Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 281))

Abstract

Entry of HIV-1 virions into cells is a complex and dynamic process carried out by envelope (Env) glycoproteins on the surface of the virion that promote the thermodynamically unfavorable fusion of highly stable viral and target cell membranes. Insight gained from studies of the mechanism of viral entry allowed insight into the design of novel inhibitors of HIV-1 entry, several of which are now in clinical trials. This review highlights the mechanism by which viral and cellular proteins mediate entry of HIV-1 into permissive cells, with an emphasis on targeting this process in the design of novel therapies that target distinct steps of the entry process, including antagonizing receptor binding events and blocking conformational changes intimately involved in membrane fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkhatib, G, Combadiere, C, Broder, CC, Feng, Y, Kennedy, PE, Murphy, PM, and Berger, EA (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1, Science 272: 1955–1958

    PubMed  CAS  Google Scholar 

  • Allaway, GP, Davis-Bruno, KL, Beaudry, GA, Garcia, EB, Wong, EL, Ryder, AM, Hasel, KW, Gauduin, MC, Koup, RA, McDougal, JS, and et al. (1995) Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates, AIDS Res Hum Retroviruses 11: 533–9

    PubMed  CAS  Google Scholar 

  • Arakaki, R, Tamamura, H, Premanathan, M, Kanbara, K, Ramanan, S, Mochizuki, K, Baba, M, Fujii, N, and Nakashima, H (1999) T134, a small-molecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure, J Virol 73: 1719–1723

    PubMed  CAS  Google Scholar 

  • Arthos, J, Deen, KC, Chaikin, MA, Fornwald, JA, Sathe, G, Sattentau, QJ, Clapham, PR, Weiss, RA, McDougal, JS, Pietropaolo, C, et al.(1989) Identification of the residues in human CD4 critical for the binding of HIV, Cell 57: 469–481

    PubMed  CAS  Google Scholar 

  • Ashkenazi, A, Smith, DH, Marsters, SA, Riddle, L, Gregory, TJ, Ho, DD, and Capon, DJ (1991) Resistance of primary isolates of human immunodeficiency virus type 1 to soluble CD4 is independent of CD4-gp120 binding affinity, Proc Natl Acad Sci USA 88: 7056–7060

    PubMed  CAS  Google Scholar 

  • Baba, M, Nishimura, O, Kanzaki, N, Okamoto, M, Sawada, H, Iizawa, Y, Shiraishi, M, Aramaki, Y, Okonogi, K, Ogawa, Y, et al. (1999) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity, Proc Natl Acad Sci USA 96: 5698–5703

    PubMed  CAS  Google Scholar 

  • Baker, KA, Dutch, RE, Lamb, RA, and Jardetzky, TS (1999) Structural basis for paramyxovirus-mediated membrane fusion, Mol Cell 3: 309–19

    PubMed  CAS  Google Scholar 

  • Baribaud, F, Pohlmann, S, Leslie, G, Mortari, F, and Doms, RW (2002) Quantitative expression and virus transmission analysis of DC-SIGN on monocyte-derived dendritic cells, J Virol 76: 9135–42

    PubMed  CAS  Google Scholar 

  • Baribaud, F, Pohlmann, S, Sparwasser, T, Kimata, MT, Choi, YK, Haggarty, BS, Ahmad, N, Macfarlan, T, Edwards, TG, Leslie, GJ, et al. (2001) Functional and antigenic characterization of human, rhesus macaque, pigtailed macaque, and murine DC-SIGN, J Virol 75: 10281–10299

    PubMed  CAS  Google Scholar 

  • Bashirova, AA, Geijtenbeek, TB, van Duijnhoven, GC, van Vliet, SJ, Eilering, JB, Martin, MP, Wu, L, Martin, TD, Viebig, N, Knolle, PA, et al. (2001) A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection, J Exp Med 193: 671–8

    PubMed  CAS  Google Scholar 

  • Basmaciogullari, S, Babcock, GJ, Van Ryk, D, Wojtowicz, W, and Sodroski, J (2002) Identification of conserved and variable structures in the human immunodeficiency virus gp120 glycoprotein of importance for CXCR4 binding, J Virol 76: 10791–800

    PubMed  CAS  Google Scholar 

  • Berger, EA, Doms, RW, Fenyo, EM, Korber, BT, Littman, DR, Moore, JP, Sattentau, QJ, Schuitemaker, H, Sodroski, J, and Weiss, RA (1998) A new classification for HIV-1, Nature 391:240

    PubMed  CAS  Google Scholar 

  • Berger, EA, Murphy, PM, and Farber, JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease, Annu Rev Immunol 17: 657–700

    PubMed  CAS  Google Scholar 

  • Boden, D, Hurley, A, Zhang, L, Cao, Y, Guo, Y, Jones, E, Tsay, J, Ip, J, Farthing, C, Limoli, K, et al. (1999) HIV-1 drug resistance in newly infected individuals, JAMA 282:1135–41

    PubMed  CAS  Google Scholar 

  • Brenner, BG, Routy, JP, Petrella, M, Moisi, D, Oliveira, M, Detorio, M, Spira, B, Essabag, V, Conway, B, Lalonde, R, et al. (2002) Persistence and fitness of multidrug-resistant human immunodeficiency virus type 1 acquired in primary infection, J Virol 76: 1753–61

    PubMed  CAS  Google Scholar 

  • Bullough, PA, Hughson, FM, Skehel, JJ, and Wiley, DC (1994) Structure of influenza haemagglutinin at the pH of membrane fusion, Nature 371: 37–43

    PubMed  CAS  Google Scholar 

  • Carr, A, and Cooper, DA (2000) Adverse effects of antiretroviral therapy, Lancet 356: 1423–30

    PubMed  CAS  Google Scholar 

  • Carr, A, Samaras, K, Thorisdottir, A, Kaufmann, GR, Chisholm, DJ, and Cooper, DA (1999) Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study, Lancet 353: 2093–9

    PubMed  CAS  Google Scholar 

  • Chambers, P, Pringle, CR, and Easton, AJ (1990) Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins, J Gen Virol 71: 3075–80

    PubMed  CAS  Google Scholar 

  • Chan, DC, Fass, D, Berger, JM, and Kim, PS (1997) Core structure of gp41 from the HIV envelope glycoprotein, Cell 89: 263–273

    PubMed  CAS  Google Scholar 

  • Choe, H, Farzan, M, Sun, Y, Sullivan, N, Rollins, B, Ponath, PD, Wu, L, Mackay, CR, LaRosa, G, Newman, W, et al. (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates, Cell 85: 1135–1148

    PubMed  CAS  Google Scholar 

  • Clayton, LK, Hussey, RE, Steinbrich, R, Ramachandran, H, Husain, Y, and Reinherz, EL (1988) Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding, Nature 335: 363–6

    PubMed  CAS  Google Scholar 

  • Cocchi, F, DeVico, AL, Garzino-Demo, A, Arya, SK, Gallo, RC, and Lusso, P (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells, Science 270: 1811–1815

    PubMed  CAS  Google Scholar 

  • Daar, ES, Li, XL, Moudgil, T, and Ho, DD (1990) High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates, Proc Natl Acad Sci USA 87: 6574–6578

    PubMed  CAS  Google Scholar 

  • Dalgleish, AG, Beverley, PC, Clapham, PR, Crawford, DH, Greaves, MF, and Weiss, RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus, Nature 312: 763–767

    PubMed  CAS  Google Scholar 

  • Datema, R, Rabin, L, Hincenbergs, M, Moreno, MB, Warren, S, Linquist, V, Rosenwirth, B, Seifert, J, and McCune, JM (1996) Antiviral efficacy in vivo of the antihuman immunodeficiency virus bicyclam SDZ SID 791 (JM 3100), an inhibitor of infectious cell entry, Antimicrob Agents Chemother 40: 750–4

    PubMed  CAS  Google Scholar 

  • De Clercq, E, Yamamoto, N, Pauwels, R, Balzarini, J, Witvrouw, M, De Vreese, K, Debyser, Z, Rosenwirth, B, Peichl, P, Datema, R, et al. (1994) Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100, Antimicrob Agents Chemother 38: 668–674

    PubMed  Google Scholar 

  • Deen, KC, McDougal, JS, Inacker, R, Folena-Wasserman, G, Arthos, J, Rosenberg, J, Maddon, PJ, Axel, R, and Sweet, RW (1988) A soluble form of CD4 (T4) protein inhibits AIDS virus infection, Nature 331: 82–84

    PubMed  CAS  Google Scholar 

  • Delwart, EL, Mosialos, G, and Gilmore, T (1990) Retroviral envelope glycoproteins contain a “leucine zipper”-like repeat, AIDS Res Hum Retroviruses 6: 703–6

    PubMed  CAS  Google Scholar 

  • Deng, H, Liu, R, Ellmeier, W, Choe, S, Unutmaz, D, Burkhart, M, Di Marzio, P, Marmon, S, Sutton, RE, Hill, CM, et al. (1996) Identification of a major co-receptor for primary isolates of HIV-1, Nature 381:661–666

    PubMed  CAS  Google Scholar 

  • Derdeyn, CA, Decker, JM, Sfakianos, JN, Wu, X, O’Brien, WA, Ratner, L, Kappes, JC, Shaw, GM, and Hunter, E (2000) Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120, J Virol 74: 8358–67

    PubMed  CAS  Google Scholar 

  • Derdeyn, CA, Decker, JM, Sfakianos, JN, Zhang, Z, O’Brien, WA, Ratner, L, Shaw, GM, and Hunter, E (2001) Sensitivity of human immunodeficiency virus type 1 to fusion inhibitors targeted to the gp41 first heptad repeat involves distinct regions of gp41 and is consistently modulated by gp120 interactions with the coreceptor, J Virol 75: 8605–14

    PubMed  CAS  Google Scholar 

  • Doms, RW (2000) Beyond receptor expression: the influence of receptor conformation, density, and affinity in HIV-1 infection, Virology 276: 229–237

    PubMed  CAS  Google Scholar 

  • Doms, RW, and Peiper, SC (1997) Unwelcomed guests with master keys: how HIV uses chemokine receptors for cellular entry, Virology 235: 179–90

    PubMed  CAS  Google Scholar 

  • Donzella, GA, Schols, D, Lin, SW, Este, JA, Nagashima, KA, Maddon, PJ, Allaway, GP, Sakmar, TP, Henson, G, De Clercq, E, and Moore, JP (1998) AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor, Nat Med 4: 72–77

    PubMed  CAS  Google Scholar 

  • Doranz, BJ, Filion, LG, Diaz-Mitoma, F, Sitar, DS, Sahai, J, Baribaud, F, Orsini, MJ, Benovic, JL, Cameron, W, and Doms, RW (2001) Safe use of the CXCR4 inhibitor ALX40-4C in humans, AIDS Res Hum Retroviruses 17: 475–486

    PubMed  CAS  Google Scholar 

  • Doranz, BJ, Grovit-Ferbas, K, Sharron, MP, Mao, SH, Goetz, MB, Daar, ES, Doms, RW, and O’Brien, WA (1997) A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor, J Exp Med 186: 1395–1400

    PubMed  CAS  Google Scholar 

  • Doranz, BJ, Rucker, J, Yi, Y, Smyth, RJ, Samson, M, Peiper, SC, Parmentier, M, Collman, RG, and Doms, RW (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors, Cell 85: 1149–1158

    PubMed  CAS  Google Scholar 

  • Dragic, T, Litwin, V, Allaway, GP, Martin, SR, Huang, Y, Nagashima, KA, Cayanan, C, Maddon, PJ, Koup, RA, Moore, JP, and Paxton, WA (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5, Nature 381: 667–673

    PubMed  CAS  Google Scholar 

  • Dragic, T, Trkola, A, Thompson, DA, Cormier, EG, Kajumo, FA, Maxwell, E, Lin, SW, Ying, W, Smith, SO, Sakmar, TP, and Moore, JP (2000) A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5, Proc Natl Acad Sci USA 97: 5639–5644

    PubMed  CAS  Google Scholar 

  • Dumonceaux, J, Nisole, S, Chanel, C, Quivet, L, Amara, A, Baleux, F, Briand, P, and Hazan, U (1998) Spontaneous mutations in the env gene of the human immunodeficiency virus type 1 NDK isolate are associated with a CD4-independent entry phenotype, J Virol 72: 512–519

    PubMed  CAS  Google Scholar 

  • Eckert, DM, Malashkevich, VN, Hong, LH, Carr, PA, and Kim, PS (1999) Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket, Cell 99: 103–15

    PubMed  CAS  Google Scholar 

  • Edinger, AL, Mankowski, JL, Doranz, BJ, Margulies, BJ, Lee, B, Rucker, J, Sharron, M, Hoffman, TL, Berson, JF, Zink, MC, et al. (1997) CD4-independent, CCR5-dependent infection of brain capillary endothelial cells by a neurovirulent simian immunodeficiency virus strain, Proc Natl Acad Sci USA 94: 14742–14747

    PubMed  CAS  Google Scholar 

  • Edwards, TG, Hoffman, TL, Baribaud, F, Wyss, S, LaBranche, CC, Romano, J, Adkinson, J, Sharron, M, Hoxie, JA, and Doms, RW (2001) Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus type 1 envelope protein, J Virol 75: 5230–5239

    PubMed  CAS  Google Scholar 

  • Endres, MJ, Clapham, PR, Marsh, M, Ahuja, M, Turner, JD, McKnight, A, Thomas, JF, Stoebenau-Haggarty, B, Choe, S, Vance, PJ, et al. (1996) CD4-independent infection by HIV-2 is mediated by fusin/CXCR4, Cell 87: 745–756

    PubMed  CAS  Google Scholar 

  • Este, JA, Cabrera, C, Blanco, J, Gutierrez, A, Bridger, G, Henson, G, Clotet, B, Schols, D, and De Clercq, E (1999) Shift of clinical human immunodeficiency virus type 1 isolates from X4 to R5 and prevention of emergence of the syncytium-inducing phenotype by blockade of CXCR4, J Virol 73: 5577–85

    PubMed  CAS  Google Scholar 

  • Fass, D, and Kim, PS (1995) Dissection of a retrovirus envelope protein reveals structural similarity to influenza hemagglutinin, Curr Biol 5: 1377–83

    PubMed  CAS  Google Scholar 

  • Feinberg, H, Mitchell, DA, Drickamer, K, and Weis, WI (2001) Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR, Science 294: 2163–6

    PubMed  CAS  Google Scholar 

  • Feng, Y, Broder, CC, Kennedy, PE, and Berger, EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor, Science 272: 872–877

    PubMed  CAS  Google Scholar 

  • Fisher, RA, Bertonis, JM, Meier, W, Johnson, VA, Costopoulos, DS, Liu, T, Tizard, R, Walker, BD, Hirsch, MS, Schooley, RT, and Flavell, RA (1988) HIV infection is blocked in vitro by recombinant soluble CD4, Nature 331: 76–78

    PubMed  CAS  Google Scholar 

  • Frank, I, Piatak, M, Jr., Stoessel, H, Romani, N, Bonnyay, D, Lifson, JD, and Pope, M (2002) Infectious and whole inactivated simian immunodeficiency viruses interact similarly with primate dendritic cells (DCs): differential intracellular fate of virions in mature and immature DCs, J Virol 76: 2936–51

    PubMed  CAS  Google Scholar 

  • Frey, S, Marsh, M, Gunther, S, Pelchen-Matthews, A, Stephens, P, Ortlepp, S, and Stegmann, T (1995) Temperature dependence of cell-cell fusion induced by the envelope glycoprotein of human immunodeficiency virus type I, J Virol 69: 1462–1472

    PubMed  CAS  Google Scholar 

  • Furuta, RA, Wild, CT, Weng, Y, and Weiss, CD (1998) Capture of an early fusion-active conformation of HIV-1 gp41, Nat Struct Biol 5: 276–9

    PubMed  CAS  Google Scholar 

  • Gallaher, WR, Ball, JM, Garry, RF, Griffin, MC, and Montelaro, RC (1989) A general model for the transmembrane proteins of HIV and other retroviruses, AIDS Res Hum Retroviruses 5: 431–440

    PubMed  CAS  Google Scholar 

  • Gallo, SA, Puri, A, and Blumenthal, R (2001) HIV-1 gp41 six-helix bundle formation occurs rapidly after the engagement of gp120 by CXCR4 in the HIV-1 Env-mediated fusion process, Biochemistry (Mosc) 40: 12231–6

    CAS  Google Scholar 

  • Gauduin, MC, Allaway, GP, Maddon, PJ, Barbas, CF 3rd, Burton, DR, and Koup, RA (1996) Effective ex vivo neutralization of human immunodeficiency virus type 1 in plasma by recombinant immunoglobulin molecules, J Virol 70: 2586–92

    PubMed  CAS  Google Scholar 

  • Gauduin, MC, Allaway, GP, Olson, WC, Weir, R, Maddon, PJ, and Koup, RA (1998) CD4-immunoglobulin G2 protects Hu-PBL-SCID mice against challenge by primary human immunodeficiency virus type 1 isolates, J Virol 72: 3475–8

    PubMed  CAS  Google Scholar 

  • Geijtenbeek, TB, Kwon, DS, Torensma, R, van Vliet, SJ, van Duijnhoven, GC, Middel, J, Cornelissen, IL, Nottet, HS, KewalRamani, VN, Littman, DR, et al. (2000a) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells, Cell 100: 587–597

    PubMed  CAS  Google Scholar 

  • Geijtenbeek, TB, Torensma, R, van Vliet, SJ, van Duijnhoven, GC, Adema, GJ, van Kooyk, Y, and Figdor, CG (2000b) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses, Cell 100: 575–585

    PubMed  CAS  Google Scholar 

  • Gulick, RM, Mellors, JW, Havlir, D, Eron, JJ, Gonzalez, C, McMahon, D, Richman, DD, Valentine, FT, Jonas, L, Meibohm, A, et al. (1997) Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy, N Engl J Med 337: 734–9

    PubMed  CAS  Google Scholar 

  • Hammer, SM, Squires, KE, Hughes, MD, Grimes, JM, Demeter, LM, Currier, JS, Eron, JJ, Jr., Feinberg, JE, Balfour, HH, Jr., Deyton, LR, et al. (1997) A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team, N Engl J Med 337: 725–33

    PubMed  CAS  Google Scholar 

  • Hendrix C., AC, M. Lederman, R. Pollard, S. Brown, M. Glesby, C. Flexner, G. Bridger, K. Badel, R. MacFarland, G. Henson, and G. Calandra, the AMD-3100 HIV Study Group (2002) AMD-3100 CXXCR4 Receptor Blocker Fails to Reduce HIV Viral Load by >1 Log following 10-Day Continuous Infusion. Paper presented at: 9th Conference on Retroviruses and Opportunistic Infections

    Google Scholar 

  • Hladik, F, Lentz, G, Akridge, RE, Peterson, G, Kelley, H, McElroy, A, and McElrath, MJ (1999) Dendritic cell-T-cell interactions support coreceptor-independent human immunodeficiency virus type 1 transmission in the human genital tract, J Virol 73: 5833–42

    PubMed  CAS  Google Scholar 

  • Hoffman, TL, LaBranche, CC, Zhang, W, Canziani, G, Robinson, J, Chaiken, I, Hoxie, JA, and Doms, RW (1999) Stable exposure of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein, Proc Natl Acad Sci USA 96: 6359–6364

    PubMed  CAS  Google Scholar 

  • Hussey, RE, Richardson, NE, Kowalski, M, Brown, NR, Chang, HC, Siliciano, RF, Dorfman, T, Walker, B, Sodroski, J, and Reinherz, EL (1988) A soluble CD4 protein selectively inhibits HIV replication and syncytium formation, Nature 331: 78–81

    PubMed  CAS  Google Scholar 

  • Jacobson, JM, Lowy, I, Fletcher, CV, O’Neill, TJ, Tran, DN, Ketas, TJ, Trkola, A, Klotman, ME, Maddon, PJ, Olson, WC, and Israel, RJ (2000) Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults, J Infect Dis 182: 326–9

    PubMed  CAS  Google Scholar 

  • Kilby, JM, Hopkins, S, Venetta, TM, DiMassimo, B, Cloud, GA, Lee, JY, Alldredge, L, Hunter, E, Lambert, D, Bolognesi, D, et al. (1998) Potent suppression of HIV-1 replication in humans by T-20, a pep tide inhibitor of gp41-mediated virus entry, Nat Med 4: 1302–1307

    PubMed  CAS  Google Scholar 

  • Klatzmann, D, Champagne, E, Chamaret, S, Gruest, J, Guetard, D, Hercend, T, Gluckman, JC, and Montagnier, L (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV, Nature 312: 767–768

    PubMed  CAS  Google Scholar 

  • Kozak, SL, Heard, JM, and Kabat, D (2002) Segregation of CD4 and CXCR4 into distinct lipid microdomains in T lymphocytes suggests a mechanism for membrane destabilization by human immunodeficiency virus, J Virol 76: 1802–15

    PubMed  CAS  Google Scholar 

  • Kuhmann, SE, Platt, EJ, Kozak, SL, and Kabat, D (2000) Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1, J Virol 74: 7005–15

    PubMed  CAS  Google Scholar 

  • Kwon, DS, Gregorio, G, Bitton, N, Hendrickson, WA, and Littman, DR (2002) DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection, Immunity 16: 135–44

    PubMed  CAS  Google Scholar 

  • Kwong, PD, Wyatt, R, Robinson, J, Sweet, RW, Sodroski, J, and Hendrickson, WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody, Nature 393: 648–659

    PubMed  CAS  Google Scholar 

  • LaBranche, CC, Galasso, G, Moore, JP, Bolognesi, DP, Hirsch, MS, and Hammer, SM (2001) HIV fusion and its inhibition, Antiviral Res 50: 95–115

    PubMed  CAS  Google Scholar 

  • Lambert, DM, Barney, S, Lambert, AL, Guthrie, K, Medinas, R, Davis, DE, Bucy, T, Erickson, J, Merutka, G, and Petteway, SR Jr. (1996) Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion, Proc Natl Acad Sci U S A 93: 2186–91

    PubMed  CAS  Google Scholar 

  • Layne, SP, Merges, MJ, Dembo, M, Spouge, JL, and Nara, PL (1990) HIV requires multiple gp120 molecules for CD4-mediated infection, Nature 346: 277–279

    PubMed  CAS  Google Scholar 

  • Lee, B, Leslie, G, Soilleux, E, O’Doherty, U, Baik, S, Levroney, E, Flummerfelt, K, Swiggard, W, Coleman, N, Malim, M, and Doms, RW (2001) cis Expression of DC-SIGN allows for more efficient entry of human and simian immunodeficiency viruses via CD4 and a coreceptor, J Virol 75: 12028–38

    PubMed  CAS  Google Scholar 

  • Lee, B, Sharron, M, Montaner, LJ, Weissman, D, and Doms, RW (1999) Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages, Proc Natl Acad Sci USA 96: 5215–5220

    PubMed  CAS  Google Scholar 

  • Little, SJ, Daar, ES, D’Aquila, RT, Keiser, PH, Connick, E, Whitcomb, JM, Hellmann, NS, Petropoulos, CJ, Sutton, L, Pitt, JA, et al. (1999) Reduced antiretroviral drug susceptibility among patients with primary HIV infection, JAMA 282: 1142–9

    PubMed  CAS  Google Scholar 

  • Liu, R, Paxton, WA, Choe, S, Ceradini, D, Martin, SR, Horuk, R, MacDonald, ME, Stuhlmann, H, Koup, RA, and Landau, NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection, Cell 86: 367–377

    PubMed  CAS  Google Scholar 

  • Lu, M, Blacklow, SC, and Kim, PS (1995) A trimeric structural domain of the HIV-1 transmembrane glycoprotein, Nat Struct Biol 2: 1075–1082

    PubMed  CAS  Google Scholar 

  • Maddon, PJ, Dalgleish, AG, McDougal, JS, Clapham, PR, Weiss, RA, and Axel, R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain, Cell 47: 333–348

    PubMed  CAS  Google Scholar 

  • Maeda, K, Yoshimura, K, Shibayama, S, Habashita, H, Tada, H, Sagawa, K, Miyakawa, T, Aoki, M, Fukushima, D, and Mitsuya, H (2001) Novel low molecular weight spirodiketopiperazine derivatives potently inhibit R5 HIV-1 infection through their antagonistic effects on CCR5, J Biol Chem 276: 35194–200

    PubMed  CAS  Google Scholar 

  • Manes, S, del Real, G, Lacalle, RA, Lucas, P, Gomez-Mouton, C, Sanchez-Palomino, S, Delgado, R, Alcami, J, Mira, E, and Martinez, AC (2000) Membrane raft microdomains mediate lateral assemblies required for HIV-1 infection, EMBO Rep 1: 190–6

    PubMed  CAS  Google Scholar 

  • McDougal, JS, Kennedy, MS, Sligh, JM, Cort, SP, Mawle, A, and Nicholson, JK (1986) Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110 K viral protein and the T4 molecule, Science 231: 382–385

    PubMed  CAS  Google Scholar 

  • Melikyan, GB, Markosyan, RM, Hemmati, H, Delmedico, MK, Lambert, DM, and Cohen, FS (2000) Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion, J Cell Biol 151: 413–423

    PubMed  CAS  Google Scholar 

  • Mitchell, DA, Fadden, AJ, and Drickamer, K (2001) A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands, J Biol Chem 276: 28939–45

    PubMed  CAS  Google Scholar 

  • Mizukami, T, Fuerst, TR, Berger, EA, and Moss, B (1988) Binding region for human immunodeficiency virus (HIV) and epitopes for HIV-blocking monoclonal antibodies of the CD4 molecule defined by site-directed mutagenesis, Proc Natl Acad Sci U S A 85: 9273–7

    PubMed  CAS  Google Scholar 

  • Mizuochi, T, Matthews, TJ, Kato, M, Hamako, J, Titani, K, Solomon, J, and Feizi, T (1990) Diversity of oligosaccharide structures on the envelope glycoprotein gp120 of human immunodeficiency virus 1 from the lymphoblastoid cell line H9. Presence of complex-type oligosaccharides with bisecting N-acetylglucosamine residues, J Biol Chem 265: 8519–24

    PubMed  CAS  Google Scholar 

  • Moore, JP, Burkly, LC, Connor, RI, Cao, Y, Tizard, R, Ho, DD, and Fisher, RA (1993) Adaptation of two primary human immunodeficiency virus type 1 isolates to growth in transformed T cell lines correlates with alterations in the responses of their envelope glycoproteins to soluble CD4, AIDS Res Hum Retroviruses 9: 529–539

    PubMed  CAS  Google Scholar 

  • Mosier, DE, Picchio, GR, Gulizia, RJ, Sabbe, R, Poignard, P, Picard, L, Offord, RE, Thompson, DA, and Wilken, J (1999) Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants, J Virol 73: 3544–50

    PubMed  CAS  Google Scholar 

  • Munoz-Barroso, I, Durell, S, Sakaguchi, K, Appella, E, and Blumenthal, R (1998) Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41, J Cell Biol 140: 315–323

    PubMed  CAS  Google Scholar 

  • Murakami, T, Nakajima, T, Koyanagi, Y, Tachibana, K, Fujii, N, Tamamura, H, Yoshida, N, Waki, M, Matsumoto, A, Yoshie, O, et al. (1997) A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection, J Exp Med 186: 1389–1393

    PubMed  CAS  Google Scholar 

  • Myszka, DG, Sweet, RW, Hensley, P, Brigham-Burke, M, Kwong, PD, Hendrickson, WA, Wyatt, R, Sodroski, J, and Doyle, ML (2000) Energetics of the HIV gp120-CD4 binding reaction, Proc Natl Acad Sci U S A 97: 9026–31

    PubMed  CAS  Google Scholar 

  • Nagasawa, T, Hirota, S, Tachibana, K, Takakura, N, Nishikawa, S, Kitamura, Y, Yoshida, N, Kikutani, H, and Kishimoto, T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1, Nature 382: 635–638

    PubMed  CAS  Google Scholar 

  • Nakashima, H, Masuda, M, Murakami, T, Koyanagi, Y, Matsumoto, A, Fujii, N, and Yamamoto, N (1992) Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-7]polyphemusin II): a possible inhibitor of virus-cell fusion, Antimicrob Agents Chemother 36: 1249–55

    PubMed  CAS  Google Scholar 

  • Peterson, A, and Seed, B (1988) Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4, Cell 54: 65–72

    PubMed  CAS  Google Scholar 

  • Platt, EJ, Kuhmann, SE, Rose, PP, and Kabat, D (2001) Adaptive mutations in the V3 loop of gp120 enhance fusogenicity of human immunodeficiency virus type 1 and enable use of a CCR5 coreceptor that lacks the amino-terminal sulfated region, J Virol 75: 12266–78

    PubMed  CAS  Google Scholar 

  • Pohlmann, S, Baribaud, F, and Doms, RW (2001a) DC-SIGN and DC-SIGNR: helping hands for HIV, Trends Immunol 22: 643–646

    PubMed  CAS  Google Scholar 

  • Pohlmann, S, Baribaud, F, Lee, B, Leslie, GJ, Sanchez, MD, Hiebenthal-Millow, K, Munch, J, Kirchhoff, F, and Doms, RW (2001b) DC-SIGN interactions with human immunodeficiency virus type 1 and 2 and simian immunodeficiency virus, J Virol 75: 4664–4672

    PubMed  CAS  Google Scholar 

  • Pohlmann, S, Leslie, GJ, Edwards, TG, Macfarlan, T, Reeves, JD, Hiebenthal-Millow, K, Kirchhoff, F, Baribaud, F, and Doms, RW (2001c) DC-SIGN interactions with human immunodeficiency virus: virus binding and transfer are dissociable functions, J Virol 75: 10523–10526

    PubMed  CAS  Google Scholar 

  • Pohlmann, S, Soilleux, EJ, Baribaud, F, Leslie, GJ, Morris, LS, Trowsdale, J, Lee, B, Coleman, N, and Doms, RW (2001d) DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans, Proc Natl Acad Sci U S A 98: 2670–2675

    PubMed  CAS  Google Scholar 

  • Poignard, P, Saphire, EO, Parren, PW, and Burton, DR (2001) gp120: Biologic aspects of structural features, Annu Rev Immunol 19: 253–74

    PubMed  CAS  Google Scholar 

  • Rabin, RL, Park, MK, Liao, F, Swofford, R, Stephany, D, and Farber, JM (1999) Chemokine receptor responses on T cells are achieved through regulation of both receptor expression and signaling, J Immunol 162: 3840–50

    PubMed  CAS  Google Scholar 

  • Reeves, JD, Gallo, SA, Ahmad, N, Miamidian, JL, Harvey, PE, Sharron, M, Pohlmann, S, Sfakianos, JN, Derdeyn, CA, Blumenthal, R, et al. (2002) Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics, Proc Natl Acad Sci U S A 99: 16249–16254

    PubMed  CAS  Google Scholar 

  • Reeves, JD, Hibbitts, S, Simmons, G, McKnight, Azevedo-Pereira, JM, Moniz-Pereira, J, and Clapham, PR (1999) Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: Comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo, J Virol 73: 7795–7804

    PubMed  CAS  Google Scholar 

  • Reeves, JD, McKnight, A, Potempa, S, Simmons, G, Gray, PW, Power, CA, Wells, T, Weiss, RA, and Talbot, SJ (1997) CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry, Virology 231: 130–134

    PubMed  CAS  Google Scholar 

  • Reeves, JD, and Schulz, TF (1997) The CD4-independent tropism of human immunodeficiency virus type 2 involves several regions of the envelope protein and correlates with a reduced activation threshold for envelope-mediated fusion, J Virol 71: 1453–1465

    PubMed  CAS  Google Scholar 

  • Richman, DD (2001) HIV chemotherapy, Nature 410: 995–1001

    PubMed  CAS  Google Scholar 

  • Rimsky, LT, Shugars, DC, and Matthews, TJ (1998) Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides, J Virol 72: 986–993

    PubMed  CAS  Google Scholar 

  • Rizzuto, CD, Wyatt, R, Hernandez-Ramos, N, Sun, Y, Kwong, PD, Hendrickson, WA, and Sodroski, J (1998) A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding, Science 280: 1949–1953

    PubMed  CAS  Google Scholar 

  • Root, MJ, Kay, MS, and Kim, PS (2001) Protein design of an HIV-1 entry inhibitor, Science 291: 884–8

    PubMed  CAS  Google Scholar 

  • Safrin, S, and Grunfeld, C (1999) Fat distribution and metabolic changes in patients with HIV infection, AIDS 13: 2493–505

    PubMed  CAS  Google Scholar 

  • Samson, M, Libert, F, Doranz, BJ, Rucker, J, Liesnard, C, Farber, CM, Saragosti, S, Lapoumeroulie, C, Cognaux, J, Forceille, C, et al. (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene, Nature 382: 722–725

    PubMed  CAS  Google Scholar 

  • Sattentau, QJ, and Moore, JP (1991) Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding, J Exp Med 174:407–415

    PubMed  CAS  Google Scholar 

  • Sattentau, QJ, and Moore, JP (1995) Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer, J Exp Med 182: 185–196

    PubMed  CAS  Google Scholar 

  • Schols, D, S. Claes, E. De Clercq, C. Hendrix, G. Bridger, G. Calandra, G.W. Henson, S. Fransen, W. Huang, J.M. Whitcomb, C.J. Petropoulos, and AMD-3100 HIV Study Group (2002) AMD-3100, a CXCR4 Antagonist, Reduced HIV VIral Load and X4 Levels in Humans. Paper presented at: 9th Conference on Retroviruses and Opportunistic Infections

    Google Scholar 

  • Schols, D, Struyf, S, Van Damme, J, Este, JA, Henson, G, and De Clercq, E (1997) Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4, J Exp Med 186: 1383–1388

    PubMed  CAS  Google Scholar 

  • Shearer, WT, Israel, RJ, Starr, S, Fletcher, CV, Wara, D, Rathore, M, Church, J, DeVille, J, Fenton, T, Graham, B, et al. (2000) Recombinant CD4-IgG2 in human immunodeficiency virus type 1-infected children: phase 1/2 study. The Pediatric AIDS Clinical Trials Group Protocol 351 Study Team, J Infect Dis 182: 1774–9

    PubMed  CAS  Google Scholar 

  • Smith, DH, Byrn, RA, Marsters, SA, Gregory, T, Groopman, JE, and Capon, DJ (1987) Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen, Science 238: 1704–1707

    PubMed  CAS  Google Scholar 

  • Steinman, RM (2000) DC-SIGN: a guide to some mysteries of dendritic cells, Cell 100: 491–4

    PubMed  CAS  Google Scholar 

  • Strizki, JM, Xu, S, Wagner, NE, Wojcik, L, Liu, J, Hou, Y, Endres, M, Palani, A, Shapiro, S, Clader, JW, et al. (2001) SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo, Proc Natl Acad Sci U S A 98: 12718–23

    PubMed  CAS  Google Scholar 

  • Tachibana, K, Hirota, S, Iizasa, H, Yoshida, H, Kawabata, K, Kataoka, Y, Kitamura, Y, Matsushima, K, Yoshida, N, Nishikawa, S, et al. (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract, Nature 393: 591–594

    PubMed  CAS  Google Scholar 

  • Tamamura, H, Xu, Y, Hattori, T, Zhang, X, Arakaki, R, Kanbara, K, Omagari, A, Otaka, A, Ibuka, T, Yamamoto, N, et al. (1998) A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140, Biochem Biophys Res Commun 253: 877–82

    PubMed  CAS  Google Scholar 

  • Traunecker, A, Luke, W, and Karjalainen, K (1988) Soluble CD4 molecules neutralize human immunodeficiency virus type 1, Nature 331: 84–86

    PubMed  CAS  Google Scholar 

  • Tremblay, MJ, Fortin, JF, and Cantin, R (1998) The acquisition of host-encoded proteins by nascent HIV-1, Immunol Today 19: 346–51

    PubMed  CAS  Google Scholar 

  • Trkola, A, Kuhmann, SE, Strizki, JM, Maxwell, E, Ketas, T, Morgan, T, Pugach, P, Xu, S, Wojcik, L, Tagat, J, et al. (2002) HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use, Proc Natl Acad Sci USA 99: 395–400

    PubMed  CAS  Google Scholar 

  • Trkola, A, Pomales, AB, Yuan, H, Korber, B, Maddon, PJ, Allaway, GP, Katinger, H, Barbas, CF, 3rd, Burton, DR, Ho, DD, et al. (1995) Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG, J Virol 69: 6609–17

    PubMed  CAS  Google Scholar 

  • Turville, SG, Arthos, J, Donald, KM, Lynch, G, Naif, H, Clark, G, Hart, D, and Cunningham, AL (2001) HIV gp120 receptors on human dendritic cells, Blood 98: 2482–8

    PubMed  CAS  Google Scholar 

  • Watanabe, S, Takada, A, Watanabe, T, Ito, H, Kida, H, and Kawaoka, Y (2000) Functional importance of the coiled-coil of the Ebola virus glycoprotein, J Virol 74: 10194–201

    PubMed  CAS  Google Scholar 

  • Weiss, CD, Barnett, SW, Cacalano, N, Killeen, N, Littman, DR, and White, JM (1996) Studies of HIV-1 envelope glycoprotein-mediated fusion using a simple fluorescence assay, AIDS 10: 241–6

    PubMed  CAS  Google Scholar 

  • Weissenhorn, W, Calder, LJ, Wharton, SA, Skehel, JJ, and Wiley, DC (1998) The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil, Proc Natl Acad Sci USA 95: 6032–6

    PubMed  CAS  Google Scholar 

  • Weissenhorn, W, Dessen, A, Calder, LJ, Harrison, SC, Skehel, JJ, and Wiley, DC (1999) Structural basis for membrane fusion by enveloped viruses, Mol Membr Biol 16: 3–9

    PubMed  CAS  Google Scholar 

  • Weissenhorn, W, Dessen, A, Harrison, SC, Skehel, JJ, and Wiley, DC (1997) Atomic structure of the ectodomain from HIV-1 gp41, Nature 387: 426–430

    PubMed  CAS  Google Scholar 

  • Wild, C, Greenwell, T, and Matthews, T (1993) A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion, AIDS Res Hum Retroviruses 9: 1051–1053

    PubMed  CAS  Google Scholar 

  • Wild, C, Oas, T, McDanal, C, Bolognesi, D, and Matthews, T (1992) A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition, Proc Natl Acad Sci USA 89: 10537–10541

    PubMed  CAS  Google Scholar 

  • Wu, L, Bashirova, AA, Martin, TD, Villamide, L, Mehlhop, E, Chertov, AO, Unutmaz, D, Pope, M, Carrington, M, and KewalRamani, VN (2002) Rhesus macaque dendritic cells efficiently transmit primate lentiviruses independently of DC-SIGN, Proc Natl Acad Sci USA 99: 1568–73

    PubMed  CAS  Google Scholar 

  • Yerly, S, Kaiser, L, Race, E, Bru, JP, Clavel, F, and Perrin, L (1999) Transmission of antiretroviral-drug-resistant HIV-1 variants, Lancet 354: 729–33

    PubMed  CAS  Google Scholar 

  • Zhang, Y, Lou, B, Lal, RB, Gettie, A, Marx, PA, and Moore, JP (2000) Use of inhibitors to evaluate coreceptor usage by simian and simian/human immunodeficiency viruses and human immunodeficiency virus type 2 in primary cells, J Virol 74: 6893–6910

    PubMed  CAS  Google Scholar 

  • Zhu, P, Olson, WC, and Roux, KH (2001) Structural flexibility and functional valence of CD4-IgG2 (PRO 542): potential for cross-linking human immunodeficiency virus type 1 envelope spikes, J Virol 75: 6682–6

    PubMed  CAS  Google Scholar 

  • Zou, YR, Kottmann, AH, Kuroda, M, Taniuchi, I, and Littman, DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development, Nature 393: 595–599

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pierson, T.C., Doms, R.W. (2003). HIV-1 Entry and Its Inhibition. In: Young, J.A.T. (eds) Cellular Factors Involved in Early Steps of Retroviral Replication. Current Topics in Microbiology and Immunology, vol 281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19012-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19012-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62405-6

  • Online ISBN: 978-3-642-19012-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics