Skip to main content

Cu Substitutionals and Defect Complexes in the Lead-Free Ferroelectric KNN

  • Conference paper

Abstract

The lead-free ferroelectric (K,Na)NbO3 (KNN) is a potential future substitute for lead zirconate titanate (PZT) in piezoelectric actuators and sensors. Doping, e.g. by adding CuO as a sintering aid, modifies the material properties and can cause so called hard or soft ferroelectric behavior. Using ab initio calculations based on the density functional theory, the site selectivity of Cu dopants in the KNN lattice is investigated, and the stable defect complexes of Cu dopants and lattice vacancies are determined. Cu may act as an amphoteric dopant, i.e. substitute on alkali sites as a donor or on Nb sites as an acceptor, depending on the processing conditions. On both alkali and Nb sites, defect complexes of Cu with vacancies, namely (CuKV K), (CuNbV O), and (V O−CuNbV O), are stable with respect to the isolated defects. The first two defect complexes should exhibit a dipole moment and may therefore cause ferroelectric hardening.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellaiche L., Vanderbilt D. Virtual Crystal approximation revisited: Application to dielectric and pietoelectric properties of perovskites. Phys. Rev. B, 61, 7877 (2000).

    Article  Google Scholar 

  2. Ceperley, D.M., Alder, B.J. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett., 45, 566 (1980).

    Article  Google Scholar 

  3. Erünal, E., Eichel, R.-A., Körbel, S., et al. Defect structure of copper doped potassium niobate ceramics, Functional Materials Letters, 3 19–24 (2010).

    Article  Google Scholar 

  4. Erhart, P., Eichel, R.A., Träskelin, P., Albe, K. Association of oxygen vacancies with impurity metal ions in lead titanate. Phys. Rev. B, 76, 174116 (2007).

    Article  Google Scholar 

  5. Elsässer, C., Takeuchi, N., Ho, K., Chan, C., Braun, P., Fähnle, M. Relativistic effects on ground state properties of 4d and 5d transition metals. J. Phys. Cond. Matter, 2, 4371 (1990).

    Article  Google Scholar 

  6. Fu, C.L., Ho, K.M. First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo. Phys. Rev. B, 28, 5480 (1983).

    Article  Google Scholar 

  7. Feng Z., Ren X. Striking sinilarity of ferroelectric aging effect in tetragonal, orthorhombic and rhombohedral crystal structures. Phys. Rev. B, 77, 134115 (2009).

    Article  Google Scholar 

  8. Ho, K., Elsässer, C., Chan, C., Fähnle, M. First-principles pseudopotential calculations for hydrogen in 4d transition metals. I. Mixed-basis method for total energies and forces. J. Phys. Cond. Matter, 4, 5189 (1992).

    Article  Google Scholar 

  9. Körbel, S., Marton, P., Elsässer, C. Formation of vacancies and copper substitutionals in potassium sodium niobate under various processing conditions. Phys. Rev. B, 81, 174115 (2010).

    Article  Google Scholar 

  10. Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 89th ed. CRC Press, Boca Raton (2008).

    Google Scholar 

  11. Lechermann, F., Welsch, F., Elsässer, C., Ederer, C., Fähnle, M., Sanchez, J.M., Meyer, B. Density-functional study of Fe3Al: LSDA versus GGA. Phys. Rev. B, 65, 132104 (2002).

    Article  Google Scholar 

  12. Meyer, B., Hummler, K., Elsässer, C., Fähnle, M. Reconstruction of the true wavefunctions from the pseudowavefunctions in a crystal and calculation of electric field gradients. J. Phys. Cond. Matter, 7, 9201 (1995).

    Article  Google Scholar 

  13. Meyer, B., Lechermann, F., Elsässer, C., Fähnle, M. Fortran90 Program for Mixed-Basis Pseudopotential Calculations for Crystals. Max-Planck-Institut für Metallforschung, Stuttgart.

    Google Scholar 

  14. Monkhorst, H.J., Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 5188–5192 (1976).

    Article  MathSciNet  Google Scholar 

  15. Perdew, J.P., Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23, 5048 (1981).

    Article  Google Scholar 

  16. Ren X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nature Mater., 3, 91 (2004).

    Article  Google Scholar 

  17. Ramer N.J., Rappe A.M. Application of a new virtual crystal approach for the study of disordered perovskites. J. Phys. Chem. Sol., 61, 315 (2000).

    Article  Google Scholar 

  18. Reuter, K., Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B, 65, 035406 (2001).

    Article  Google Scholar 

  19. Umeno, Y., Meyer, B., Elsässer, C., Gumbsch, P. Ab initio study of the critical thickness for ferroelectricity in ultrathin Pt/PbTiO3/Pt films. Phys. Rev. B, 74, 060101 (2006).

    Article  Google Scholar 

  20. Vanderbilt, D. Optimally smooth norm-conserving pseudopotentials. Phys. Rev. B, 32, 8412 (1985).

    Article  Google Scholar 

  21. Wiesendanger, E. Dielectric, mechanical and optical properties of orthorhombic KNbO3. Ferroelectrics, 6, 263 (1974).

    Google Scholar 

  22. Van de Walle, C.G., Neugebauer, J. First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys., 95, 3851 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Körbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Körbel, S., Elsässer, C. (2011). Cu Substitutionals and Defect Complexes in the Lead-Free Ferroelectric KNN. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_14

Download citation

Publish with us

Policies and ethics