Skip to main content

Relativistic Laser Plasmas for Electron Acceleration and Short Wavelength Radiation Generation

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science VII

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 100))

  • 639 Accesses

Abstract

We consider here a few options to use relativistic laser plasmas for novel sources of short wavelength radiation. Electrons accelerated in underdense plasmas in the bubble regime wiggle in an ion channel. This leads to broadband incoherent synchrotron-like radiation bursts, which are of femtosecond duration. The photon energies are in kilo electron volt (keV) to mega electron volt (MeV) energy range; however, this radiation is not coherent. To reach coherency, the electron bunch must have structure at the wavelength of the emitted x-rays. This can be achieved, in principle, by sending the laser-accelerated electron bunch through an external wiggler. However, to reach free electron lasing in the x-ray regime, the energy spread of the laser-accelerated electrons must be reduced dramatically. Another option is to use high harmonic generation at overdense plasma boundaries. The laser-driven plasma surface oscillates at relativistic velocities and severely alters the frequency of the reflected laser light. The high harmonics are emitted in coherent subfemtosecond flashes. The theory of harmonics generation in the relativistic regime predicts a power law energy spectrum with an exponent \(-8/3\). However, for short laser pulses and high intensities, the electrons self-organize in nanobunches that lead to coherent12pc]First author has been considered as corresponding author. Please check. synchrotron emission. The power law harmonic spectrum can become very flat in this case with the exponent as low as \(-6/5\). This can make the high harmonics potentially the brightest laser-driven short wavelength sources with unique properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Pukhov, Z. M. Sheng, J. Meyer-ter-Vehn, Phys. Plasmas. 6, 2847 (1999)

    ADS  Google Scholar 

  2. A. Pukhov, J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002)

    ADS  Google Scholar 

  3. S.P.D. Mangles et al., Nature 431, 535 (2004)

    ADS  Google Scholar 

  4. C.G.R. Gedder, et al., Nature 431, 538 (2004)

    ADS  Google Scholar 

  5. J. Faure et al., Nature 431, 541 (2004)

    ADS  Google Scholar 

  6. S. Gordienko, A. Pukhov, Phys. Plasmas. 12, 043109 (2005)

    ADS  Google Scholar 

  7. S. Kiselev, A. Pukhov, I. Kostyukov, Phys. Rev. Lett. 93, 135004 (2004)

    ADS  Google Scholar 

  8. A. Rousse, K.T. Phuoc, R. Shah et al., Phys. Rev. Lett 93, 135005 (2005)

    ADS  Google Scholar 

  9. S.P.D. Mangles, G. Genoud, S. Kneip et al., Appl. Phys. Lett. 95, 181106 (2009)

    ADS  Google Scholar 

  10. S. Kneip et al., A Bright Spatially-Coherent Compact X-ray Synchrotron Source arXiv:0912.1812v1 (2010)

    Google Scholar 

  11. F.Gruner et al., Appl. Phys. B 86, 431 (2007)

    ADS  Google Scholar 

  12. J. Meyer-ter-Vehn, H.C. Wu, Eur. Phys. J. D 55, 433 (2009)

    ADS  Google Scholar 

  13. T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E 74, 046404 (2006)

    ADS  Google Scholar 

  14. B. Dromey, S. Kar, C. Bellei et al., Phys. Rev. Lett. 99, 085001 (2007)

    ADS  Google Scholar 

  15. D. an der Brugge, A. Pukhov, Phys. Plasmas. 17, 033110 (2010)

    ADS  Google Scholar 

  16. I. Kostyukov, A. Pukhov, S. Kiselev, Phys. Plasmas. 11, 5256 (2004)

    ADS  Google Scholar 

  17. I. Kostyukov, E. Nerush, A. Pukhov et al., New J. Phys. 12, 045009 (2010)

    ADS  Google Scholar 

  18. I. Kostyukov, E. Nerush, A. Pukhov, et al. Phys. Rev. Lett. 103, 175003 (2009)

    ADS  Google Scholar 

  19. S. Kalmykov, et al., Phys. Rev. Lett. 103, 135004 (2009)

    ADS  Google Scholar 

  20. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  21. S. Kohlweyer et al., Opt. Commun. 117, 431 (1995)

    ADS  Google Scholar 

  22. D. von der Linde et al., Phys. Rev. A 52, R25 (1995)

    ADS  Google Scholar 

  23. P.A. Norreys et al., Phys. Rev. Lett 76, 1832 (1996)

    ADS  Google Scholar 

  24. M. Zepf, G.D. Tsakiris et al., Phys. Rev. E 58, R5253 (1998)

    ADS  Google Scholar 

  25. U. Teubner et al., Phys. Rev. A 01381 (2003)

    Google Scholar 

  26. I. Watts et al., Phys. Rev. Lett. 88, 155001-1 (2002)

    ADS  Google Scholar 

  27. K. Eidmann et al., Phys. Rev. E 72, 036413 (2005)

    ADS  Google Scholar 

  28. B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M.S. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, P. Norreys, Nature Phys. 2, 456 (2006)

    ADS  Google Scholar 

  29. B. Dromey, D. Adams, R. Horlein, Y. Nomura, S.G. Rykovanov, D.C. Carroll, P.S. Foster, S. Kar, K. Markey, P. McKenna, D. Neely, M. Geissler, G.D. Tsakiris, M. Zepf, Nature Phys. 5, 146 (2009)

    ADS  Google Scholar 

  30. C. Thaury, F. Quere, J.P. Geindre et al., Nature Phys. 3, 424 (2007)

    ADS  Google Scholar 

  31. C. Thaury, H. George, F. Quere et al., Nature Phys. 4, 631 (2008)

    ADS  Google Scholar 

  32. S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Phys. Rev. Lett. 93, 115002 (2004)

    ADS  Google Scholar 

  33. G.D. Tsakiris et al., New J. Phys. 8, 19 (2006)

    ADS  Google Scholar 

  34. B. Dromey, M. Zepf, A. Gopal et al., Nature Phys. 2, 456 (2006)

    ADS  Google Scholar 

  35. A. Pukhov, Nature Phys. 2, 439 (2006)

    ADS  Google Scholar 

  36. A. Bourdier, Phys. Fluid. 26, 1804 (1983)

    ADS  Google Scholar 

  37. D. An der Brügge, A. Pukhov, Phys. Plasma. 14, 093104 (2007)

    ADS  Google Scholar 

  38. R. Kienberger, F. Krausz, Topics Appl. Phys. 95, 343 (2004)

    Google Scholar 

  39. E. Goulielmakis et al., Science 305, 1267 (2004)

    ADS  Google Scholar 

  40. R. Kienberger et al., Nature 427, 817 (2004)

    ADS  Google Scholar 

  41. J. Itatani et al., Nature 432, 867 (2004)

    ADS  Google Scholar 

  42. H. Niikura et al., Nature 417 917 (2002)

    ADS  Google Scholar 

  43. R.L. Carman et al., Phys. Rev. Lett. 46, 29 (1981)

    ADS  Google Scholar 

  44. B. Bezzerides et al., Phys. Rev. Lett. 49, 202 (1982)

    ADS  Google Scholar 

  45. S.V. Bulanov et al., Phys. Plasma. 1, 745 (1993)

    ADS  Google Scholar 

  46. P. Gibbon, Phys. Rev. Lett. 76, 50 (1996)

    ADS  Google Scholar 

  47. R. Lichters et al., Phys. Plasma. 3, 3425 (1996)

    ADS  Google Scholar 

  48. D. von der Linde, K. Rzazewski, Appl. Phys. B 63, 499 (1996)

    ADS  Google Scholar 

  49. R. Ondarza, Phys. Rev. E 67, 066401 (2003)

    ADS  Google Scholar 

  50. K. Eidmann et al., Phys. Rev. E 72, 036413 (2005)

    ADS  Google Scholar 

  51. L. Plaja et al., J. Opt. Soc. Am. B 7, 1904 (1998)

    ADS  Google Scholar 

  52. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984)

    Google Scholar 

  53. N.G. de Bruijn Asymptotic Methods in Analysis (Dover, New York, 1981)

    Google Scholar 

  54. A. Pukhov, J. Plasma Phys. 61, 425 (1999)

    ADS  Google Scholar 

  55. F. Quere, C. Thaury, P. Monot, S. Dobosz, P. Martin, J.-P. Geindre, P. Audebert, Phys. Rev. Lett. 96, 125004 (2006)

    ADS  Google Scholar 

  56. T.J.M. Boyd, R. Ondarza-Rovira, Phys. Rev. Lett. 101, 125004 (2008)

    ADS  Google Scholar 

  57. J.N.L. Connor, P.R. Curtis, D. Farrelly, J. Phys. A Math. General, 17, 283 (1984)

    ADS  Google Scholar 

Download references

Acknowledgements

The work has been supported in parts by DFG Transregio SFB TR18, DFG Graduiertenkolleg GRK 2103, EU FP7 project LAPTECH and by MES RF, project nr. 02.740.11.5168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pukhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pukhov, A., an der Brügge, D., Kostyukov, I. (2011). Relativistic Laser Plasmas for Electron Acceleration and Short Wavelength Radiation Generation. In: Yamanouchi, K., Charalambidis, D., Normand, D. (eds) Progress in Ultrafast Intense Laser Science VII. Springer Series in Chemical Physics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18327-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18327-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18326-3

  • Online ISBN: 978-3-642-18327-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics