Skip to main content

Ultrafast Hydrogen Migration in Hydrocarbon Molecules Driven by Intense Laser Fields

  • Chapter
  • First Online:
  • 646 Accesses

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 100))

Abstract

By referring to our recent studies conducted using the coincidence momentum imaging method, experimental evidences of the ultrafast hydrogen migration are shown. For allene (CH2 = C=CH2) the momentum correlation maps and proton distribution maps of triply charged allene constructed from the observed momentum vectors of fragment ions revealed that the spatial distribution of the migrating hydrogen atom (or proton) covers the entire range of an allene molecule. It was also revealed that the hydrogen migration plays a decisive role in breaking selectively chemical bonds within molecules, showing its potential applications for chemical reaction controls. For methanol, it was shown that there are two distinctively different stages in the hydrogen migration processes in singly charged methanol, i.e., ultrafast hydrogen migration occurring within the intense laser field ( ∼ 38 fs), and slower postlaser pulse hydrogen migration ( ∼ 150 fs), showing quantum mechanical nature of light protons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Yamanouchi, Science 295, 1659 (2002)

    Article  Google Scholar 

  2. J.H. Posthumus, Rep. Prog. Phys. 67, 623 (2004)

    Article  ADS  Google Scholar 

  3. E. Baldit, S. Saugout, C. Cornaggia, Phys. Rev. A 71, 021403 (2005)

    Article  ADS  Google Scholar 

  4. W. Fuß, W.E. Schmid, S.A. Trushin, Chem. Phys. 316, 225 (2005)

    Article  Google Scholar 

  5. P. Liu, T. Okino, Y. Furukawa, T. Ichikawa, R. Itakura, K. Hoshina, K. Yamanouchi, H. Nakano, Chem. Phys. Lett. 423, 187 (2006)

    Article  ADS  Google Scholar 

  6. A.N. Markevitch, D.A. Romanov, S.M. Smith, R.J. Levis, Phys. Rev. Lett. 96, 163002 (2006)

    Article  ADS  Google Scholar 

  7. H. Yazawa, T. Shioyama, Y. Suda, M. Yamanaka, F. Kannari, R. Itakura, K. Yamanouchi, J. Chem. Phys. 127, 124312 (2007)

    Article  ADS  Google Scholar 

  8. K. Hoshina, Y. Furukawa, T. Okino, K. Yamanouchi, J. Chem. Phys. 129, 104302 (2008)

    Article  ADS  Google Scholar 

  9. T. Kato, K. Yamanouchi, J. Chem. Phys. 131, 164118 (2009)

    Article  ADS  Google Scholar 

  10. H. Hasegawa, A. Hishikawa, K. Yamanouchi, Chem. Phys. Lett. 349, 57 (2001)

    Article  ADS  Google Scholar 

  11. J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L.Ph.H. Schmidt, H. Schimidt-Böcking, Rep. Prog. Phys. 66, 1463 (2003)

    Article  ADS  Google Scholar 

  12. Z. Vager, D. Zajfman, T. Graber E.P. Kanter Phys. Rev. Lett. 71, 4319 (1993)

    Article  ADS  Google Scholar 

  13. F.A. Rajgara, M. Krishnamurhy, D. Mathur, T. Nishide, T. Kitamura, H. Shiromaru, Y. Achiba, N. Kobayashi, Phys. Rev. A 64, 032712 (2001)

    Article  ADS  Google Scholar 

  14. H.L. Xu, T. Okino, K. Yamanouchi, Chem. Phys. Lett. 349, 255 (2009)

    Article  ADS  Google Scholar 

  15. A.T.J.B. Eppink, D.H. Parker, Rev. Sci. Instrum. 68, 3477 (1997)

    Article  ADS  Google Scholar 

  16. A. Hishikawa, H. Hasegawa, K. Yamanouchi, J. Electron Spectrosc. Relat. Phenom. 141, 195 (2004)

    Article  Google Scholar 

  17. A.S. Alnaser, I. Litvinyuk, T. Osipov, B. Ulrich, A. Landers, E. Wells, C.M. Maharjan, P. Ranitovic, I. Bochareva, D. Ray, C.L. Cocke, J. Phys. B 39, S485 (2006)

    Article  ADS  Google Scholar 

  18. T. Okino, Y. Furukawa, P. Liu, T. Ichikawa, R. Itakura, K. Hoshina, K. Yamanouchi, H. Nakano, Chem. Phys. Lett. 423, 220 (2006)

    Article  ADS  Google Scholar 

  19. H.L. Xu, T. Okino, K. Nakai, K. Yamanouchi, S. Roither, X. Xie, D. Kartashov, M. Schöffler, A. Baltuska, M. Kitzler, Chem. Phys. Lett. 484, 119 (2010)

    Article  ADS  Google Scholar 

  20. T. Okino, Y. Furukawa, P. Liu, T. Ichikawa, R. Itakura, K. Hoshina, K. Yamanouchi, H. Nakano, J. Phys. B 39, S515 (2006)

    Article  ADS  Google Scholar 

  21. R. Itakura, P. Liu, Y. Furukawa, T. Okino, K. Yamanouchi, H. Nakano J. Chem. Phys. 127, 104306 (2007)

    Article  ADS  Google Scholar 

  22. T. Okino, Y. Furukawa, P. Liu, T. Ichikawa, R. Itakura, K. Hoshina, K. Yamanouchi, H. Nakano, Chem. Phys. Lett. 419, 223 (2006)

    Article  ADS  Google Scholar 

  23. A. Hishikawa, A. Matsuda, E.J. Takahashi, and M. Fushitani, J. Chem. Phys. 128, 084302 (2008)

    Article  ADS  Google Scholar 

  24. H.L. Xu, T. Okino, K. Yamanouchi, J. Chem. Phys. 131, 151102 (2009)

    Article  ADS  Google Scholar 

  25. H.L. Xu, T. Okino, K. Nakai, K. Yamanouchi, S. Roither, X. Xie3, D. Kartashov, L. Zhang, A. Baltuska, M. Kitzler, Phys. Chem. Chem. Phys. (2010), DOI: 10.1039/c0cp00628a

    Google Scholar 

  26. A. Hishikawa, H. Hasegawa, K. Yamanouchi, Chem. Phys. Lett. 361, 245 (2002)

    Article  ADS  Google Scholar 

  27. A. Hishikawa, A. Matsuda, M. Fushitani, E.J. Takahashi, Phys. Rev. Lett. 99, 258302 (2007)

    Article  ADS  Google Scholar 

  28. H.L. Xu, C. Marceau, K. Nakai, T. Okino, S.L. Chin, K. Yamanouchi, J. Chem. Phys. 133, 071103 (2010)

    Article  ADS  Google Scholar 

  29. M.J. Frisch et al., GAUSSIAN 03, Revision C.02 (Gaussian Inc., Wallingford CT, 2004)

    Google Scholar 

Download references

Acknowledgements

We thank the groups of S.L. Chin (Laval University, Quebec, Canada), and A. Baltuska, M. Kitzler (Vienna University of Technology, Vienna, Austria) for fruitful collaboration. The present research was supported by two grants from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (the Grant-in-Aid for Specially Promoted Research on Ultrafast Hydrogen Migration (#19002006), and the Grant-in-Aid for Global COE Program for Chemistry Innovation). HLX would also like to acknowledge the financial support from NSFC 11074098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Yamanouchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, H., Okino, T., Nakai, K., Yamanouchi, K. (2011). Ultrafast Hydrogen Migration in Hydrocarbon Molecules Driven by Intense Laser Fields. In: Yamanouchi, K., Charalambidis, D., Normand, D. (eds) Progress in Ultrafast Intense Laser Science VII. Springer Series in Chemical Physics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18327-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18327-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18326-3

  • Online ISBN: 978-3-642-18327-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics