3 µm InGaAsP strained-layer quantum well lasers. Electron. Lett. 30, 788–789 (1994)

    Article  ADS  Google Scholar 

  22. K. Kojima, O. Mizuhara, L.J.P. Ketelsen, I. Kim, R.B. Bylsma, 1.3 µm uncooled DFB lasers for 10 Gbit/s transmission over 50 km of non-dispersion-shifted fiber, Opt. Fiber Commun. Conf. (OFC'96), Techn. Digest (San Jose, CA, USA, 1996), paper PDP11-2

    Google Scholar 

  23. R. Paoletti, M. Agresti, G. Burns, G. Berry, B. Bertone, P. Charles, P. Crump, A. Davies, R.Y. Fang, R. Ghin, P. Gotta, M. Holm, C. Kompocholis, G. Magnetti, J. Massa, G. Meneghini, G. Rossi, P. Ryder, A. Taylor, P. Valenti, M. Meliga, 100 °C 10 Gbit/s directly modulated InGaAsP DFB lasers for uncooled Ethernet applications, Proc. 27th Europ. Conf. Opt. Commun. (ECOC'01), Amsterdam, The Netherlands, 2001, PD 84–85

    Google Scholar 

  24. G. Sakaino, Y. Hisa, K. Takagi, T. Aoyagi, T. Nishimura, E. Omura, Uncooled and directly modulated 1.3 µm DFB laser diode for serial 10 Gbit/s Ethernet, Proc. 26th Europ. Conf. Opt. Commun. (ECOC'00), Munich, Germany, 2000, vol. 1, pp. 125–126

    Google Scholar 

  25. M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki Y. Yazawa, GaInNAs: a novel material for long-wavelength-range laser diodes with excellent high-temperature performance. Jpn. J. Appl. Phys. 35, 1273–1275 (1996)

    Article  ADS  Google Scholar 

  26. I. Suemune, Theoretical estimation of leakage current in II-VI heterostructure lasers. Jpn. J. Appl. Phys. 31, 95–98 (1992)

    Article  ADS  Google Scholar 

  27. T. Kitatani, J. Kasai, K. Nakahara, K. Adachi, M. Aoki, High-performance GaInNAs long-wavelength lasers, Conf. Indium Phosphide Relat. Mater. (IPRM'07), Techn. Digest (2007), pp. 354–357

    Google Scholar 

  28. Y. Matsushima, K. Utaka, K. Sakai, Narrow spectral linewidth of MBE-grown GaInAs/AlInAs MQW lasers in the 1.55 µm range. IEEE J. Quantum Electron. 25, 1376–1380 (1989)

    Article  ADS  Google Scholar 

  29. C.E. Zah, R. Bhat, B.N. Pathak, F. Favire, W. Lin, M.C. Wang, N.C. Andreadakis, D.M. Hwang, M.A. Koza, T.P. Lee, Z. Wang, D. Darby, D. Flanders, J.J. Hsieh, High-performance uncooled 1.3 µm \(\textup{Al}_{x}\textup{Ga}_{y}\textup{In}_{{1-x-y}}\textup{As}/\textup{InP}\) strained layer quantum-well lasers for subscriber loop applications. IEEE J. Quantum Electron. 30, 511–522 (1994)

    Article  ADS  Google Scholar 

  30. T.K. Sudoh, D. Takemoto, T. Tsuchiya, M. Aoki, S. Tsuji, Highly reliable 1.3 µm InGaAlAs MQW DFB lasers, 17th IEEE Internat. Semicond. Laser Conf. (ISLC2000), Conf. Digest (Monterey, CA, USA, 2000), paper TuB6, pp. 55–56

    Google Scholar 

  31. T. Takiguchi, Y. Hanamaki, T. Kadowaki, T. Tanaka, C. Watatani, M. Takemi, Y. Mihashi, E. Omura, 1.3 µm uncooled AlGaInAs-MQW DFB laser with λ/4-shifted Grating, Optical Fiber Commun. Conf. (OFC'02), Techn. Digest (Anaheim, CA, USA, 2002), paper ThF3, pp. 417–418

    Google Scholar 

  32. K. Nakahara, T. Tsuchiya, S. Tanaka, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, E. Nomoto, S. Fujisaki, M. Kudo M. Sawada, T. Yuasa, M. Mukaikubo, 115 °C, 12.5 Gbit/s direct modulation of 1.3 µm InGaAlAs-MQW RWG DFB laser with notch-free grating structure for datacom applications, Opt. Fiber Commun. Conf. (OFC'03), Techn. Digest (Atlanta, GA, USA, 2003), paper PD-40

    Google Scholar 

  33. K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Kikawa, F. Hamano, S. Fujisaki, T. Taniguchi, E. Nomoto, M. Sawada, T. Yuasa, 12.5 Gbit/s direct modulation up to 115 °C in 1.3 µm InGaAlAs-MQW RWG DFB lasers with notch-free grating structure. J. Lightw. Technol. 25, 159–165 (2004)

    Article  ADS  Google Scholar 

  34. S. Shirai, Y. Tatsuoka, C. Watatani, T. Ota, K. Takagi, T. Aoyagi, E. Omura, N. Tomita, 120 °C uncooled operation of direct modulated 1.3 µm AlGaInAs-MQW DFB laser diodes for 10 Gbit/s telecom applications, Opt. Fiber Commun. Conf. (OFC'04), Techn. Digest (Los Angeles, CA, USA, 2004), paper ThD2

    Google Scholar 

  35. Y. Muroya, T. Okuda, R. Kobayashi, K. Tsuruoka, Y. Ohsawa, T. Koui, T. Tsukuda, T. Nakamura, K. Kobayashi, 100 °C, 10 Gbit/s direct modulation with a low operation current of 1.3 µm AlGaInAs buried heterostructure DFB laser diodes, Opt. Fiber Commun. Conf. (OFC'03), Techn. Digest (Atlanta, GA, USA, 2003), paper FG6, pp. 683–684

    Google Scholar 

  36. P.M. Ilroy, A. Kurobe, Y. Uematsu, Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers. IEEE J. Quantum Electron. QE-21, 1958–1963 (1985)

    Article  ADS  Google Scholar 

  37. K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, 40 Gbit/s direct modulation in 1.3 µm InGaAlAs-MQW RWG DFB lasers, Conf. Lasers Electro-Opt. (CLEO)/Pacific Rim, OSA Techn. Digest (2007), pp. 1–2

    Google Scholar 

  38. T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, F. Kano, High-speed modulation lasers for 100GbitE applications, Optical Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'11), Techn. Digest (Los Angeles, CA, USA, 2011), paper OWD1

    Google Scholar 

  39. T. Simoyama, M. Matsuda, S. Okumura, M. Ekawa, T. Yamamoto, 40-Gbps transmission using direct modulation of 1.3 µm AlGaInAs MQW distributed-reflector lasers up to 70 °C, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'11), Techn. Digest (Los Angeles, CA, USA, 2011), paper OWD3

    Google Scholar 

  40. http://www.reuters.com/article/2011/03/08/idUS165345+08-Mar-2011

  41. See for example, Special Issue on Optical Amplifiers, J. Lightw. Technol. 9, 145–296 (1991)

    Google Scholar 

  42. T.H. Wood, Multiple quantum well waveguide modulators. J. Lightw. Technol. 6, 743–757 (1988)

    Article  ADS  Google Scholar 

  43. K. Wakita, I. Kotaka, O. Mitomi, H. Asai, Y. Kawamura, M. Naganuma, High-speed InGaAs/InAIAs multiple quantum well optical modulators with bandwidths in excess of 40 GHz at 1.55 µm, Conf. Lasers Electro-Opt. (CLEO), OSA Techn. Digest (1990), paper CtuC6

    Google Scholar 

  44. H. Sano, H. Inoue, H. Nakamura, K. Ishida, J.M. Glinski, Low loss single-mode InGaAs/InAlAs multiquantum well electroabsorption modulator, Optical Fiber Commun. Conf. (OFC'90), Techn. Digest (San Francisco, CA, USA, 1990), paper WM15

    Google Scholar 

  45. U. Koren, B.I. Miller, T.L. Koch, G. Eisenstein, R.S. Tucker, I. Bar-Joseph, D.S. Chemla, Low-loss InGaAs/InP MQW optical electroabsorption waveguide modulator. Appl. Phys. Lett. 51, 1132–1134 (1987)

    Article  ADS  Google Scholar 

  46. F. Devaux, E. Bigan, B. Rose, M. Mckee, F. Huet, M. Carré, High-speed InGaAsP/InP multiple quantum 1.55 µm single mode modulator. Electron. Lett. 27, 1926–1927 (1991)

    Article  Google Scholar 

  47. F. Devaux, E. Bigan, A. Ougazzaden, B. Pierre, F. Huet, M. Carré, A. Carenco, lnGaAsP/InGaAsP multiple quantum well modulator with improved saturation intensity and bandwidth over 20-GHz. IEEE Photon. Technol. Lett. 4, 720–722 (1992)

    Article  ADS  Google Scholar 

  48. H. Sano, H. Inoue, S. Tsuji, K. Ishida, InGaAs/InAlAs MQW Mach–Zehnder optical modulator for 10 Gbit/s long-haul transmission systems, Opt. Fiber Commun. Conf. (OFC'92), Techn. Digest (San Jose, CA, USA, 1992), paper ThG4

    Google Scholar 

  49. J.E. Zucker, K.L. Jones, B.I. Miller, M.G. Young, U. Koren, B. Tell, K. Brown-Goebeler, Interferometric quantum well modulators with gain. J. Lightw. Technol. 10, 924–932 (1992)

    Article  ADS  Google Scholar 

  50. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Electric field dependence of optical absorption near the band gap of quantum well structures. Phys. Rev. B 32, 1043–1060 (1985)

    Article  ADS  Google Scholar 

  51. K. Wakita. Y. Kawamura. Y. Yoshikuni, H. Asahi, Electroabsorption on room-temperature excitons in InGaAs/InGaAIAs multiple quantum-well structures. Electron. Lett. 21, 338–340 (1985)

    Article  ADS  Google Scholar 

  52. Y. Kawamura, K. Wakita, Y. Yoshikuni, Y. Itaya, H. Asahi, Monolithic integration of a DFB laser and an MQW optical modulator in the 1.5 µm wavelength range. IEEE J. Quantum Electron. 27, 915–918 (1991)

    Google Scholar 

  53. H. Soda, K. Sato, H. Sudo, S. Takeuchi, H. Ishikawa, Ultralow-chirp characteristics of monolithic electroabsorption modulator/DFB laser light source, Proc. 17th Europ. Conf. Opt. Commun. (ECOC'91), Paris, France, 1991, paper WeB7-I

    Google Scholar 

  54. T. Kato, T. Sasaki, N. Kida, K. Komatsu, I. Mito, Novel MQW DFB laser diode modulator integrated light source using bandgap energy control epitaxial growth technique, Proc. 17th Europ. Conf. Opt. Commun. (ECOC'91), Paris, France, 1991, paper WeB7-2

    Google Scholar 

  55. M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, A. Takai, Novel structure MQW electroabsorption-modulator/DFB-laser-integrated device fabricated by selective area MOCVD growth. Electron. Lett. 27, 2138–2140 (1991)

    Article  ADS  Google Scholar 

  56. M. Suzuki, H. Tanaka, H. Taga, S. Yamamoto, Y. Matsushima, λ/4-shifted DFB laser/electroabsorption modulator integrated light source for multigigabit transmission. J. Lightw. Technol. 10, 90–94 (1992)

    Article  ADS  Google Scholar 

  57. K. Wakita, I. Kotaka, H. Asai, M. Okamoto, Y. Kondo, M. Naganuma, High-speed and low-drive-voltage monolithic multiple quantum well modulator/DFB laser light source. IEEE Photon. Technol. Lett. 4, 16–18 (1992)

    Article  ADS  Google Scholar 

  58. U. Koren, B. Glance, B.I. Miller, M.G. Young, M. Chien, T.H. Wood, L.M. Ostar, T.L. Koch, R.M. Jopson, J.D. Evankow, G. Raybon, C.A. Bums, P.D. Magill, K.C. Reichmann, Widely tunable distributed Bragg reflector laser with an integrated electroabsorption modulator, Opt. Fiber Commun. Conf. (OFC'92), Techn. Digest (San Jose, CA, USA, 1992), paper WG5

    Google Scholar 

  59. M. Aoki, N. Kikuchi, K. Sekine, S. Sasaki, M. Suzuki, T. Taniwatari, Y. Okuno, T. Kawano, A. Takai, Low-drive-voltage and low-chirp integrated electroabsorption modulator/DFB-laser for 2.5 Gbit/s 200 km normal fiber transmission. Electron. Lett. 29, 1983–1984 (1993)

    Article  Google Scholar 

  60. K.C. Reichmann, P.D. Magill, G. Raybon, Y.K. Chen, T. Tanbun-Ek, R.A. Logan, A. Tate, A.M. Sergent, K.W. Wecht, P.F. Sciortino Jr., Long-distance transmission experiment at 2.5 Gbit/s using an integrated laser/modulator grown by selective-area MOVPE, Opt. Fiber Commun. Conf. (OFC'94), Techn. Digest (San Jose, CA, USA, 1994), paper ThM-4

    Google Scholar 

  61. K. Komatsu, T. Kato, M. Yamaguchi, T. Sasaki, S. Takano, H. Shimizu, N. Watanabe, M. Kitamura, DFB-LD/modulator integrated light sources fabricated by band-gap-energy-controlled selective MOVPE with stable fiber transmission characteristics, Opt. Fiber Commun. Conf. (OFC'94), Techn. Digest (San Jose, CA, USA, 1994), paper TuC-3

    Google Scholar 

  62. B. Clesca, S. Gauchard, V. Rodrigues, D. Lesterlin, E. Kuhn, A. Bodere, H. Haisch, K. Satzke, J.F. Vinchant, 2.5 Gbit/s, 1291 km transmission over nondispersion-shifted fiber using an integrated electroabsorption modulator/DFB laser module, Proc. 21st Europ. Conf. Opt. Commun. (ECOC'95), Brussels, Belgium, 1995, paper Th.A.3.8

    Google Scholar 

  63. K. Wakita, I. Kotaka, O. Mitomi, H. Asai, Y. Kawamura, M. Naganuma, High-speed InGaAlAs/InAlAs multiple quantum well optical modulators. J. Lightw. Technol. 8, 1027–1032 (1990)

    Article  ADS  Google Scholar 

  64. A.M. Fox, D.A.B. Miller, G. Livescu. J.E. Cunningham. J.E. Henry, W.Y. Jan, Quantum well carrier sweep out: Relation to electroabsorption and exciton saturation. IEEE J. Quantum Electron. 27, 2281–2295 (1991)

    Article  ADS  Google Scholar 

  65. T.H. Wood, T.Y. Chang, J.Z. Pastalan, C.A. Burrus, Jr., N.J. Sauer, B.C. Johnson, Increased optical saturation intensities in GaInAs multiple quantum wells by the use of AlGaInAs barriers. Electron. Lett. 27, 257–259 (1991)

    Article  Google Scholar 

  66. T. Ido, H. Sano, S. Tanaka, H. Inoue, Frequency-domain measurement of carrier escape times in MQW electro-absorption optical modulators. IEEE Photon. Technol. Lett. 7, 1421–1423 (1995)

    Article  ADS  Google Scholar 

  67. D. Marcuse, DFB laser with attached external intensity modulator. IEEE J. Quantum Electron. 26, 262–269 (1990)

    Article  ADS  Google Scholar 

  68. Y. Kotaki, H. Soda, Analysis of static and dynamic wavelength shifts in modulator-integrated DFB lasers, Proc. 19th Europ. Conf. Opt. Commun. (ECOC'93), Montreux, Switzerland, 1993, paper WeP8.6

    Google Scholar 

  69. M. Aoki, S. Takashima, Y. Fujiwara, S. Aoki, New transmission simulation of EA-modulator integrated DFB-lasers considering the facet reflection-induced chirp. IEEE Photon. Technol. Lett. 9, 380–382 (1997)

    Article  ADS  Google Scholar 

  70. R. Adams, Band-structure engineering for low-threshold high-efficiency semiconductor lasers. Electron. Lett. 22, 249–250 (1986)

    Article  Google Scholar 

  71. E. Yablonovitch, E.O. Kane, Reduction of lasing threshold current density by the lowering of valence band effective mass. J. Lightw. Technol. LT-4, 504–506 (1986)

    Article  ADS  Google Scholar 

  72. T. Ohtoshi, N. Chinone, Linewidth enhancement factor in strained quantum well lasers. IEEE Photon. Technol. Lett. 1, 117–119 (1989)

    Article  ADS  Google Scholar 

  73. K. Kamite, H. Sudo, M. Yano, H. Ishikawa, H. Imai, Ultra-high-speed InGaAsP/InP DFB lasers emitting at 1.3 µm wavelength. IEEE J. Quantum Electron. QE-23, 1054–1058 (1987)

    Article  ADS  Google Scholar 

  74. P.J. Corvini, T.L. Koch, Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers. J. Lightw. Technol. LT-5, 1591–1595 (1987)

    Article  ADS  Google Scholar 

  75. K. Uomi, A. Murata, S. Sano, R. Takeyari, A. Takai, Advantages of 1.55 µm InGaAs/InGaAsP MQW-DFB lasers for 2.5 Gbit/s long-span normal fiber transmission. IEEE Photon. Technol. Lett. 4, 657–660 (1992)

    Article  ADS  Google Scholar 

  76. M. Aoki, Monolithically-integrated laser diodes for optical telecommunications by selective area growth technologies, Ph.D. Dissertation, Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo, Japan, 1999

    Google Scholar 

  77. K. Naoe, N. Sasada, Y. Sakuma, K. Motoda, T. Kato, M. Akashi, J. Shimizu, T. Kitatani, M. Aoki, M. Okayasu, K. Uomi, 43 Gbit/s operation of 1.55 µm electro-absorption modulator integrated DFB laser modules for 2 km transmission, Proc. 31st Europ. Conf. Opt. Commun. (ECOC'05), Glasgow, UK, 2005, vol. 4, pp. 907–908

    Google Scholar 

  78. N. Sasada, K. Naoe, Y. Sakuma, K. Motoda, T. Kato, M. Akashi, J. Shimizu, T. Kitatani, M. Aoki, M. Okayasu, K. Uomi, 1.55 µm 40 Gbit/s electro-absorption modulator integrated DFB laser modules for very short reach transmission, 10th OptoElectron. Commun. Conf. (OECC'05), Techn. Digest, Seoul, Korea, 2005, invited paper 6F2–1

    Google Scholar 

  79. T. Fujisawa, K. Tahahat, W. Kobayashoi, T. Tadokoro, N. Fujiwara, S. Kanazawa, F. Kano, 1.3 µm, 50 Gbit/s EADFB lasers for 400 GE, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'11), Techn. Digest (Los Angeles, CA, USA, 2011), paper OWD4

    Google Scholar 

  80. C. Kazmierski, A. Konczykowska, F. Jorge, F. Blache, M. Riet, C. Jany, A. Scavennec, 100 Gbit/s operation of an AlGaInAs semi-insulating buried heterojunction EML, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'09), Techn. Digest (San Diego, CA, USA, 2009), post-deadline papers, pp. 1–3

    Google Scholar 

  81. H. Tanaka, M. Horita, Y. Matsushima, Temperature dependence of InGaAsP electro-absorption modulator module, Conf. Indium Phosphide Relat. Mater. (IPRM'95), Techn. Digest, 1995, paper ThP45, pp. 540–543

    Google Scholar 

  82. B. Clesca, S. Gauchard, E. Lantoine, V. Rodrigues, F. Giraud, D. Lesterlin, 3.2 nm wavelength tuning via temperature control for integrated electroabsorption modulator/DFB laser with high tolerance to chromatic dispersion. Electron. Lett. 32, 927–929 (1996)

    Article  Google Scholar 

  83. M.R. Gokhale, P.V. Studenkov, J. Ueng-McHale, J. Thomson, J. Yao, J. van Saders, Uncooled, 10 Gbit/s 1310 nm electroabsorption modulated laser, Opt. Fiber Commun. Conf. (OFC'03), Techn. Digest, Atlanta, GA, USA, 2003, paper PDP-42

    Google Scholar 

  84. S. Makino, K. Shinoda, T. Kitatani, T. Tsuchiya, M. Aoki, Wide temperature range (0 to 85 °C), 40 km SMF transmission of a 1.55 µm, 10 Gbit/s InGaAlAs electroabsorption modulator integrated DFB laser, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'05), Techn. Digest, Anaheim, CA, USA, 2005, paper PDP-14

    Google Scholar 

  85. S. Makino, K. Shinoda, T. Shiota, T. Kitatani, T. Fukamachi, M. Aoki, N. Sasada, K. Naoe, K. Uchida, H. Inoue, Wide temperature (15 °C to 95 °C), 80 km SMF transmission of a 1.55 µm, 10 Gbit/s InGaAlAs electroabsorption modulator integrated DFB laser, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'07), Techn. Digest, Anaheim, CA, USA, 2007, paper OMS-1

    Google Scholar 

  86. N. Sasada, K. Naoe, Y. Sakuma, K. Okamoto, R. Washino, D. Nakai, K. Motoda, S. Makino, M. Aoki, Un-cooled operation (10 °C to 85 °C) of a 10.7 Gbit/s 1.55 µm electro-absorption modulator integrated DFB laser for 40 km transmission, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'07), Techn. Digest, Anaheim, CA, USA, 2007, paper We8.1.5

    Google Scholar 

  87. H. Hayashi, S. Makino, T. Kitatani, T. Shiota, K. Shinoda, S. Tanaka, M. Aoki, N. Sasada, K. Naoe, A first uncooled (25 to 85 °C) 43-Gbps light source based on InGaAlAs EA/DFB laser technology, Proc. 34th Europ. Conf. Opt. Commun. (ECOC'08), Brussels, Belgium, 2008, paper We.3.C.3

    Google Scholar 

  88. S. Makino, K. Shinoda, T. Kitatani, H. Hayashi, T. Shiota, S. Tanaka, M. Aoki, N. Sasada, K. Naoe, High-speed electroabsorption modulator integrated DFB laser for 40 Gbps and 100 Gbps application, Conf. Indium Phosphide Relat. Mater. (IPRM'09), Techn. Digest, 2009, pp. 362–366

    Google Scholar 

  89. http://www.cfp-msa.org/

  90. T. Fujisawa, S. Kanazawa, N. Nunoya, H. Ishii, Y. Kawaguchi, A. Ohki, H. Fujiwara, K. Takahat, R. Iga, F. Kano, H. Oohashi, 4 ⨉ 25 Gbit/s, 1.3 µm, monolithically integrated light source for 100 Gbit/s Ethernet, Proc. 36th Europ. Conf. Opt. Commun. (ECOC'10), Turino, Italy, 2010, paper Th.9.D.1

    Google Scholar 

  91. K. Iga, Modulation limit of semiconductor lasers by some parametric modulation scheme. Trans. IECE Jpn. E-68, 417–420 (1985)

    Google Scholar 

  92. R. Lang, Injection locking properties of a semiconductor-laser. IEEE J. Quantum Electron. QE-18, 976–983 (1982)

    Article  ADS  Google Scholar 

  93. A. Tagar, K. Petermann, High-frequency oscillations and self-mode locking in short external-cavity laser diodes. IEEE J. Quantum Electron. 30, 1553–1561 (1994)

    Article  ADS  Google Scholar 

  94. P. Even, K.A. Ameur, G.M. Stephan, Modeling of an injected gas laser. Phys. Rev. A 55, 1441–1453 (1997)

    Article  ADS  Google Scholar 

  95. E.G. Lariontsev, I. Zolotoverkh, P. Besnard, G.M. Stephan, Injection locking properties of a microchip laser. Eur. Phys. J. D 5, 107–117 (1999)

    Article  ADS  Google Scholar 

  96. X.J. Meng, T. Chau, M.C. Wu, Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking. IEEE Trans. Microwave Theory Techn. 47, 1172–1176 (1999)

    Article  ADS  Google Scholar 

  97. L. Chrostowski, X. Zhao, C.J. Chang-Hasnain, R. Shau, M. Ortsiefer, M.-C. Amann, 50 GHz optically injection-locked 1.55 µm VCSELs. IEEE Photon. Technol. Lett. 18, 367–369 (2006)

    Article  ADS  Google Scholar 

  98. T. Sogawa, Y. Arakawa, M. Tanaka, H. Sakaki, Observation of a short optical pulse (< 1.3 ps) from a gain switched quantum well laser. Appl. Phys. Lett. 53, 1580–1582 (1988)

    Article  ADS  Google Scholar 

  99. D. Bimberg, K. Ketterer, E.H. Böttcher, E. Scholl, Gain modulation of unbiased semiconductor lasers: Ultrashort light-pulse generation in the 0.8 µm–1.3 µm wavelength range. Int. J. Electron. 60, 23–45 (1986)

    Article  Google Scholar 

  100. H.F. Liu, M. Fukazawa, Y. Kawai, T. Kamiya, Gain-switched picosecond pulse (< 10 ps) generation from 1.3 µm laser diodes. IEEE J. Quantum Electron. 25, 1417–1425 (1989)

    Article  ADS  Google Scholar 

  101. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, L. Backborn, 30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 µm. Electron. Lett. 33, 488–489 (1997)

    Article  Google Scholar 

  102. L. Bah, W. Kaiser, J.P. Reithmaier, A. Forchel, T.W. Berg, B. Tromborg, Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled cavity-injection-grating design. Electron. Lett. 39, 1592–1593 (2003)

    Article  Google Scholar 

  103. J.P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, M. Gioannini, I. Montrosset, T.W. Berg, B. Tromborg, Modulation speed enhancement by coupling to higher order resonances: A road towards 40 GHz bandwidth lasers on InP, Conf. Indium Phosphide Relat. Mater. (IPRM'05), Techn. Digest, 2005, pp. 118–123

    Google Scholar 

  104. S. Bauer, O. Brox, M. Biletzke, J. Kreissl, M. Radziunas, B. Sartorius, H.J. Wünsche, Speed potential of active feedback lasers, Conf. Lasers Electro-Opt. (CLEO)/Europe, OSA Techn. Digest (2003), p. 176

    Google Scholar 

  105. B. Sartorius, M. Möhrle, Mirror modulated lasers: A concept for high speed transmitters. Electron. Lett. 32, 1781–1782 (1996)

    Article  Google Scholar 

  106. M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfram, U. Troppenz, J. Kreissl, W. Rehbein, Improving the modulation bandwidth in semiconductor lasers by passive feedback. IEEE J. Sel. Top. Quantum Electron. 13, 136–142 (2007)

    Article  Google Scholar 

  107. U. Troppenz, J. Kreissl, W. Rehbein, C. Bornholdt, T. Gaertner, M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfram, 40 Gbit/s directly modulated InGaAsP passive feedback DFB laser, Proc. 32nd Europ. Conf. Opt. Commun. (ECOC'06), Cannes, France, 2006, paper Th4.5.5

    Google Scholar 

  108. M. Shirai, H. Arimoto, K. Watanbe, A. Taike, K. Shinoda, J. Shimizu, H. Sato, T. Ido, T. Tsuchiya, M. Aoki, S. Tsuji, N. Sasada, S. Tada, M. Okayasu, 40 Gbit/s electroabsorption modulators with impedance controlled electrodes. Electron. Lett. 39, 734–735 (2003)

    Article  Google Scholar 

  109. Y.-J. Chiu, H.-F. Chou, V. Kaman, P. Abraham, J.E. Bowers, High extinction ratio and saturation power traveling-wave electroabsorption modulator. IEEE Photon. Technol. Lett. 14, 792–794 (2002)

    Article  ADS  Google Scholar 

  110. Y. Akage, K. Kawano, S. Oku, R. Iga, H. Okamoto, Y. Miyamoto, H. Takeuchi, Wide bandwidth of over 50 GHz traveling wave electrode electroabsorption modulator integrated DFB lasers. Electron. Lett. 37, 299–300 (2001)

    Article  Google Scholar 

  111. R. Lewén, S. Irmscher, U. Westergren, L. Thylén, U. Eriksson, Segmented transmission-line electroabsorption modulators. J. Lightw. Technol. 22, 172–179 (2004)

    Article  ADS  Google Scholar 

  112. R.G. Walker, High-speed semiconductor intensity modulators. IEEE J. Quantum Electron. 27, 654–667 (1991)

    Article  ADS  Google Scholar 

  113. S.R. Sakamoto, A. Jackson, N. Dagli, Substrate removed GaAs/AlGaAs Mach–Zehnder electro-optic modulators for ultra wide bandwidth operation, Internat. Top. Meeting Microw. Photon., 1999, pp. 13–16

    Google Scholar 

  114. L. Mörl, D. Hoffmann, K. Matzen, C. Bornholdt, G.G. Mekonnen, F. Reier, Traveling wave electrodes for 50 GHz operation of opto-electronic devices based on InP, Conf. Indium Phosphide Relat. Mater. (IPRM'99), Techn. Digest, WeA1–3, pp. 385–388

    Google Scholar 

  115. S. Akiyama, S. Hirose, T. Watanabe, M. Ueda, S. Sekiguchi, N. Morii, T. Yamamoto, A. Kuramata, H. Soda, Novel InP-based Mach–Zehnder modulator for 40 Gbit/s integrated lightwave source, 18th IEEE Internat. Semicond. Laser Conf. (ISLC2002), Conf. Digest, Garmisch-Partenkirchen, Germany, 2002, paper TuC1, pp. 57–58

    Google Scholar 

  116. K. Tsuzuki, H. Shibata, N. Kikuchi, M. Ishikawa, T. Yasui, H. Ishii, H. Yasaka, 10 Gbit/s, 200 km duobinary SMF transmission using a full C-band tunable DFB laser array co-packaged with InP Mach–Zehnder modulator, 21st IEEE Internat. Semicond. Laser Conf. (ISLC2008), Conf. Digest, Waikoloa, HI, USA, 2006, paper MB6

    Google Scholar 

  117. H. Arimoto, K. Watanabe, N. Kikuchi, H. Takano, M. Shirai, M. Hashimoto, H. Kudo, T. Kitatani, H. Ohta, R. Mita, R. Takeyari, A 40 Gbit/s electro-absorption modulator with a record modulation efficiency (50 GHz/V) enhanced by a novel technique of hybrid integration on the driver IC, IEEE 16th Ann. Meeting Lasers Electro-Opt. Soc., vol. 2 (2003), pp. 646–647

    Google Scholar 

  118. R. Takeyari, N. Kikuchi, Next-generation hybrid design of optoelectronic components with electronic components based on InP and related materials, Conf. Indium Phosphide Relat. Mater. (IPRM'04), Techn. Digest, 2004, pp. 8–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Aoki Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aoki, M. (2012). Ultrafast Semiconductor Laser Sources. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20517-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20517-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20516-3

  • Online ISBN: 978-3-642-20517-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics