Skip to main content

Multivariate Time Series Models for Asset Prices

  • Chapter
  • First Online:
Handbook of Computational Finance

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

Abstract

The modelling of multivariate financial time series has attracted an enormous interest recently, both from a theoretical and practical perspective. Focusing on factor type models that reduce the dimensionality and other models that are tractable in high dimensions, we review models for volatility, correlation and dependence, and show their application to quantities of interest such as value-at-risk or minimum-variance portfolio. In an application to a 69-dimensional asset price time series, we compare the performance of factor-based multivariate GARCH, stochastic volatility and dynamic copula models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, C. (2001). Orthogonal GARCH. In Mastering risk, financial times (Vol 2, pp. 21–38). London: Prentice Hall.

    Google Scholar 

  • Anderson, H. M., & Vahid, F. (2007). Forecasting the volatility of australian stock returns: do common factors help? Journal of Business and Economic Statistics, 25(1), 76–90.

    Article  MathSciNet  Google Scholar 

  • Andersen, T. G., & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review, 39, 885–905.

    Article  Google Scholar 

  • Andersen, T.G., Shephard, N. (2009): Stochastic volatility: origins and overview. In: T.G. Andersen, R.A. Davis, J.-P. Kreiss, T. Mikosch (Eds.) Handbook of Financial Time Series, p. 233–254, Springer Verlag: Berlin, Heidelberg New York.

    Google Scholar 

  • Andersen, T. G., Bollerslev, T., & Lange, S. (1999). Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon. Journal of Financial Economics, 61, 43–76.

    Article  Google Scholar 

  • Andersen, T. G., Bollerslev, T., Diebold, F. X., & Ebends, H. (2001). The distribution of realized stock volatility. Journal of Financial Economics, 61, 43–76.

    Article  Google Scholar 

  • Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2001). The distribution of realized exchange rate volatility. Journal of the American Statistical Association, 96, 42–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica, 71(2), 579–625.

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen, T. G., Bollerslev, T., Diebold, F. X., & Wu, J. (2006). Realized beta: Persistence and predictability. In T. Fomby & D. Terrell (Eds.), Advances in Econometrics: Econometric analysis of economic and financial time series in honor of R. F. Engle and C. W. J. Granger (Vol. B, pp. 1–40).

    Google Scholar 

  • Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica, 61, 821–856.

    Article  MathSciNet  MATH  Google Scholar 

  • Asai, M., & McAleer, M. (2009). The structure of dynamic correlations in multivariate stochastic volatility models. Journal of Econometrics, 150, 182–192.

    Article  MathSciNet  Google Scholar 

  • Asai, M., McAleer, M., & Yu, J. (2006). Multivariate stochastic volatility: A review. Econometric Reviews, 25(2–3), 145–175.

    Article  MathSciNet  MATH  Google Scholar 

  • Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71, 135–171.

    Article  MathSciNet  MATH  Google Scholar 

  • Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191–221.

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen, O. E., & Shephard, N. (2002a). Econometric analysis of realized volatility and its use in estimating stochastic volatilty models. Journal of the Royal Statistical Society, Ser. B, 64, 253–280.

    Google Scholar 

  • Barndorff-Nielsen, O. E., & Shephard, N. (2002b). Estimating quadratic variation using realized variance. Journal of Applied Econometrics, 17, 457–477.

    Article  Google Scholar 

  • Barndorff-Nielsen, O. E., & Shephard, N. (2004a). Econometric analyis of realized covariation: high frequency based covariance, regression, and correlation in financial economics. Econometrica, 72, 885–925.

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen, O. E., & Shephard, N. (2004b). Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics, 2, 1–37.

    Article  Google Scholar 

  • Bauwens, L., Laurent, S., & Rombouts, J. (2006). Multivariate garch models: A survey. Journal of Applied Econometrics, 7, 79–109.

    Article  MathSciNet  Google Scholar 

  • Bera, A., & Higgings, M. (1993). A survey of ARCH models: Properties, estimation and testing. Journal of Economic Surveys, 7, 305–366.

    Article  Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH approach. Review of Economics and Statistics, 72, 498–505.

    Article  Google Scholar 

  • Bollerslev, T., & Wooldridge, J. M. (1992). Quasi maximum likelihood estimation of dynamic models with time-varying covariances. Econometric Reviews, 11, 143–172.

    Article  MathSciNet  MATH  Google Scholar 

  • Breitung, J., & Eickmeier, S. (2006). Dynamic factor models. In O. Hübler & J. Frohn (Eds.), Modern econometric analysis. Berlin: Springer.

    Google Scholar 

  • Brillinger, D. R. (1981). Time series: Data analysis and theory. New York: Holt, Rinehart and Winston.

    MATH  Google Scholar 

  • Broto, C., & Ruiz, E. (2004). Estimation methods for stochastic volatility models: a survey. Journal of Economic Surveys, 18(5), 613–649.

    Article  Google Scholar 

  • Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (1997). The econometrics of financial markets. Princeton: Princepton University Press.

    MATH  Google Scholar 

  • Chamberlain, G., & Rothschild, M. (1983). Arbitrage, factor structure, and meanvariance analysis on large asset markets. Econometrica, 51, 1281–1304.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, L. K. C., Karceski, J., & Lakonishok, J. (1999). On portfolio optimization: forcasting covariances and choosing the risk model. The Review of Financial Studies, 12(5), 937–974.

    Article  Google Scholar 

  • Cherubini, G., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. UK: Wiley.

    MATH  Google Scholar 

  • Clark, P. K. (1973). A subordinate stochastic process model with finite variance for speculative prices. Econometrica, 41, 135–155.

    Article  MathSciNet  MATH  Google Scholar 

  • Connor, G, & Korajczyk, R. A. (1993). A test for the number of factors in an approximate factor model. Journal of Finance, 48(4), 1263–1291.

    Article  Google Scholar 

  • Danielsson, J. (1994). Stochastic volatility in asset prices estimation with simulated maximum likelihood. Journal of Econometrics, 64(1–2), 375–400.

    Article  MATH  Google Scholar 

  • Danielsson, J. (1998). Multivariate stochastic volatility models: Estimation and comparison with VGARCH models. Journal of Empirical Finance, 5, 155–173.

    Article  Google Scholar 

  • Danielsson, J., & Richard, J. F. (1993). Accelerated Gaussian importance sampler with application to dynamic latent variable models. Journal of Applied Econometrics, 8, 153–174.

    Article  Google Scholar 

  • Dias, A., & Embrechts, P. (2004). Change-point analysis for dependence structures in finance and insurance. In G. Szegoe (Ed.), Risk measures for the 21st century (Chap. 16, pp. 321–335). New York: Wiley.

    Google Scholar 

  • Diebold, F. X., & Nerlove, M. (1989). The dynamics of exchange rate volatility: a multivariate latent factor ARCH model. Journal of Applied Econometrics, 4, 1–21.

    Article  Google Scholar 

  • Diebold, F. X., Gunther, T. A., & Tay, A. S. (1998). Evaluating density forecasts. International Economic Review, 39, 863–883.

    Article  Google Scholar 

  • Duffie, D., & Singleton, K. J. (1993). Simulated moments estimation of markov models of asset prices. Econometrica, 61, 929–952.

    Article  MathSciNet  MATH  Google Scholar 

  • Eichler, M., Motta, G., & von Sachs, R. Fitting dynamic factor models to non-stationary time series. Journal of Econometrics163(1), 51–70.

    Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987–1008.

    Google Scholar 

  • Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics, 20(3), 339–350.

    Article  MathSciNet  Google Scholar 

  • Engle, R. F., & Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. Econometric Theory, 11, 122–150.

    Article  MathSciNet  Google Scholar 

  • Engle, R. F., & Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business and Economic Statistics, 22(4), 367–381.

    Article  MathSciNet  Google Scholar 

  • Engle, R. F., & Sheppard, K. (2001). Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH. NBER working paper 8554, National Bureau of Economic Research.

    Google Scholar 

  • Engle, R. F., Lilien, D. M., & Robins, R. P. (1987). Estimating time varying risk premia in the term structure: The ARCH-M model. Econometrica, 55, 391–407.

    Article  Google Scholar 

  • Engle, R. F., Ng, V. K., & Rothschild, M. (1990). Asset pricing with a factor ARCH covariance structure: Empirical estimates for treasury bills. Journal of Econometrics, 45, 213–238.

    Article  Google Scholar 

  • Engle, R. F., Shephard, N., & Sheppard, K. (2007). Fitting and testing vast dimensional time-varying covariance models. NYU Working Paper No. FIN-07-046.

    Google Scholar 

  • Fama, E. F. (1965). The behavior of stock market prices. Journal of Business, 38, 34–105.

    Article  Google Scholar 

  • Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33, 3–56.

    Article  Google Scholar 

  • Fleming, J., Kirby, C., & Ostdiek, B. (2001). The economic value of volatility timing. The Journal of Finance, 56(1), 329–352.

    Article  Google Scholar 

  • Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2000). The generalized dynamic factor model: Identification and estimation. The Review of Economics and Statistics, 82, 540–554.

    Article  Google Scholar 

  • Franke, J., Härdle, W., & Hafner, C. M. (2008). Statistics of financial markets an introduction. Berlin: Springer.

    MATH  Google Scholar 

  • Gallant, A. R., & Tauchen, G. (1996). Which moments to match. Econometric Theory, 12, 657–681.

    Article  MathSciNet  Google Scholar 

  • Ghysels, E., Harvey, A. C., & Renault, E. (1996). Stochastic volatility. In G. Maddala & C. R. Rao (Eds.), Handbook of statistics (Vol. 14). Amsterdam: Elsevier.

    Google Scholar 

  • Giacomini, E., Härdle, W., & Spokoiny, V. (2009). Inhomogeneous dependency modelling with time varying copulae. Journal of Business and Economic Statistics, 27, 224–234.

    Article  MathSciNet  Google Scholar 

  • Gourieroux, C., Monfort, A., & Renault, E. (1993). Indirect inference. Journal of Applied Econometrics, 8, 85–118.

    Article  Google Scholar 

  • Hafner, C. M., & Franses, P. H. (2009). A generalized dynamic conditional correlation model: Simulation and application to many assets. Econometric Reviews, 28, 612–631.

    Article  MathSciNet  MATH  Google Scholar 

  • Hafner, C. M., & Herwartz, H. (2000). Testing linear autoregressive dynamics under heteroskedasticity. The Econometrics Journal, 3, 177–197.

    Article  MathSciNet  MATH  Google Scholar 

  • Hafner, C. M., & Manner, H. (2011). Dynamic stochastic copula models: Estimation, inference and applications. Journal of Applied Econometrics. doi: 10.1002/jae.1197.

    Google Scholar 

  • Hafner, C. M., & Reznikova, O. (2010). Efficient estimation of a semiparametric dynamic copula model. Computational Statistics and Data Analysis, 54, 2609–2627.

    Article  MathSciNet  Google Scholar 

  • Harvey, A. C., Ruiz, E., & Shephard, N. (1994). Multivariate stochastic variance models. Review of Economic Studies, 61, 247–264.

    Article  MATH  Google Scholar 

  • Hentschel, L. (1995). All in the family: Nesting symmetric and asymmetric garch models. Journal of Financial Economics, 39, 71–104.

    Article  Google Scholar 

  • Hull, J., & White, A. (1987). The pricing of options with stochastic volatilities. Journal of Finance, 42, 281–300.

    Article  Google Scholar 

  • Jacquier, E., Polson, N. G., & Rossi, P. E. (1994). Bayesian analysis of stochastic volatitliy models (with discussion). Journal of Business and Economic Statistics, 12, 371–389.

    Google Scholar 

  • Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall.

    Book  MATH  Google Scholar 

  • Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models. Review of Economic Studies, 65, 361–393.

    Article  MATH  Google Scholar 

  • Ledoit, O, Santa-Clara, P, & Wolf, M. (2003). Flexible multivariate GARCH modeling with an application to international stock markets. Review of Economics and Statistics, 85, 735–747.

    Article  Google Scholar 

  • Liesenfeld, R., & Richard, J. F. (2003). Univariate and multivariate volatility models: Estimation and diagnostics. Journal of Empirical Finance, 10, 505–531.

    Article  Google Scholar 

  • Lintner, J. (1965). Security prices, risk and maximal gains from diversification. Journal of Finance, 20, 587–615.

    Google Scholar 

  • Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394–419.

    Article  Google Scholar 

  • Manner, H. & Candelon, B. (2010). Testing for asset market linkages: A new approach based on time-varying copulas. Pacific Economic Review 15, 364–384. doi: 10.1111/j.1468- 0106.2010.00508.x

    Article  Google Scholar 

  • Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New York: Wiley.

    Google Scholar 

  • Motta, G., Hafner, C., & von Sachs, R. (2011). Locally stationary factor models: Identification and nonparametric estimation. Econometric Theory, 27(6).

    Google Scholar 

  • Nelsen, R. B. (2006). An introduction to copulas. New York: Springer.

    MATH  Google Scholar 

  • Patton, A. (2006a). Modelling asymmetric exchange rate dependence. International Economic Review, 47(2), 527–556.

    Article  MathSciNet  Google Scholar 

  • Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13, 341–360.

    Article  MathSciNet  Google Scholar 

  • Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19, 425–442.

    Google Scholar 

  • Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97, 1167–1179.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, S. J. (1986). Modelling financial time series. Chichester: Wiley.

    MATH  Google Scholar 

  • Taylor, S. J. (1994). Modelling stochastic volatility: A review and comparative study. Mathematical finance, 4, 183–204,.

    Article  MATH  Google Scholar 

  • Tse, Y. K., & Tsui, A. K. C. (2002). A multivariate GARCH model with time-varying correlations. Journal of Business and Economic Statistics, 20(3), 351–362.

    Article  MathSciNet  Google Scholar 

  • van der Weide, R. (2002). Go-garch: A multivariate generalized orthogonal GARCH model. Journal of Applied Econometrics, 17, 549–564.

    Article  Google Scholar 

  • Yu, J., & Meyer, R. (2006). Multivariate stochastic volatility models: Bayesian estimation and model comparison. Econometric Reviews, 25(2–3), 361–384.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Hafner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hafner, C.M., Manner, H. (2012). Multivariate Time Series Models for Asset Prices. In: Duan, JC., Härdle, W., Gentle, J. (eds) Handbook of Computational Finance. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17254-0_5

Download citation

Publish with us

Policies and ethics