Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 281))

Abstract

Retroviral vectors capable of efficient in vivo gene delivery to specific target cell types or to specific locations of disease pathology would greatly facilitate many gene therapy applications. The surface glycoproteins of membrane-enveloped viruses stand among the choice candidates to control the target cell receptor recognition and host range of retroviral vectors onto which they are incorporated. This can be achieved in many ways, such as the exchange of glycoprotein by pseudotyping, their biochemical modifications, their conjugation with viruscell bridging agents or their structural modifications. Understanding the fundamental properties of the viral glycoproteins and the molecular mechanism of virus entry into cells has been instrumental in the functional alteration of their tropism. Here we briefly review the current state of our understanding of the structure and function of viral envelope glycoproteins and we discuss the emerging targeting strategies based on retroviral and lentiviral vector systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe A, Chen ST, Miyanohara A, and Friedmann T (1998) In vitro cell-free conversion of noninfectious Moloney retrovirus particles to an infectious form by the addition of the vesicular stomatitis virus surrogate envelope G protein. J Virol 72:6356–61

    PubMed  CAS  Google Scholar 

  • Ager S, Nilson BHK, Morling FJ, Peng KW, Cosset F-L, and Russell SJ (1996) Retroviral display of antibody fragments; interdomain spacing strongly influences vector infectivity. Hum Gene Ther 7:2157–2164

    PubMed  CAS  Google Scholar 

  • Barnett AL, and Cunningham JM (2001) Receptor binding transforms the surface subunit of the mammalian C-type retrovirus envelope protein from an inhibitor to an activator of fusion. J Virol 75:9096–105

    PubMed  CAS  Google Scholar 

  • Barnett AL, Davey RA, and Cunningham JM (2001) Modular organization of the Friend murine leukemia virus envelope protein underlies the mechanism of infection. Proc Natl Acad Sci U S A 98:4113–8

    PubMed  CAS  Google Scholar 

  • Bartosch B, Dubuisson J, Cosset FL (2003) Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J Exp Med 197:633–42

    PubMed  CAS  Google Scholar 

  • Battini JL, Danos O, and Heard JM (1998) Definition of a 14-amino-acid peptide essential for the interaction between the murine leukemia virus amphotropic envelope glycoprotein and its receptor. J Virol 72:428–435

    PubMed  CAS  Google Scholar 

  • Benedict CA, Tun RY, Rubinstein DB, Guillaume T, Cannon PM, and Anderson WF (1999) Targeting retroviral vectors to CD34-expressing cells: binding to CD34 does not catalyze virus-cell fusion. Hum Gene Ther 10:545–557

    PubMed  CAS  Google Scholar 

  • Beyer WR, Westphal M, Ostertag W, and von Laer D (2002) Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J Virol 76:1488–95

    PubMed  CAS  Google Scholar 

  • Bobkova M, Stitz J, Engelstadter M, Cichutek K, and Buchholz CJ (2002) Identification of R-peptides in envelope proteins of C-type retroviruses. J Gen Virol 83:2241–6

    PubMed  CAS  Google Scholar 

  • Boerger AL, Snitkovsky S, and Young JA (1999) Retroviral vectors preloaded with a viral receptor-ligand bridge protein are targeted to specific cell types. Proc Natl Acad Sci U S A 96:9867–72

    PubMed  CAS  Google Scholar 

  • Bounou S, Leclerc JE, and Tremblay MJ (2002) Presence of host ICAM-1 in laboratory and clinical strains of human immunodeficiency virus type 1 increases virus infectivity and CD4(+)-T-cell depletion in human lymphoid tissue, a major site of replication in vivo. J Virol 76:1004–14

    PubMed  CAS  Google Scholar 

  • Brody BA, Rhee SS, and Hunter E (1994) Postassembly cleavage of a retroviral glycoprotein cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. J Virol 68:4620–4627

    PubMed  CAS  Google Scholar 

  • Buchholz CJ, Peng K-W, Morling FJ, Zhang J, Cosset F-L, and Russell SJ (1998) In vivo selection of protease cleavage sites from retrovirus display libraries. Nat Biotechnol 16:951–954

    PubMed  CAS  Google Scholar 

  • Bupp K, and Roth MJ (2002) Altering retroviral tropism using a random-display envelope library. Mol Ther 5:329–35

    PubMed  CAS  Google Scholar 

  • Burns JC, Friedmann T, Driever W, Burrascano M, and Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A 90:8033–8037

    PubMed  CAS  Google Scholar 

  • Carr CM, Chaundhry C, and Kim PS (1997) Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci USA 23:14306–14313

    Google Scholar 

  • Cavazzana-Calvo M, Hacein-Bey S, Basile GdS, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova J, Bousso P, Deist F, and Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672

    PubMed  CAS  Google Scholar 

  • Chadwick MP, Morling FJ, Cosset F-L, and Russell SJ (1999) Modification of retroviral tropism by display of IGF-I. J Mol Biol 285:485–494

    PubMed  CAS  Google Scholar 

  • Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, and Wiley DC (1998) Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95:409–417

    PubMed  CAS  Google Scholar 

  • Chester J, Ruchatz A, Gough M, Crittenden M, Chong H, Cosset F-L, Diaz RM, Harrington K, Alvarez-Vallina L, and Vile R (2002) Tumor antigen-specific induction of transcriptionally targeted retroviral vectors from chimeric immune receptor-modified T cells. Nat Biotechnol 20:256–263

    PubMed  CAS  Google Scholar 

  • Christodoulopoulos I, and Cannon P (2001) Sequences in the cytoplasmic tail of the gibbon ape leukemia virus envelope protein that prevent its incorporation into lentivirus vectors. J Virol 75:4129–38

    PubMed  CAS  Google Scholar 

  • Chu THT, and Dornburg R (1995) Retroviral vector particles displaying the antigenbinding site of an antibody enable cell-type-specific gene transfer. J. Virol. 69:2659–2663

    PubMed  CAS  Google Scholar 

  • Chu THT, Martinez I, Sheay WC, and Dornburg R (1994) Cell targeting with retroviral vector particles containing antibody-envelope fusion proteins. Gene Therapy 1:292–299

    PubMed  CAS  Google Scholar 

  • Cosset F-L, Morling FJ, Takeuchi Y, Weiss RA, Collins MKL, and Russell SJ (1995) Retroviral retargeting by envelopes expressing an N-terminal binding domain. J. Virol. 69:6314–6322

    PubMed  CAS  Google Scholar 

  • Cosson P (1996) Direct interaction between the envelope and matrix proteins of HIV-1. EMBO J. 15:5783–5788

    PubMed  CAS  Google Scholar 

  • DePolo NJ, Reed JD, Sheridan PL, Townsend K, Sauter SL, Jolly DJ, and Dubensky TW (2000) VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2:218–22

    PubMed  CAS  Google Scholar 

  • Desmaris N, Bosch A, Salaun C, Petit C, Prevost MC, Tordo N, Perrin P, Schwartz O, deRocquigny H, and Heard JM (2001) Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol Ther 4:149–56

    PubMed  CAS  Google Scholar 

  • Dong J, Roth MG, and Hunter E (1992) A chimeric avian retrovirus containing the influenza virus hemagglutinin gene has an expanded host range. J Virol 66:7374–7382

    PubMed  CAS  Google Scholar 

  • Duisit G, Conrath H, Saleun S, Folliot S, Provost N, Cosset F-L, Sandrin V, Moullier P, and Rolling F (2002) Five recombinant SIV pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol Ther. In press

    Google Scholar 

  • Engelstadter M, Bobkova M, Baier M, Stitz J, Holtkamp N, Chu TH, Kurth R, Dornburg R, Buchholz CJ, and Cichutek K (2000) Targeting human T cells by retroviral vectors displaying antibody domains selected from a phage display library. Hum Gene Ther 11:293–303

    PubMed  CAS  Google Scholar 

  • Engelstadter M, Buchholz CJ, Bobkova M, Steidl S, Merget-Millitzer H, Willemsen RA, Stitz J, and Cichutek K (2001) Targeted gene transfer to lymphocytes using murine leukaemia virus vectors pseudotyped with spleen necrosis virus envelope proteins. Gene Ther 8:1202–6

    PubMed  CAS  Google Scholar 

  • Etienne-Julan M, Roux P, Carillo S, Jeanteur P, and Piechaczyk M (1992) The efficiency of cell targeting by recombinant retroviruses depends on the nature of the receptor and the composition of the artificial cell-virus linker. J. Gen. Virol. 73:3251–3255

    PubMed  CAS  Google Scholar 

  • Erlwein O, Buchholz CJ, Schnierle BS (2003) The proline-rich region of the ecotropic Moloney murine leukaemia virus envelope protein tolerates the insertion of the green fluorescent protein and allows the generation of replication-competent virus. J Gen Virol 84:369–373

    PubMed  CAS  Google Scholar 

  • Erlwein O, Wels W, Schnierle BS (2002) Chimeric ecotropic MLV envelope proteins that carry EGF receptor-specific ligands and the Pseudomonas exotoxin A translocation domain to target gene transfer to human cancer cells. Virology 302:333–341

    PubMed  CAS  Google Scholar 

  • Fass D, Davey RA, Hamson CA, Kim PS, Cunningham JM, and Berger JM (1997) Structure of a murine leukemia virus receptor-binding glycoprotein at 2.0 angstrom resolution. Science 277:1662–1666

    PubMed  CAS  Google Scholar 

  • Fielding A, Chapel-Fernandes S, Chadwick M, Bullough F, Cosset F-L, and Russell S (2000) A hyperfusogenic gibbon ape leukemia virus envelope glycoprotein: targeting of a cy to toxic gene by ligand display. Hum Gene Ther 11:817–826

    PubMed  CAS  Google Scholar 

  • Fielding AK, Maurice M, Morling FJ, Cosset F-L, and Russell SJ (1998) Inverse targeting of retroviral vectors: selective gene transfer in a mixed population of hematopoietic and nonhematopoietic cells. Blood 91:1802–1809

    PubMed  CAS  Google Scholar 

  • Fortin JF, Cantin R, Bergeron MG, and Tremblay MJ (2000) Interaction between virion-bound host intercellular adhesion molecule-1 and the high-affinity state of lymphocyte function-associated antigen-1 on target cells renders R5 and X4 isolates of human immunodeficiency virus type 1 more refractory to neutralization. Virology 268:493–503

    PubMed  CAS  Google Scholar 

  • Fortin JF, Cantin R, Lamontagne G, and Tremblay M (1997) Host-derived ICAM-1 glycoproteins incorporated on human immunodeficiency virus type 1 are biologically active and enhance viral infectivity. J Virol 71:3588–3596

    PubMed  CAS  Google Scholar 

  • Freed EO (1998) HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 251:1–15

    PubMed  CAS  Google Scholar 

  • Gautier R, Jiang A, Rousseau V, Dornburg R, and Jaffredo T (1999) Avian reticuloendotheliosis virus strain A and spleen necrosis virus do not infect human cells. J Virol 74:518–522

    Google Scholar 

  • Gollan TJ, and Green MR (2002a) Redirecting retroviral tropism by insertion of short, nondisruptive peptide ligands into envelope. J Virol 76:3558–63

    PubMed  CAS  Google Scholar 

  • Gollan TJ, and Green MR (2002b) Selective targeting and inducible destruction of human cancer cells by retroviruses with envelope proteins bearing short peptide ligands. J Virol 76:3564–9

    PubMed  CAS  Google Scholar 

  • Gordon EM, Chen ZH, Liu L, Whitley M, Liu L, Wei D, Groshen S, Hinton DR, Anderson WF, Beart RW, and Hall FL (2001a) Systemic administration of a matrix-targeted retroviral vector is efficacious for cancer gene therapy in mice. Hum Gene Ther 12:193–204

    PubMed  CAS  Google Scholar 

  • Gordon EM, Zhu NL, Forney-Prescott M, Chen ZH, Anderson WF, and FL FLH (2001b) Lesion-targeted injectable vectors for vascular restenosis. Hum Gene Ther 12:1277–87

    PubMed  CAS  Google Scholar 

  • Goud B, Legrain P, and Buttin G (1988) Antibody-mediated binding of a murine ecotropic Moloney retroviral vector to human cells allows internalization but not the establishment of the proviral state. Virology 163:251–254

    PubMed  CAS  Google Scholar 

  • Hall FL, Gordon EM, Wu L, Zhu NL, Skotzko MJ, Starnes VA, and Anderson WF (1997) Targeting retroviral vectors to vascular lesions by genetic engineering of the MoMLV gp70 envelope protein. Hum Gene Ther 8:2183–2192

    PubMed  CAS  Google Scholar 

  • Hall FL, Liu L, Zhu NL, Stapfer M, Anderson WF, Beart RW, and Gordon EM (2000) Molecular engineering of matrix-targeted retroviral vectors incorporating a surveillance function inherent in von Willebrand factor. Hum Gene Ther 11:983–93

    PubMed  CAS  Google Scholar 

  • Han X, Kasahara N, and Kan YW (1995) Ligand-directed retroviral targeting of human breast cancer cells. Proc Natl Acad Sci USA 92:9747–9751

    PubMed  CAS  Google Scholar 

  • Hanawa H, Kelly PF, Nathwani AC, Persons DA, Vandergriff JA, Hargrove P, Vanin EF, and Nienhuis AW (2002) Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol Ther 5:242–51

    PubMed  CAS  Google Scholar 

  • Hatziioannou T, Delahaye E, Martin F, Russell SJ, and Cosset F-L (1999) Retroviral display of functional binding domains fused to the amino-terminus of influenza haemagglutinin. Hum Gene Ther 10:1533–1544

    PubMed  CAS  Google Scholar 

  • Hatziioannou T, Valsesia-Wittmann S, Russell S, and Cosset F-L (1998) Incorporation of fowl plague virus hemagglutinin into murine leukemia virus particles and analysis of the infectivity of the pseudotyped retroviruses. J Virol 72:5313–5317

    PubMed  CAS  Google Scholar 

  • Hatziioannou T, Russell SJ, and Cosset F-L (2000) Incorporation of simian virus 5 fusion protein into murine leukemia virus particles and its effect on the co-incorporation of retroviral envelope glycoproteins. Virology 267:49–57

    PubMed  CAS  Google Scholar 

  • Hughson FM (1997) Enveloped viruses: a common mode of membrane fusion? Curr Biol 7:R565–9

    PubMed  CAS  Google Scholar 

  • Hunter E (1997) Viral entry and receptors. In “Retroviruses” (J M Coffin, S H Hughes and H E Varmus, eds.), pp. 71–120. Cold Spring Harbor Laboratory Press, New York, USA

    Google Scholar 

  • Innes CL, Smith PB, Langenbach R, Tindall KR, and Boone LR (1990) Cationic liposomes (Lipofectin) mediate retroviral infection in the absence of specific receptors. J Virol 64:957–61

    PubMed  CAS  Google Scholar 

  • Jiang A, Chu TH, Nocken F, Cichutek K, and Dornburg R (1998) Cell-type-specific gene transfer into human cells with retroviral vectors that display single-chain antibodies. J Virol 72:10148–10156

    PubMed  CAS  Google Scholar 

  • Jiang A, and Dornburg R (1999) In vivo cell type-specific gene delivery with retroviral vectors that display single chain antibodies. Gene Ther 6:1982–7

    PubMed  CAS  Google Scholar 

  • Kang Y, Stein CS, Heth JA, Sinn PL, Penisten AK, Staber PD, Ratliff KL, Shen H, Barker CK, Martins I, Sharkey CM, Sanders DA, McCray PB, Jr., and Davidson BL (2002) In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J Virol 76:9378–88

    PubMed  CAS  Google Scholar 

  • Katane M, Takao E, Kubo Y, Fujita R, Amanuma H (2002) Factors affecting the direct targeting of murine leukemia virus vectors containing peptide ligands in the envelope protein. EMBO Rep 3:899–904

    PubMed  CAS  Google Scholar 

  • Kasahara N, Dozy AM, and Kan YW (1994) Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266:1373–1376

    PubMed  CAS  Google Scholar 

  • Kayman SC, Park H, Saxon M, and Pinter A (1999) The hypervariable domain of the murine leukemia virus surface protein tolerates large insertions and deletions, enabling development of a retroviral particle display system. J Virol 73:1802–1808

    PubMed  CAS  Google Scholar 

  • Kelly P, Vandergriff J, Nathwani A, Nienhuis A, and Vanin E (2000) Highly efficient gene transfer into cord blood nonobese diabetic/severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD1 14) envelope protein. Blood 96:1206–1214

    PubMed  CAS  Google Scholar 

  • Khare PD, Shao-Xi L, Kuroki M, Hirose Y, Arakawa F, Nakamura K, Tomita Y, and Kuroki M (2001) Specifically targeted killing of carcinoembryonic antigen (CEA)-expressing cells by a retroviral vector displaying single-chain variable fragmented antibody to CEA and carrying the gene for inducible nitric oxide synthase. Cancer Res 61:370–5

    PubMed  CAS  Google Scholar 

  • Kobe B, Center RJ, Kemp BE, and Poumbourios P (1999) Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. Proc Natl Acad Sci USA 96:4319–4324

    PubMed  CAS  Google Scholar 

  • Kobinger GP, Weiner DJ, Yu QC, and Wilson JM (2001) Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol 19:225–30

    PubMed  CAS  Google Scholar 

  • Konishi H, Ochiya T, Chester KA, Begent RH, Muto T, Sugimura T, and Terada M (1998) Targeting strategy for gene delivery to carcinoembryonic antigen-producing cancer cells by retrovirus displaying a single-chain variable fragment antibody. Hum Gene Ther 9:235–248

    PubMed  CAS  Google Scholar 

  • Lamb RA (1993) Paramyxovirus fusion: A hypothesis for changes. Virology 197:1–11

    PubMed  CAS  Google Scholar 

  • Lavillette D, Boson B, Russell S, and Cosset F-L (2001a) Membrane fusion by murine leukemia viruses is activated in cis or in trans by interactions of the receptorbinding domain with a conserved disulfide loop at the carboxy-terminus of the surface glycoproteins. J Virol 75:3685–3695

    PubMed  CAS  Google Scholar 

  • Lavillette D, Maurice M, Roche C, Russell SJ, Sitbon M, and Cosset F-L (1998) A proline-rich motif downstream of the receptor binding domain modulates conformation and fusogenicity of murine retroviral envelopes. J Virol 72:9955–9965

    PubMed  CAS  Google Scholar 

  • Lavillette D, Ruggieri A, Boson B, Maurice M, and Cosset F-L (2002) Relationship between SU subdomains that regulate the receptor-mediated transition from the native (fusion-inhibited) and fusion-active conformations of the murine leukemia virus glycoprotein. J Virol 76:9685–2002

    Google Scholar 

  • Lavillette D, Ruggieri A, Russell SJ, and Cosset F-L (2000) Activation of a cell entry pathway common to type C mammalian retroviruses by soluble envelope fragments. J Virol 74:295–304

    PubMed  CAS  Google Scholar 

  • Lavillette D, Russell SJ, and Cosset F-L (2001b) Retargeting gene delivery by surfaceengineered retroviral vector particles. Curr Opin Biotechnol 12:461–466

    PubMed  CAS  Google Scholar 

  • Lee S, Zhao Y, and Anderson WF (1999) Receptor-mediated moloney murine leukemia virus entry can occur independently of the clathrin-coated-pit-mediated endocytic pathway. J Virol 73:5994–6005

    PubMed  CAS  Google Scholar 

  • Lin AH, Kasahara N, Wu W, Stripecke R, Empig CL, Anderson WF, and Cannon PM (2001) Receptor-specific targeting mediated by the coexpression of a targeted murine leukemia virus envelope protein and a binding-defective influenza hemagglutinin protein. Hum Gene Ther 12:323–32

    PubMed  CAS  Google Scholar 

  • Lindemann D, Bock M, Schweizer M, and Rethwilm A (1997) Efficient pseudotyping of murine leukemia virus particles with chimeric human foamy virus envelope proteins. J. Virol 71:4815–4820

    PubMed  CAS  Google Scholar 

  • Linder M, Linder D, Hahnen J, Schott HH, and Stirm S (1992) Localization of the intrachain disulfide bonds of the envelope glycoprotein 71 from Friend murine leukemia virus. Eur J Biochem 203:65–73

    PubMed  CAS  Google Scholar 

  • Linder M, Wenzel V, Linder D, and Stirm S (1994) Structural elements in glycoprotein 70 from polytropic Friend mink cell focus-inducing virus and glycoprotein 71 from ecotropic Friend murine leukemia virus, as defined by disulfide-bonding pattern and limited proteolysis. J Virol 68:5133–5141

    PubMed  CAS  Google Scholar 

  • Liu L, Anderson WF, Beart RW, Gordon EM, and Hall FL (2000) Incorporation of tumor vasculature targeting motifs into moloney murine leukemia virus env escort proteins enhances retrovirus binding and transduction of human endothelial cells. J Virol 74:5320–8

    PubMed  CAS  Google Scholar 

  • Lodge R, Subbramanian RA, Forget J, Lemay G, and Cohen EA (1998) MuLV-based vectors pseudotyped with truncated HIV glycoproteins mediate specific gene transfer in CD4+ peripheral blood lymphocytes. Gene Ther 5:655–64

    PubMed  CAS  Google Scholar 

  • Lorimer IA, and Lavictoire SJ (2000) Targeting retrovirus to cancer cells expressing a mutant EGF receptor by insertion of a single chain antibody variable domain in the envelope glycoprotein receptor binding lobe. J Immunol Methods 237:147–57

    PubMed  CAS  Google Scholar 

  • Mammano F, Salvatori F, Indraccolo S, de Rossi A, Chieco-Bianchi L, and Göttlinger HG (1997) Truncation of the human immunodeficiency virus type 1 envelope glycoprotein allows efficient pseudotyping of Moloney murine leukemia virus particles and gene transfer into CD4+ cells. J Virol 71:3341–3345

    PubMed  CAS  Google Scholar 

  • Marandin A, Dubart A, Pflumio F, Cosset F-L, Cordette V, Chapel-Fernandes S, Coulombel L, Vainchenker W, and Louache F (1998) Retroviral-mediated gene transfer into human CD34+/38-primitive cells capable of reconstituting longterm cultures in vitro and in nonobese diabetic-severe combined immunodeficiency mice in vivo. Human Gene Ther 9:1497–1511

    CAS  Google Scholar 

  • Marechal V, Clavel F, Heard JM, and Schwartz O (1998) Cytosolic Gag p24 as an index of productive entry of human immunodeficiency virus type 1. J Virol 72: 2208–12

    PubMed  CAS  Google Scholar 

  • Marechal V, Prevost MC, Petit C, Perret E, Heard JM, and Schwartz O (2001) Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. J Virol 75:11166–77

    PubMed  CAS  Google Scholar 

  • Marin M, Noël D, Valsesia-Wittmann S, Brockly F, Etienne-Julan M, Russell SJ, Cosset F-L, and Piechaczyk M (1996) Targeted infection of human cells via MHC class I molecules by MoMuLV-derived viruses displaying single-chain antibody fragment-envelope fusion proteins. J. Virol 70:2957–2962

    PubMed  CAS  Google Scholar 

  • Martin F, Chowdhury S, Neil S, Phillipps N, and Collins MK (2002) Envelope-targeted retrovirus vectors transduce melanoma xenografts but not spleen or liver. Mol Ther 5:269–74

    PubMed  CAS  Google Scholar 

  • Martin F, Kupsch J, Takeuchi Y, Russell S, Cosset F-L, and Collins M (1998) Retroviral vector targeting to melanoma cells by single-chain antibody incorporation in envelope. Hum Gene Ther 9:737–746

    PubMed  CAS  Google Scholar 

  • Martin F, Neil S, Kupsch J, Maurice M, Cosset F-L, and Collins M (1999) Retrovirus targeting by tropism restriction to melanoma cells. J Virol 73:6923–6929

    PubMed  CAS  Google Scholar 

  • Martin F, Chowdhury S, Neil SJ, Chester KA, Cosset F-L, and Collins MK (2003) Targeted retroviral infection of tumor cells by receptor cooperation. J Virol 77:2753–2756

    PubMed  CAS  Google Scholar 

  • Matano T, Odawara T, Iwamoto A, and Yoshikura H (1995) Targeted infection of a retrovirus bearing a CD4-Env chimera into human cells expressing human immunodeficiency virus type 1. J. Gen. Virol. 76:3165–3169

    PubMed  CAS  Google Scholar 

  • Maurice M, Mazur S, Bullough FJ, Salvetti A, Collins MKL, Russell SJ, and Cosset F-L (1999) Efficient gene delivery to quiescent IL2-dependent cells by murine leukemia virus-derived vectors harboring IL2 chimeric envelope glycoproteins. Blood 94:401–410

    PubMed  CAS  Google Scholar 

  • Maurice M, Verhoeyen E, Salmon P, Trono D, Russell SJ, and Cosset F-L (2002) Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell-activating polypeptide. Blood 99:2342–50

    PubMed  CAS  Google Scholar 

  • McClure MO, Sommerfelt MA, Marsh M, and Weiss RA (1990) The pH independence of mammalian retrovirus infection. J. Gen. Virol. 71:767–773

    PubMed  CAS  Google Scholar 

  • Merten CA, Engelstaedter M, Buchholz CJ, Cichutek K (2003) Displaying epidermal growth factor on spleen necrosis virus-derived targeting vectors. Virology 305:106–114

    PubMed  CAS  Google Scholar 

  • Miletic H, Bruns M, Tsiakas K, Vogt B, Rezal R, Baum C, Kühlke K, Cosset F-L, Ostertag W, Lother H, and Laer DV (1999) Retroviral vectors pseudotyped with lymphocytic choriomeningitis virus. J Virol 73:6114–6116

    PubMed  CAS  Google Scholar 

  • Mochizuki H, Schwartz JP, Tanaka K, Brady RO, and Reiser J (1998) High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J. Virol. 72:8873–8883

    PubMed  CAS  Google Scholar 

  • Mondor I, Ugolini S, and Sattentau QJ (1998) Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. J Virol 1998:3623–34

    Google Scholar 

  • Morizono K, Bristol G, Xie Y-M, Kung SK-P, and Chen ISC (2001) Antibody-directed targeting of retroviral vectors via cell surface antigens. J Virol 75:8016–8020

    PubMed  CAS  Google Scholar 

  • Morling FJ, Peng K-W, Cosset F-L, and Russell SJ (1997) Masking of retroviral envelope functions by oligomerizing peptide adaptors. Virology 234:51–61

    PubMed  CAS  Google Scholar 

  • Morrison TG (2001) The three faces of paramyxovirus attachment proteins. Trends Microbiol 9:103–5

    PubMed  CAS  Google Scholar 

  • Mothes W, Boerger AL, Narayan S, Cunningham JM, and Young JA (2000) Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell 103:679–89

    PubMed  CAS  Google Scholar 

  • Movassagh M, Desmyter C, Baillou C, Chapel-Fernandes S, Guigon M, Klatzmann D, and Lemoine FM (1998) High-level gene transfer to cord blood progenitors using gibbon ape leukemia virus pseudotyped retroviral vectors and an improved clinically applicable protocol. Hum Gene Ther 9:225–234

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Ghosh RN, and Maxfield FR (1997) Endocytosis. Physiol Rev 77:759-803 Murakami T, and Freed EO (2000) Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. J Virol 74:3548–54

    Google Scholar 

  • Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, and Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    PubMed  CAS  Google Scholar 

  • Nègre D, Duisit G, Mangeot P-E, Moullier P, Darlix J-L, and Cosset F-L (2002) Lentiviral vectors derived from simian immunodeficiency virus (SIV). In “Current Topics in Microbiology and Immunology” (D Trono, ed.), pp. 53–74

    Google Scholar 

  • Nègre D, Mangeot P, Duisit G, Blanchard S, Vidalain P, Leissner P, Winter A, Rabourdin-Combe C, Mehtali M, Moullier P, Darlix J-L, and Cosset F-L (2000) Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther 7:1613–1623

    PubMed  Google Scholar 

  • Nguyen T, Pages J-C, Farge D, Briand P, and Weber A (1998) Amphotropic retroviral vectors displaying hepatocyte growth factor-envelope fusion proteins improve transduction efficiency of primary hepatocytes. Hum Gene Ther 9:2469–2479

    PubMed  CAS  Google Scholar 

  • Nilson BHK, Morling FJ, Cosset F-L, and Russell SJ (1996) Targeting of retroviral vectors through protease-substrate interactions. Gene Ther. 3:280–286

    PubMed  CAS  Google Scholar 

  • Ohno K, Sawai K, Iijima Y, Levin B, and Meruelo D (1997) Cell-specific targeting of Sindbis virus vectors displaying IgG-binding domains of protein A. Nat Biotechnol 15:763–767

    PubMed  CAS  Google Scholar 

  • Ott DE (1997) Cellular proteins in HIV virions. Rev Med Virol 7:167–180

    PubMed  CAS  Google Scholar 

  • Overbaugh J, Miller AD, and Eiden MV (2001) Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Microbiol Mol Biol Rev 65:371–89

    PubMed  CAS  Google Scholar 

  • Patterson SM, Swainsbury R, and Routledge EG (1999) Antigen-specific membrane fusion mediated by the haemagglutinin protein of influenza A virus: separation of attachment and fusion functions on different molecules. Gene Ther 6:694–702

    PubMed  CAS  Google Scholar 

  • Peng K-W, Vile RG, Cosset F-L, and Russell SJ (1999) Selective transduction of protease-rich tumors by matrix-metalloproteinase-targeted retroviral vectors. Gene Ther 6:1552–1557

    PubMed  CAS  Google Scholar 

  • Peng KW, F.J. Morling, Cosset F-L, Murphy G, and Russell SJ (1997) A gene delivery system activatable by disease-associated matrix metalloproteinases. Hum Gene Ther 8:729–738

    PubMed  CAS  Google Scholar 

  • Peng KW, Morling FJ, Cosset F-L, and Russell SJ (1998) A retroviral gene delivery system activatable by plasmin. Tumor Targeting 3:112–120

    CAS  Google Scholar 

  • Peng KW, Pham L, Ye H, Zufferey R, Trono D, Cosset F-L, and Russell SJ (2001) Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Ther 8:1456–63

    PubMed  CAS  Google Scholar 

  • Pickl WF, Pimentel-Muinos FX, and Seed B (2001) Lipid rafts and pseudotyping. J Virol 75:7175–83

    PubMed  CAS  Google Scholar 

  • Pinter A, Kopelman R, Li Z, Kayman SC, and Sanders DA (1997) Localization of the labile disulfide bond between SU and TM of the murine leukemia virus envelope protein complex to a highly conserved CWLC motif in SU that resembles the active-site sequence of thiol-disulfide exchange enzymes. J Virol 71:8073–8077

    PubMed  CAS  Google Scholar 

  • Pizzato M, Blair ED, Fling M, Kopf J, Tomassetti A, Weiss RA, and Takeuchi Y (2001) Evidence for non-specific adsorption of targeted retrovirus vector particles to cells. Gene Ther 8:1088–96

    PubMed  CAS  Google Scholar 

  • Pizzato M, Marlow SA, Blair ED, and Takeuchi Y (1999) Initial binding of murine leukemia virus particles to cells does not require specific Env-receptor interaction. J Virol 73:8599–611

    PubMed  CAS  Google Scholar 

  • Porter CD (2002) Cationic liposomes for envelope-independent retroviral transduction and enhancement of fusion-deficient targeted viruses. Gene Ther. in press

    Google Scholar 

  • Porter CD, Collins MKL, Tailor CS, Parker MH, Cosset F-L, Weiss RA, and Takeuchi Y (1996) Comparison of efficiency of infection of human gene therapy target cells via four different retroviral receptors. Hum Gene Ther 7:913–919

    PubMed  CAS  Google Scholar 

  • Porter CD, Lukacs KV, Box G, Takeuchi Y, and Collins MK (1998) Cationic liposomes enhance the rate of transduction by a recombinant retroviral vector in vitro and in vivo. J Virol 72:4832–40

    PubMed  CAS  Google Scholar 

  • Ragheb JA, and Anderson WF (1994) pH-independent murine leukemia virus ecotropic envelope-mediated cell fusion: Implications for the role of the R peptide and p12E TM in viral entry. J Virol 68:3220–3231

    PubMed  CAS  Google Scholar 

  • Reeves JD, and Schulz TF (1997) The CD4-independent tropism of human immunodeficiency virus type 2 involves several regions of the envelope protein and correlates with a reduced activation threshold for envelope-mediated fusion. J Virol 71:1453–1465

    PubMed  CAS  Google Scholar 

  • Rein A, Mirro J, Haynes JG, Ernst SM, and Nagashima K (1994) Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p2E cleavage activates the membrane fusion capability of the murine leukemia virus env protein. J Virol 68:1773–1781

    PubMed  CAS  Google Scholar 

  • Rodrigues P, and Heard JM (1999) Modulation of phosphate uptake and amphotropic murine leukemia virus entry by posttranslational modifications of PIT-2. J. Virol.: 3789–3799

    Google Scholar 

  • Rothenberg SM, Olsen MN, Laurent LC, Crowley RA, and Brown PO (2001) Comprehensive mutational analysis of the Moloney murine leukemia virus envelope protein. J Virol 75:11851–62

    PubMed  CAS  Google Scholar 

  • Roux P, Jeanteur P, and Piechaczyk M (1989) A versatile approach to the targeting of specific cell types by retroviruses. Proc Natl Acad Sci USA 86:9079–9083

    PubMed  CAS  Google Scholar 

  • Russell SJ, and Cosset F-L (1999) Modifying the host range properties of retroviral vectors. J Gene Med 1:300–311

    PubMed  CAS  Google Scholar 

  • Russell SJ, Hawkins RE, and Winter G (1993) Retroviral vectors displaying functional antibody fragments. Nucl Acids Res 21:1081–1085

    PubMed  CAS  Google Scholar 

  • Salmon P, Nègre D, Trono D, and Cosset F-L (2000) A chimeric GALV-derived envelope glycoprotein harboring the cytoplasmic tail of MLV envelope efficiently pseudotypes HIV-1 vectors. J Gen Med 2 (suppl):23

    Google Scholar 

  • Sanders DA (2000) Sulfhydryl involvement in fusion mechanisms. In “Fusion of biological membranes and related problems” (Hilderson and Fuller, eds.), pp. 483–514. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Sandrin V, Boson B, Salmon P, Gay W, Nègre D, Grand RL, Trono D, and Cosset F-L (2002) Lentiviral vectors pseudotyped with a modified RD1 14 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and non-human primates. Blood 100:823–832

    PubMed  CAS  Google Scholar 

  • Schneider RM, Medvedovska Y, Voelker B, Chadwick MP, Russell SJ, Cichutek K, and Buchholz CJ (2002) Matrix metalloprotease substrates selected in living human cells using retroviral peptide libraries. in press

    Google Scholar 

  • Schnierle BS, Stitz J, Bosch V, Nocken F, Merget-Millitzer H, Engelstadter M, Kurth R, Groner B, and Cichutek K (1997) Pseudotyping of murine leukemia virus with the envelope glycoproteins of HIV generates a retroviral vector with specificity of infection for CD4-expressing cells. Proc Natl Acad Sci USA 94:8640–8645

    PubMed  CAS  Google Scholar 

  • Schwartz AL (1995) Receptor cell biology: receptor-mediated endocytosis. Pediatr Res 38:835–843

    PubMed  CAS  Google Scholar 

  • Seganti L, Superti F, Girmenia C, Melucci L, and Orsi N (1986) Study of receptors for vesicular stomatitis virus in vertebrate and invertebrate cells. Microbiologica 9:259–67

    PubMed  CAS  Google Scholar 

  • Sharkey CM, North CL, Kuhn RJ, and Sanders DA (2001) Ross River virus glycoprotein-pseudotyped retroviruses and stable cell lines for their production. J Virol 75:2653–9

    PubMed  CAS  Google Scholar 

  • Sharma S, Miyanohara A, and Friedmann T (2000) Separable mechanisms of attachment and cell uptake during retrovirus infection. J Virol 74:10790–5

    PubMed  CAS  Google Scholar 

  • Sharma S, Murai F, Miyanohara A, and Friedmann T (1997) Noninfectious virus-like particles produced by Moloney murine leukemia virus-based retrovirus packaging cells deficient in viral envelope become infectious in the presence of lipofection reagents. Proc Natl Acad Sci U S A 94:10803–8

    PubMed  CAS  Google Scholar 

  • Skehel JJ, and Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69:531–69

    PubMed  CAS  Google Scholar 

  • Smit JM, Bittman R, and Wilschut J (1999) Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol-and sphingolipid-containing liposomes. J. Virol. 73:8476–8484

    PubMed  CAS  Google Scholar 

  • Snitkovsky S, Niederman T, Mulligan R, and Young J (2001) Targeting avian leukosis virus subgroup A vectors by using a TVA-VEGF bridge protein. J Virol 75:1571–5

    PubMed  CAS  Google Scholar 

  • Snitkovsky S, Niederman TM, Carter BS, Mulligan RC, and Young JA (2000) A TVAsingle-chain antibody fusion protein mediates specific targeting of a subgroup A avian leukosis virus vector to cells expressing a tumor-specific form of epidermal growth factor receptor. J Virol 74:9540–5

    PubMed  CAS  Google Scholar 

  • Snitkovsky S, and Young JA (1998) Cell-specific viral targeting mediated by a soluble retroviral receptor-ligand fusion protein. Proc Natl Acad Sci USA 95:7063–7068

    PubMed  CAS  Google Scholar 

  • Snitkovsky S, and Young JA (2002) Targeting Retroviral Vector Infection to Cells That Express Heregulin Receptors Using a TVA-Heregulin Bridge Protein. Virology 292:150–5

    PubMed  CAS  Google Scholar 

  • Somia NV, Zoppé M, and Verma IM (1995) Generation of targeted retroviral vectors by using single-chain variable fragment: an approach to in vivo gene delivery. Proc Natl Acad Sci USA 92:7570–7574

    PubMed  CAS  Google Scholar 

  • Spiegel M, Bitzer M, Schenk A, Rossmann H, Neubert WJ, Seidler U, Gregor M, and Lauer U (1998) Pseudotype formation of Moloney Murine leukemia virus with Sendai virus glycoprotein F. J Virol 72:5269–5302

    Google Scholar 

  • Stitz J, Buchholz C, Engelstadter M, Uckert W, Bloemer U, Schmitt I, and Cichutek K (2000) Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology 273:16–20

    PubMed  CAS  Google Scholar 

  • Sung VM, and Lai MM (2002) Murine retroviral pseudotype virus containing hepatitis B virus large and small surface antigens confers specific tropism for primary human hepatocytes: a potential liver-specific targeting system. J Virol 76:912–7

    PubMed  CAS  Google Scholar 

  • Suomalainen M, and Garoff H (1994) Incorporation of homologous and heterologous proteins into the envelope of Moloney murine leukemia virus. J Virol 68:4879–4889

    PubMed  CAS  Google Scholar 

  • Swanstrom R, and Wills JW (1997) Synthesis, assembly, and processing of viral proteins. In “Retroviruses” (J M Coffin, S H Hughes and H E Varmus, eds.), pp. 263–334. Cold Spring Harbor Laboratory Press, New York, USA

    Google Scholar 

  • Takeuchi Y, Simpson G, Vile R, Weiss R, and Collins M (1992a) Retroviral pseudotypes produced by rescue of moloney murine leukemia virus vector by C-type, but not D-type, retroviruses. Virology 186:792–794

    PubMed  CAS  Google Scholar 

  • Thaler S, and Schnierle BS (2001) A packaging cell line generating CD4-specific retroviral vectors for efficient gene transfer into primary human T-helper lymphocytes. Mol Ther 4:273–9

    PubMed  CAS  Google Scholar 

  • Ugolini S, Mondo I, and Sattentau QJ (1999) HIV-1 attachment: another look. Trends Microbiol 7:144–9

    PubMed  CAS  Google Scholar 

  • Valsesia-Wittmann S (2001) Role of chimeric murine leukemia virus env beta-turn polyproline spacers in receptor cooperation. J Virol 75:8478–86

    PubMed  CAS  Google Scholar 

  • Valsesia-Wittmann S, Drynda A, Deleage G, Aumailley M, Heard J-M, Danos O, Verdier G, and Cosset F-L (1994) Modifications in the binding domain of avian retrovirus envelope protein to redirect the host range of retroviral vectors. J. Virol. 68:4609–4619

    PubMed  CAS  Google Scholar 

  • Valsesia-Wittmann S, Morling FJ, Hatziioannou T, Russell SJ, and Cosset F-L (1997) Receptor co-operation in retrovirus entry: recruitment of an auxilliary entry mechanism after retargeted binding. EMBO J 16:1214–1223

    PubMed  CAS  Google Scholar 

  • Valsesia-Wittmann S, Morling FJ, Nilson BHK, Takeuchi Y, Russell SJ, and Cosset F-L (1996) Improvement of retroviral retargeting by using amino acid spacers between an additional binding domain and the N terminus of Moloney murine leukemia virus SU. J. Virol. 70:2059–2064

    PubMed  CAS  Google Scholar 

  • Vincent MJ, Melsen LR, Martin AS, and Compans RW (1999) Intracellular interaction of simian immunodeficiency virus Gag and Env proteins. J Virol 73:8138–44

    PubMed  CAS  Google Scholar 

  • Walker SJ, Pizzato M, Takeuchi Y, Devereux S (2002) Heparin binds to murine leukemia virus and inhibits Env-independent attachment and infection. J Virol 76:6909–18

    PubMed  CAS  Google Scholar 

  • Wensel DL, Li W, Cunningham JM (2003) A virus-virus interaction circumvents the virus receptor requirement for infection by pathogenic retroviruses. Virol 77:3460–9

    CAS  Google Scholar 

  • Wilson C, Reitz MS, Okayama H, and Eiden MV (1989) Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus. J Virol 63:2374–8

    PubMed  CAS  Google Scholar 

  • Wool-Lewis RJ, and Bates P (1998) Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol 72:3155–3160

    PubMed  CAS  Google Scholar 

  • Wu BW, Cannon PM, Gordon EM, Hall FL, and Anderson WF (1998) Characterization of the proline-rich region of murine leukemia virus envelope protein. J Virol 72:5383–5391

    CAS  Google Scholar 

  • Wu BW, Lu J, Gallaher TK, Anderson WF, and Cannon PM (2000) Identification of regions in the Moloney murine leukemia virus SU protein that tolerate the insertion of an integrin-binding peptide. Virology 269:7–17

    PubMed  CAS  Google Scholar 

  • Wyma DJ, Kotov A, and Aiken C (2000) Evidence for a stable interaction of gp41 with Pr55(Gag) in immature human immunodeficiency virus type 1 particles. J Virol 74:9381–7

    PubMed  CAS  Google Scholar 

  • Yajima T, Kanda T, Yoshiike K, and Kitamura Y (1998) Retroviral vector targeting human cells via c-Kit-stem cell factor interaction. Hum Gene Ther 10:779–787

    Google Scholar 

  • Zhao Y, Lee S, and Anderson WF (1997) Functional interactions between monomers of the retroviral envelope protein complex. J Virol 71:6967–6972

    PubMed  CAS  Google Scholar 

  • Zhao Y, Zhu L, Lee S, Li L, Chang E, Soong NW, Douer D, and Anderson WF (1999) Identification of the block in targeted retroviral-mediated gene transfer. Proc Natl Acad Sci U S A 96:4005–4010

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sandrin, V., Russell, S.J., Cosset, FL. (2003). Targeting Retroviral and Lentiviral Vectors. In: Young, J.A.T. (eds) Cellular Factors Involved in Early Steps of Retroviral Replication. Current Topics in Microbiology and Immunology, vol 281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19012-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19012-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62405-6

  • Online ISBN: 978-3-642-19012-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics