Skip to main content

On Pseudorandom Generators with Linear Stretch in NC 0

  • Chapter
Cryptography in Constant Parallel Time

Part of the book series: Information Security and Cryptography ((ISC))

  • 1367 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that an NC 0 LPRG can be composed with itself a constant number of times to yield an NC 0 PRG with an arbitrary linear stretch. See Remark 4.3.

  2. 2.

    In Chap. 5 we showed that there is an NC 0 construction of a commitment scheme from an arbitrary PRG including one with sublinear stretch (see Corollary 5.2). However, this construction makes a non-black-box use of the underlying PRG, and is thus quite inefficient. The only known parallel construction that makes a black-box use of the PRG is Naor’s original construction, which requires the PRG to have linear stretch.

  3. 3.

    Indeed, some impossibility results regarding randomness-efficient NC 0 sampling of the error distribution have recently appeared in [140].

  4. 4.

    Our assumption is essentially the same as Alekhnovich’s. The main difference between the two assumptions is that the noise vector e in [5] is a random vector of weight exactly \(\left \lceil \mu m \right \rceil \), as opposed to our noise vector whose entries are chosen to be 1 independently with probability μ. In Sect. 7.4.5 we show that our assumption is implied by Alekhnovich’s assumption. Intuitively, the implication follows from the fact that our noise vectors can be viewed as a convex combination of noise vectors of fixed weight. We do not know whether the converse implication holds. Indeed, a distribution D which can be described as a convex combination of distributions D 1,…,D n may be pseudorandom even if each of the distributions D i is not pseudorandom.

  5. 5.

    In fact, cn can be slightly superlinear.

  6. 6.

    The original formulation asserts that, for a random matrix \(M \leftarrow \mathcal {M}_{m(n)=O(n),n,3}\), the pair (M,y=f M,Q (U n )) is indistinguishable from the pair (M,y′) where y′ is a perturbed version of y in which a single bit in a random location is flipped. This implies that the distribution f M,Q (U n ) is weakly unpredictable.

References

  1. Alekhnovich, M.: More on average case vs approximation complexity. In: Proc. of 44th FOCS, pp. 298–307 (2003)

    Google Scholar 

  2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Struct. Algorithms 5(2), 271–285 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Applebaum, B.: Pseudorandom generators with long stretch and low locality from random local one-way functions. In: Proc. of 44th STOC, pp. 805–816 (2012). Full version in ECCC TR11-007

    Google Scholar 

  5. Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different assumptions. In: Proc. of 42nd STOC, pp. 171–180 (2010)

    Google Scholar 

  6. Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-bias generators. In: Proc. of 9th TCC, pp. 1–18 (2012)

    Google Scholar 

  7. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. J. ACM 45(3), 501–555 (1998). Preliminary version in Proc. of 33rd FOCS, 1992

    Article  MATH  MathSciNet  Google Scholar 

  8. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998). Preliminary version in Proc. of 33rd FOCS, 1992

    Article  MATH  MathSciNet  Google Scholar 

  9. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low-degree tests and short PCPs via epsilon-biased sets. In: Proc. of 35th STOC, pp. 612–621 (2003)

    Google Scholar 

  10. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on hard learning problems. In: Advances in Cryptology: Proc. of CRYPTO ’93. LNCS, vol. 773, pp. 278–291 (1994)

    Chapter  Google Scholar 

  11. Bogdanov, A., Guo, S.: Sparse extractor families for all the entropy. In: Proc. of 4th ITCS (2012)

    Google Scholar 

  12. Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: Proc. of 34th STOC, pp. 659–668 (2002)

    Google Scholar 

  13. De, A., Watson, T.: Extractors and lower bounds for locally samplable sources. In: Proc. of 15th RANDOM (2011)

    Google Scholar 

  14. Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In: Proc. of 37th STOC, pp. 654–663 (2005)

    Google Scholar 

  15. Feige, U.: Relations between average case complexity and approximation complexity. In: Proc. of 34th STOC, pp. 534–543 (2002)

    Google Scholar 

  16. Goldreich, O.: Candidate one-way functions based on expander graphs. Electron. Colloq. Comput. Complex. 7, 090 (2000)

    Google Scholar 

  17. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  18. Goldreich, O.: Randomized methods in computation—lecture notes (2001). http://www.wisdom.weizmann.ac.il/~oded/rnd.html

  19. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  20. Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom generators. SIAM J. Comput. 22(6), 1163–1175 (1993). Preliminary version in Proc. of 29th FOCS, 1988

    Article  MATH  MathSciNet  Google Scholar 

  21. Goldreich, O., Wigderson, A.: Tiny families of functions with random properties: a quality-size trade-off for hashing. Random Struct. Algorithms 11(4), 315–343 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computational overhead. In: Proc. of 40th STOC, pp. 433–442 (2008)

    Google Scholar 

  24. Mossel, E., Shpilka, A., Trevisan, L.: On ε-biased generators in NC0. In: Proc. of 44th FOCS, pp. 136–145 (2003)

    Google Scholar 

  25. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. SIAM J. Comput. 22(4), 838–856 (1993). Preliminary version in Proc. of 22nd STOC, 1990

    Article  MATH  MathSciNet  Google Scholar 

  26. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4, 151–158 (1991)

    MATH  MathSciNet  Google Scholar 

  27. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. Int. 43, 425–440 (1991). Preliminary version in Proc. of 20th STOC, 1988

    Article  MATH  MathSciNet  Google Scholar 

  28. Radhakrishnan, J., Ta-Shma, A.: Tight bounds for depth-two superconcentrators. SIAM J. Discrete Math. 13(1), 2–24 (2000). Preliminary version in Proc. of 38th FOCS, 1997

    Article  MATH  MathSciNet  Google Scholar 

  29. Shpilka, A.: Constructions of low-degree and error-correcting ε-biased generators. In: Proc. of 21st Conference on Computational Complexity (CCC), pp. 33–45 (2006)

    Google Scholar 

  30. Ta-Shma, A., Umans, C., Zuckerman, D.: Loss-less condensers, unbalanced expanders, and extractors. In: Proc. of 33rd STOC, pp. 143–152 (2001)

    Google Scholar 

  31. Viola, E.: Extractors for circuit sources. In: Proc. of 52nd FOCS, pp. 220–229 (2011)

    Google Scholar 

  32. Viola, E.: The complexity of distributions. SIAM J. Comput. 41(1), 191–218 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Applebaum, B. (2014). On Pseudorandom Generators with Linear Stretch in NC 0 . In: Cryptography in Constant Parallel Time. Information Security and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17367-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17367-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17366-0

  • Online ISBN: 978-3-642-17367-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics