Skip to main content

Schizophrene Störungen

Neurobiologie

  • Chapter
  • 7365 Accesses

Zusammenfassung

Die Erforschung der hirnbiologischen Grundlagen schizophrener Störungen wird erheblich durch die Problematik der historischen und gegenwärtigen Konzepte dieser Krankheitsgruppe erschwert, vor deren Hintergrund alle neurobiologischen Befunde, die bislang bei entsprechenden Patienten erhoben wurden, einzuordnen sind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Addington AM, Gornick MC, Shaw P et al (2007) Neuregulin 1 (8p12) and childhood-onset schizophrenia: susceptibility haplotypes for diagnosis and brain developmental trajectories. Mol Psychiatry 12: 195–205

    CAS  PubMed  Google Scholar 

  • Akbarian S, Kim JJ, Potkin SG et al (1996) Maldistribution of interstitial neurons in the prefrontal white matter of the brains of schizophrenics. Arch Gen Psychiatry 53: 425–436

    CAS  PubMed  Google Scholar 

  • Akil M, Lewis DA (1997) Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 154: 1010–1012

    CAS  PubMed  Google Scholar 

  • Amminger GP, Schäfer MR, Papageorgiou K et al (2010) Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry 67(2):146–154

    CAS  PubMed  Google Scholar 

  • Andreasen NC, O’Leary DS, Cizadlo T et al (1996) Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA 93: 9985–9990

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arnold SE, Ruscheinsky DD, Han LY (1997) Fürther evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses. Biol Psychiatry 42: 639–647

    CAS  PubMed  Google Scholar 

  • Bagary MS, Symms MR, Barker GJ et al (2003) Gray and white matter brain abnormalities in first-episode schizophrenia inferred from magnetization transfer imaging. Arch Gen Psychiatry 60: 779–788

    PubMed  Google Scholar 

  • Bahn S (2002) Gene expression in bipolar disorder and schizophrenia: new approaches to old problems. Bipolar Disord 4(Suppl 1): 70–72

    PubMed  Google Scholar 

  • Baumann B, Bogerts B (1999) The pathomorphology of schizophrenia and mood disorders: similarities and differences. Schizophr Res 39: 141–148

    CAS  PubMed  Google Scholar 

  • Beckmann H, Senitz D (2002) Developmental malformations in cerebral structures in »endogenous psychoses«. J Neural Transm 109(3): 421–431

    CAS  PubMed  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25(1): 1–27

    CAS  PubMed  Google Scholar 

  • Bernstein HG, Krell D, Baumann B et al (1998) Morphometric studies of the entorhinal cortex in neuropsychiatric patients and controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 33: 125–132

    CAS  PubMed  Google Scholar 

  • Bernstein HG, Steiner J, Bogerts B (2009) Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev Neurother 9: 1059–1071

    CAS  PubMed  Google Scholar 

  • Bertolino A, Breier A, Callicott JH et al (2000) The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology 22(2): 125–132

    CAS  PubMed  Google Scholar 

  • Bertram I, Bernstein HG, Lendeckel U et al (2007) Immunohistochemical evidence for impaired neuregulin-1 signaling in the prefrontal cortex in schizophrenia and in unipolar depression. Ann NY Acad Sci 1096: 147–156

    Google Scholar 

  • Bilder RM, Wu H, Bogerts B et al (1994) Absence of regional hemispheric volume asymmetries in first episode schizophrenia. Am J Psychiatry 151: 1437–1447

    CAS  PubMed  Google Scholar 

  • Bishara D, Taylor D (2008) Upcoming agents for the treatment of schizophrenia: mechanism of action, efficacy and tolerability. Drugs 68(16): 2269–2292

    CAS  PubMed  Google Scholar 

  • Bogerts B (1984) Zur Neuropathologie der Schizophrenien. Fortschr Neurol Psychiatr 52: 428–437

    CAS  PubMed  Google Scholar 

  • Bogerts B (1997) The temporolimbic system theory of positive schizophrenic symptoms. Schizophr Bull 23: 423–435

    CAS  PubMed  Google Scholar 

  • Bogerts B, Falkai P (2000) Neuroanatomische und neuropathologische Grundlagen psychischer Störungen. In: Helmchen H, Henn F, Lauter H, Satorius N (Hrsg) Psychiatrie der Gegenwart 1. Springer, Berlin Heidelberg New York, S 277–310

    Google Scholar 

  • Brisch R, Bernstein HG, Krell D et al (2009). Dopamine-glutamate abnormalities in the frontal cortex associated with the Catechol-O-Methyltransferase (COMT) in schizophrenia. Brain Res 1269: 166–175

    CAS  PubMed  Google Scholar 

  • Brown AS, Hooton J, Schaefer C et al (2004) Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 161(5): 889–895

    PubMed  Google Scholar 

  • Bruning JC, Gautam D, Burks DJ et al (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289: 2122–2125

    CAS  PubMed  Google Scholar 

  • Callicott JH, Straub RE, Pezawas L et al (2005) Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 102: 8627–8632

    PubMed Central  CAS  PubMed  Google Scholar 

  • Camargo LM, Collura V, Rain JC et al (2007) Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 12: 74–86

    CAS  PubMed  Google Scholar 

  • Cannon TD, Thompson PM, van Erp TG et al (2002) Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proc Natl Acad Sci USA 99(5): 3228–3233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carlsson A (1977) Does dopamine play a role in schizophrenia? Psychol Med 7: 583–597

    CAS  PubMed  Google Scholar 

  • Chakos MH, Lieberman JA, Alvir J et al (1995) Caudate nuclei volumes in schizophrenic patients treated with typical antipsychotics or clozapine. Lancet 18, 345(8947): 456–457

    Google Scholar 

  • Coyle JT, Tsai G (2004) The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology (Berl) 174(1): 32–38

    CAS  Google Scholar 

  • Cotter DR, Pariante CM, Everall IP (2001) Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 55(5): 585–595

    CAS  PubMed  Google Scholar 

  • Chemerinski E, Nopoulos PC, Crespo-Facorro B et al (2002) Morphology of the ventral frontal cortex in schizophrenia: relationship with social dysfunction. Biol Psychiatry 52: 1–8

    PubMed  Google Scholar 

  • Danos P (2004) Pathologie des Thalamus und Schizophrenie – Ein Uberblick. Fortschr Neurol Psychiatr 72: 621–634

    CAS  PubMed  Google Scholar 

  • Degreef G, Bogerts B, Falkai P et al (1992) Increased prevalence of the cavum septum pellucidum in MRI scans and postmortem brains of schizophrenic patients. Psychiatry Res NeuroImaging 45: 1–13

    CAS  Google Scholar 

  • Erkwoh R, Sabril O, Willmes K et al (1999) Aspekte zerebraler Konnektivität bei Schizophrenie. Fortschr Neurol Psych 67: 318–326

    CAS  Google Scholar 

  • Erritzoe D, Rasmussen H, Kristiansen KT et al (2008) Cortical and subcortical 5-HT2A receptor binding in neuroleptic-naive first-episode schizophrenic patients. Neuropsychopharmacology 33(10): 2435–2441

    CAS  PubMed  Google Scholar 

  • Falkai P, Bogerts B (1995) Brain morphology and prediction of neuroleptic treatment response in schizophrenia. In: Gaebel W, Award AG (eds) Prediction of neuroleptic treatment outcome in schizophrenia – concepts and methods. Springer, Wien, pp 135–146

    Google Scholar 

  • Falkai P, Schneider T, Greve B ET AL (1995) Reduced frontal and occipital lobe asymmetry on CT-scans of schizophrenic patiens. Its specifity and clinical significance. J Neural Transm (Gen Sect) 99: 63–77

    CAS  Google Scholar 

  • Falkai P, Honert WG, David B et al (1999) No evidence for astrogliosis in brain of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 25: 48–53

    CAS  PubMed  Google Scholar 

  • Falkai P, Honer WG, Alfter D et al (2002) The temporal lobe in schizophrenia from uni- and multiply affected families. Neurosci Lett 325(1): 25–28

    CAS  PubMed  Google Scholar 

  • Fallgatter AJ, Strick WK (2000) Reduced frontal activation asymmetry in schizophrenia during a cued continuous performance test assessed with near-infrared spectroscopy. Schizophr Bull 26(4): 913–919

    CAS  PubMed  Google Scholar 

  • Fan JB, Zhang CS, Gu NF et al (2005) Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol Psychiatry 57: 139–144

    CAS  PubMed  Google Scholar 

  • Friedman L, Lys C, Schulz SC (1992) The relationship of structural brain imaging parameters to antipsychotic treatment response: a review. J Psychiatr Neurosci 17: 42–54

    CAS  Google Scholar 

  • Glanz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57: 65–73

    Google Scholar 

  • Gough SC, O’Donovan M C (2005) Clustering of metabolic comorbidity in schizophrenia: a genetic contribution? J Psychopharmacol 19: 47–55

    PubMed  Google Scholar 

  • Gouzoulis-Mayfrank E, Becker S, Pelz S et al (1999) Psychopathological, neuroendocrine and autonomic effects of 3,4-methylenedioxyethylamphetamine (MDE), psilocybin and D-methamphetamine in healthy volunteers. Results of an experimental double-blind placebo-controlled study. Psychopharmacology (Berl) 142(1): 41–50

    CAS  Google Scholar 

  • Gur RE, Cowell PE, Latshaw A et al (2000) Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 57: 761–768

    CAS  PubMed  Google Scholar 

  • Grunder G, Vernaleken I, Muller MJ et al (2003) Subchronic haloperidol downregulates dopamine synthesis capacity in the brain of schizophrenic patients in vivo. Neuropsychopharmacology 28(4): 787–794

    PubMed  Google Scholar 

  • Häfner H (2003) Risk and protective factors in schizophrenia – towards c conceptual model of the disease process. Steinkopff, Darmstadt

    Google Scholar 

  • Heckers S, Goff D, Schacter DL et al (1999) Functional imaging of memory retrieval in deficit vs nondeficit schizophrenia. Arch Gen Psychiatry 56: 1117–1123

    CAS  PubMed  Google Scholar 

  • Heinz A, Juckel G (2004) Entstehung schizophrener Erkrankungen. Psycho 30: 140–145

    Google Scholar 

  • Heinz A, Saunders RC, Kolachana BS et al (1999) Striatal dopamine receptors and transporters in monkeys with neonatal temporal limbic damage. Synapse 32(2): 71–79

    CAS  PubMed  Google Scholar 

  • Ho BC, Andreasen NC, Ziebell S et al (2011) Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry 68: 128–137

    PubMed Central  PubMed  Google Scholar 

  • Hof PR, Haroutunian V, Copland C et al (2002) Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 27: 1193–1200

    CAS  PubMed  Google Scholar 

  • Huang JT, Leweke FM, Tsang TM et al (2007) CSF metabolic and proteomic profiles in patients prodromal for psychosis. PLoS ONE 2: e756

    PubMed Central  PubMed  Google Scholar 

  • Ibrahim HM, Hogg AJ, Healy DJ et al (2000) Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei of schizophrenia. Am J Psychiatry 157: 1811–1823

    CAS  PubMed  Google Scholar 

  • Ingvar DH, Franzen G (1974) Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatr Scand 50: 425–462

    CAS  PubMed  Google Scholar 

  • Knable MB, Barci BM, Webster MJ et al (2004) Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 9(6): 609–20, 544

    CAS  PubMed  Google Scholar 

  • Jakob J, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65: 303–326

    CAS  PubMed  Google Scholar 

  • Kalus P, Senitz D,(1996) Parvalbumin in the human anterior cingulate cortex. Morphological heterogeneity of inhibitory interneurons. Brain Res 729: 45–54

    CAS  PubMed  Google Scholar 

  • Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 179(1): 4–29

    CAS  PubMed  Google Scholar 

  • Klosterkötter J, Hellmich M, Steinmeyer EM, Schultze-Lutter F (2001) Diagnosing schizophrenia in the initial prodromal phase. Arch Gen Psychiatry 58: 158–164

    PubMed  Google Scholar 

  • Koolschijn PC, van Haren NE, Cahn W et al (2010) Hippocampal volume change in schizophrenia. J Clin Psychiatry 71(6): 737–744

    PubMed  Google Scholar 

  • Konopaske GT, Dorph-Petersen KA, Sweet RA et al (2008) Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol Psychiatry 63: 759–765

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kovalenko S, Bergmann A, Schneider-Axmann T et al (2003) Regio entorhinalis in schizophrenia: more evidence for migrational disturbances and suggestions for a new biological hypothesis. Pharmacopsychiatry 36(Suppl 3): S158-S161

    PubMed  Google Scholar 

  • Kozlovsky N, Belmaker RH, Agam G (2000) Low GSK-3β immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry 157: 831–833

    CAS  PubMed  Google Scholar 

  • Kubicki M, Westin CF, Maier SE et al (2002) Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am J Psychiatry 159: 813–820

    PubMed Central  PubMed  Google Scholar 

  • Kumakura Y, Cumming P, Vernaleken I et al (2007) Elevated [18F]fluoro dopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study. J Neurosci 27(30): 8080–8087

    CAS  PubMed  Google Scholar 

  • Kuperberg GR, Broome MR, McGuire PK et al (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60: 878–888

    PubMed  Google Scholar 

  • Laruelle M (2003) Dopamine transmission in the schizophrenic brain. In: Hirsch RS, Weinberger DR (eds) Schizophrenia. Blackwell, Oxford, pp 365–387

    Google Scholar 

  • Lesch A, Bogerts B (1984) The diencephalon in schizophrenia: evidence for reduced thickness of periventricular grey matter. Eur Arch Psychiatr Neurol Sci 234: 212–219

    CAS  Google Scholar 

  • Lewis DA, Pierry JN, Volk DW et al (1999) Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 46: 616–626

    CAS  PubMed  Google Scholar 

  • Lieberman J, Bogerts B, Degreef G et al (1992) Qualitative assessment of brain morphology in acute and chronic schizophrenia. Am J Psychiatry 149: 784–791

    CAS  PubMed  Google Scholar 

  • Lieberman J, Tollefson GD, Charles C et al (2005) Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 62: 361–370

    CAS  PubMed  Google Scholar 

  • Meador-Woodruff JH, Davis KL, Haroutunian V (2001) Abnormal kainate receptor expression in prefrontal cortex in schizophrenia. Neuropsychopharmacology 24(5): 545–552

    CAS  PubMed  Google Scholar 

  • Meisenzahl EM, Rujescu D, Kirner A et al (2001) Association of an interleukin-1β genetic polymorphism with altered brain structure in patients with schizophrenia. Am J Psychiatry 158: 1316–1319

    CAS  PubMed  Google Scholar 

  • Moghaddam G, Krystal JH (2002) The neurochemistry of schizophrenia. In: Hirsch RS, Weinberger DR (eds) Schizophrenia. Blackwell, Oxford, pp 349–364

    Google Scholar 

  • Mössner R, Schuhmacher A, Schulze-Rauschenbach S et al (2008) Fürther evidence for a functional role of the glutamate receptor gene GRM3 in schizophrenia. Eur Neuropsychopharmacol 18: 768–772

    PubMed  Google Scholar 

  • Müller N, Strassnig M, Schwarz ML et al (2004) COX-2 inhibitors as adjunctive therapy in schizophrenia. Expert Opin Investig Drugs 13(8): 1033–1044

    PubMed  Google Scholar 

  • Niznikiewicz MA, Kubicki M, Shenton E (2003) Recent structural and functional imaging findings in schizophrenia. Curr Opin Psychiatry 16: 123–147

    Google Scholar 

  • Northoff G, Waters H, Mooren I et al (1999) Cortical sulcal enlargement in catatonic schizophrenia: a planimetric CT study. Psychiatry Res Neuroimaging 91: 45–54

    CAS  Google Scholar 

  • O’Donovan MC, Craddock N, Norton N et al (2008) Identification of loci associated with schizophrenia by genome-wide association and followup. Nat Genet 40(9): 1053–1055

    PubMed  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52(12): 998–1007

    CAS  PubMed  Google Scholar 

  • Patil ST, Zhang L, Martenyi F et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13(9): 1102–1107

    CAS  PubMed  Google Scholar 

  • Peters A, Pellerin L, Dallman MF et al (2007) Causes of obesity: looking beyond the hypothalamus. Prog Neurobiol 81: 61–88

    CAS  PubMed  Google Scholar 

  • Pierry JN, Chaudry AS, Woo TUW, Lewis DA (1999) Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am J Psychiatry 156: 1709–1719

    Google Scholar 

  • Potvin S, Stip E, Sepehry AA et al (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63: 801–808

    CAS  PubMed  Google Scholar 

  • Remschmidt H, Wolf-Ostermann K, Mattejat F (2004) Schizophrene Erkrankungen im Jugendalter - eine versorgungsepidemiologische Untersuchung an 305 konsekutiven stationären Behandlungsfällen. Nervenarzt 75: 663–674

    CAS  PubMed  Google Scholar 

  • Riedel M, Spellmann I, Schwarz MJ et al (2007) Decreased T cellular immune response in schizophrenic patients. J Psychiatr Res 41: 3–7

    PubMed  Google Scholar 

  • Sauer H, Volz HP (2000) Functional magnetic resonance imaging and magnetic resonance spectroscopy in schizophrenia. Curr Opin Psychiatry 13: 21–26

    Google Scholar 

  • Schlaepfer TE , Harris GJ, Tien AY et al (1994) Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 151: 842–848

    CAS  PubMed  Google Scholar 

  • Schmitt A, Maras A, Braus DF et al (2001) Antipsychotika und Phospholipidmetabolismus bei der Schizophrenie. Fortschr Neurol Psychiatr 69: 503–509

    CAS  PubMed  Google Scholar 

  • Schreiber S, Bernstein HG, Fendrich R et al (2011) Increased density of GAD65/67 immunoreactive neurons in the posterior subiculum and parahippocampal gyrus in treated patients with chronic schizophrenia. World J Biol Psychiatry 12(1): 57–65

    PubMed  Google Scholar 

  • Schroeter ML, Steiner J (2009) Elevated serum levels of the glial marker protein S100B are not specific for schizophrenia or mood disorders. Mol Psychiatry 14: 235–237

    CAS  PubMed  Google Scholar 

  • Selemon LD, Godman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45: 17–25

    CAS  PubMed  Google Scholar 

  • Senitz D, Winkelmann E (1991) Neuronale Struktur-Anomalität im orbitofrontalen Cortex bei Schizophrenie. J Hirnforsch 32: 149–158

    CAS  PubMed  Google Scholar 

  • Serretti A, Drago A, De Ronchi D (2007) HTR2A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Curr Med Chem 14(19): 2053–2069

    CAS  PubMed  Google Scholar 

  • Simpson EH, Kellendonk C, Kandel E (2010) A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 65(5): 585–596

    CAS  PubMed  Google Scholar 

  • Smesny S, Kinder D, Willhardt I et al (2003) Potential use of the topical niacin skin test in early psychosis – a combined approach using optical reflection spectroscopy and a descriptive rating scale. J Psychiatr Res 37(3): 237–247

    PubMed  Google Scholar 

  • Sparshatt A, Taylor D, Patel MX, Kapur S (2010) A systematic review of aripiprazole-dose, plasma concentration, receptor occupancy, and response: implications for therapeutic drug monitoring. J Clin Psychiatry 71(11): 1447–1456

    CAS  PubMed  Google Scholar 

  • Stefansson H et al (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71(4): 877–892

    PubMed Central  PubMed  Google Scholar 

  • Stefansson H et al (2009) Common variants conferring risk of schizophrenia. Nature 460: 744–747

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steffek AE, McCullumsmith RE, Haroutunian V, Meador-Woodruff JH (2008) Cortical expression of glial fibrillary acidic protein and glutamine synthetase is decreased in schizophrenia. Schizophr Res 103: 71–82

    PubMed Central  PubMed  Google Scholar 

  • Steiner J, Mawrin C, Ziegeler A et al (2006) Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol 112: 305–316

    CAS  PubMed  Google Scholar 

  • Steiner J, Bernstein HG, Bielau H et al (2008) S100B-immunopositive glia is elevated in paranoid as compared to residual schizophrenia: a morphometric study. J Psychiatr Res 42: 868–876

    PubMed  Google Scholar 

  • Steiner J, Bogerts B, Sarnyai Z et al (2011) Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psychiatry, Epub ahead of print

    Google Scholar 

  • Thakore JH (2005) Metabolic syndrome and schizophrenia. Br J Psychiatry 186: 455–456

    PubMed  Google Scholar 

  • Toda M, Abi-Dargham A (2007) Dopamine hypothesis of schizophrenia: making sense of it all. Curr Psychiatry Rep 9(4): 329–336

    PubMed  Google Scholar 

  • Uranova NA, Vostrikov VM, Vikhreva OV et al (2007) The role of oligodendrocyte pathology in schizophrenia. Int J Neuropsychopharmacol 10: 537–545

    CAS  PubMed  Google Scholar 

  • van Haren NE, Hulshoff Pol HE, Schnack HG et al (2008) Progressive brain volume loss in schizophrenia over the course of the illness: evidence of maturational abnormalities in early adulthood. Biol Psychiatry 63(1): 106–113

    PubMed  Google Scholar 

  • van Os J, Fahy A, Jones P et al (1995) Increased intracerebral cerebrospinal fluid spaces predict unemployment and negative symptoms in psychotic illness – a prospective study. Br J Psychiatry 166: 750–758

    Google Scholar 

  • Vogeley K, Schneider-Axmann, Pfeiffer U et al (2000) Disturbed gyrification of the prefrontal region in male schizophrenic patients: a morphometric postmortem study. Am J Psychiatry 157: 34–39

    CAS  PubMed  Google Scholar 

  • Volk D, Austin M, Pierri J et al (2001) GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am J Psychiatry 158: 256–265

    CAS  PubMed  Google Scholar 

  • Weickert CS, Straub RE, McClintock BW et al (2004) Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry 61(6): 544–555

    CAS  PubMed  Google Scholar 

  • Weinberger DR, Berman KF, Zec RF (1986) Physiologic dysfunction of the dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43: 114–124

    CAS  PubMed  Google Scholar 

  • Weinberger DR, Egan MF, Bertolino A et al (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50: 825–844

    CAS  PubMed  Google Scholar 

  • Zhao Z, Ksiezak-Reding H, Riggio S et al (2006) Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr Res 84: 1–14

    PubMed  Google Scholar 

  • Zihl J (2004) Neuropsychologie der Schizophrenie und Depression. Neurotransmitter, Sonderheft 3/2004: 38–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steiner, J., Bogerts, B. (2012). Schizophrene Störungen. In: Gründer, G., Benkert, O. (eds) Handbuch der psychiatrischen Pharmakotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19844-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19844-1_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19843-4

  • Online ISBN: 978-3-642-19844-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics