Skip to main content

Ontology-Driven Image Analysis for Histopathological Images

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

Abstract

Ontology-based software and image processing engine must cooperate in new fields of computer vision like microscopy acquisition wherein the amount of data, concepts and processing to be handled must be properly controlled. Within our own platform, we need to extract biological objects of interest in huge size and high-content microscopy images. In addition to specific low-level image analysis procedures, we used knowledge formalization tools and high-level reasoning ability of ontology-based software. This methodology made it possible to improve the expressiveness of the clinical models, the usability of the platform for the pathologist and the sensitivity or sensibility of the low-level image analysis algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wu, C., Aghajan, H.: Using context with statistical relational models – object recognition from observing user activity in home environment. In: Workshop on Use of Context in Vision Processing (UCVP), ICMI-MLMI (2009)

    Google Scholar 

  2. Dalle, J.R., Leow, W.K., Racoceanu, D., Tutac, A.E., Putti, T.C.: Automatic breast cancer grading of histopathological images. In: Proceedings of the 30th International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, pp. 3052–3055 (2008)

    Google Scholar 

  3. Mechouche, A., Morandi, X., Golbreich, C., Gibaud, B.: A hybrid system using symbolic and numeric knowledge for the semantic annotation of sulco-gyral anatomy in brain MRI images. IEEE Transactions on Medical Imaging 28, 1165–1178 (2009)

    Article  Google Scholar 

  4. Hudelot, C., Atif, J., Bloch, I.: A spatial relation ontology using mathematical morphology and description logics for spatial reasoning. In: ECAI Workshop on Spatial and Temporal Reasoning, pp. 21–25 (2008)

    Google Scholar 

  5. Frkovic-Grazio, S., Bracko, M.: Long term prognostic value of nottingham histological grade and its components in early (pT1N0M0) breast carcinoma. Journal of Clinical Pathology 55, 88–92 (2002)

    Article  Google Scholar 

  6. Dalle, J.R., Li, H., Huang, C.H., Leow, W.K., Racoceanu, D., Putti, T.C.: Nuclear pleomorphism scoring by selective cell nuclei detection. In: IEEE Workshop on Applications of Computer Vision, Snowbird, Utah, USA (2009)

    Google Scholar 

  7. Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Computational Maps in the Visual Cortex. Springer, Berlin (2005)

    Google Scholar 

  8. Tutac, A.E., Racoceanu, D., Leow, W.K., Dalle, J.R., Putti, T., Xiong, W., Cretu, V.: Translational approach for semi-automatic breast cancer grading using a knowledge-guided semantic indexing of histopathology images. In: Microscopic Image Analysis with Application in Biology, MIAAB, third MICCAI Workshop, 11th International Conference on Medical Image Computing and Computer Assisted Intervention, New-York, USA (2008)

    Google Scholar 

  9. Roux, L., Tutac, A., Lomenie, N., Balensi, D., Racoceanu, D., Leow, W.K., Veillard, A., Klossa, J., Putti, T.: A cognitive virtual microscopic framework for knowlegebased exploration of large microscopic images in breast cancer histopathology. In: IEEE Engineering in Medicine and Biology Society - Engineering the Future of Biomedecine, Minneapolis, Minnesota, USA (2009)

    Google Scholar 

  10. Lomenie, N.: Reasoning with spatial relations over high-content images. In: IEEE World Congress on Computational Intelligence - International Joint Conference on Neural Networks, Barcelona, Spain (2010)

    Google Scholar 

  11. Gianni, D., McKeever, S., Yu, T., Britten, R., Delingette, H.: Sharing and reusing cardiovascular anatomical models over the web: a step towards the implementation of the virtual physiological human project. Philosophical Transactions of The Royal Society A 368, 3039–3056 (2010)

    Article  Google Scholar 

  12. Klipp, J., Kaufman, J.: Adoption trends in digital pathology. Laboratory Economics 5, 3–10 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Othmani, A., Meziat, C., Loménie, N. (2010). Ontology-Driven Image Analysis for Histopathological Images. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics