Skip to main content

Scaffold-Free Tissue Engineered Construct (TEC) Derived from Synovial Mesenchymal Stem Cells: Characterization and Demonstration of Efficacy to Cartilage Repair in a Large Animal Model

  • Chapter
  • First Online:
Sports Injuries

Abstract

This chapter describes in vitro generation of a scaffold-free mesenchymal stem cell (MSC)-based tissue-engineered construct (TEC) to facilitate cartilage repair and regeneration. Synovial MSCs were cultured in monolayer at high density and were subsequently detached from the substratum. The cell/matrix complex spontaneously contracted to develop a basic TEC. Immunohistochemical analysis showed that the TEC was rich in collagen I and III, fibronectin, and vitronectin. The TEC exhibited stable adhesion to the surface of a porcine cartilage matrix in an explant culture system. The TEC cultured in chondrogenic media exhibited elevated expression of glycosaminoglycan and chondrogenic marker genes. Implantation of a TEC into chondral defects initiated repair with a chondrogenic-like tissue, as well as secure biological integration to the adjacent cartilage. Histologically, the repair tissue stained positively with Safranin O and for collagen II. Biomechanical evaluation revealed that repair tissue exhibited mechanical properties similar to those of normal porcine cartilage in static compression and friction tests. The TEC technology could be a unique and promising method for stem-cell based cartilage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ando, W., Tateishi, K., Hart, D.A., et al.: Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials 28, 5462–5470 (2007)

    Article  PubMed  CAS  Google Scholar 

  2. Ando, W., Tateishi, K., Katakai, D., et al.: In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: biological and mecha­nical properties and further chondrogenic potential. Tissue Eng. Part A 14, 2041–2049 (2008)

    Article  PubMed  CAS  Google Scholar 

  3. Andriano, K.P., Tabata, Y., Ikada, Y., et al.: In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J. Biomed. Mater. Res. 48, 602–612 (1999)

    Article  PubMed  CAS  Google Scholar 

  4. Bell, E., Ivarsson, B., Merrill, C.: Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 76, 1274–1278 (1979)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Brittberg, M., Peterson, L., Sjogren-Jansson, E., et al.: Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J. Bone Joint Surg. Am. 85-A(Suppl 3), 109–115 (2003)

    PubMed  Google Scholar 

  6. Brun, P., Cortivo, R., Zavan, B., et al.: In vitro reconstructed tissues on hyaluronan-based temporary scaffolding. J. Mater. Sci. Mater. Med. 10, 683–688 (1999)

    Article  PubMed  CAS  Google Scholar 

  7. Buckwalter, J.A.: Articular cartilage injuries. Clin. Orthop. Relat. Res. 402, 21–37 (2002)

    Article  PubMed  Google Scholar 

  8. Daniels, A.U., Andriano, K.P., Smutz, W.P., et al.: Evaluation of absorbable poly(ortho esters) for use in surgical implants. J. Appl. Biomater. 5, 51–64 (1994)

    Article  PubMed  CAS  Google Scholar 

  9. De Bari, C., Dell’Accio, F., Luyten, F.P.: Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum. 50, 142–150 (2004)

    Article  PubMed  Google Scholar 

  10. De Bari, C., Dell’Accio, F., Tylzanowski, P., et al.: Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44, 1928–1942 (2001)

    Article  PubMed  Google Scholar 

  11. De Ugarte, D.A., Alfonso, Z., Zuk, P.A., et al.: Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol. Lett. 89, 267–270 (2003)

    Article  PubMed  Google Scholar 

  12. Denker, A.E., Nicoll, S.B., Tuan, R.S.: Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1. Differentiation 59, 25–34 (1995)

    Article  PubMed  CAS  Google Scholar 

  13. Dorotka, R., Bindreiter, U., Macfelda, K., et al.: Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthritis Cartilage 13, 655–664 (2005)

    Article  PubMed  CAS  Google Scholar 

  14. Guo, J.F., Jourdian, G.W., MacCallum, D.K.: Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect. Tissue Res. 19, 277–297 (1989)

    Article  PubMed  CAS  Google Scholar 

  15. Hickery, M.S., Bayliss, M.T., Dudhia, J., et al.: Age-related changes in the response of human articular cartilage to IL-1alpha and transforming growth factor-beta (TGF-beta): chondrocytes exhibit a diminished sensitivity to TGF-beta. J. Biol. Chem. 278, 53063–53071 (2003)

    Article  PubMed  CAS  Google Scholar 

  16. Homminga, G.N., Buma, P., Koot, H.W., et al.: Chondrocyte behavior in fibrin glue in vitro. Acta Orthop. Scand. 64, 441–445 (1993)

    Article  PubMed  CAS  Google Scholar 

  17. Huang, C.Y., Soltz, M.A., Kopacz, M., et al.: Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. J. Biomech. Eng. 125, 84–93 (2003)

    Article  PubMed  Google Scholar 

  18. Hunziker, E.B.: Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10, 432–463 (2002)

    Article  PubMed  CAS  Google Scholar 

  19. Hunziker, E.B., Rosenberg, L.C.: Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J. Bone Joint Surg. Am. 78, 721–733 (1996)

    PubMed  CAS  Google Scholar 

  20. Jankowski, R.J., Deasy, B.M., Huard, J.: Muscle-derived stem cells. Gene Ther. 9, 642–647 (2002)

    Article  PubMed  CAS  Google Scholar 

  21. Lahiji, A., Sohrabi, A., Hungerford, D.S., et al.: Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J. Biomed. Mater. Res. 51, 586–595 (2000)

    Article  PubMed  CAS  Google Scholar 

  22. Lee, C.R., Grodzinsky, A.J., Hsu, H.P., et al.: Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model. J. Orthop. Res. 21, 272–281 (2003)

    Article  PubMed  CAS  Google Scholar 

  23. Lee, O.K., Kuo, T.K., Chen, W.M., et al.: Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103, 1669–1675 (2004)

    Article  PubMed  CAS  Google Scholar 

  24. Lee, C.H., Singla, A., Lee, Y.: Biomedical applications of collagen. Int. J. Pharm. 221, 1–22 (2001)

    Article  PubMed  CAS  Google Scholar 

  25. Lennon, D.P., Haynesworth, S.E., Arm, D.M., et al.: Dilution of human mesenchymal stem cells with dermal fibroblasts and the effects on in vitro and in vivo osteochondrogenesis. Dev. Dyn. 219, 50–62 (2000)

    Article  PubMed  CAS  Google Scholar 

  26. Mainil-Varlet, P., Aigner, T., Brittberg, M., et al.: Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J. Bone Joint Surg. Am. 85-A(Suppl 2), 45–57 (2003)

    PubMed  Google Scholar 

  27. Marcacci, M., Berruto, M., Brocchetta, D., et al.: Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin. Orthop. Relat. Res. 435, 96–105 (2005)

    Article  PubMed  Google Scholar 

  28. Martin, M.J., Muotri, A., Gage, F., et al.: Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232 (2005)

    Article  PubMed  CAS  Google Scholar 

  29. Masuda, K., Takegami, K., An, H., et al.: Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J. Orthop. Res. 21, 922–930 (2003)

    Article  PubMed  CAS  Google Scholar 

  30. Nakamura, N., Horibe, S., Iwahashi, T., et al.: Healing of a chondral fragment of the knee in an adolescent after internal fixation. A case report. J. Bone Joint Surg. Am. 86-A, 2741–2746 (2004)

    PubMed  Google Scholar 

  31. O’Grady, J.E., Bordon, D.M.: Global regulatory registration requirements for collagen-based combination products: points to consider. Adv. Drug Deliv. Rev. 55, 1699–1721 (2003)

    Article  PubMed  Google Scholar 

  32. Ochi, M., Adachi, N., Nobuto, H., et al.: Articular cartilage repair using tissue engineering technique–novel approach with minimally invasive procedure. Artif. Organs 28, 28–32 (2004)

    Article  PubMed  Google Scholar 

  33. Okano, T., Yamada, N., Okuhara, M., et al.: Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16, 297–303 (1995)

    Article  PubMed  CAS  Google Scholar 

  34. Pittenger, M.F., Mackay, A.M., Beck, S.C., et al.: Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999)

    Article  PubMed  CAS  Google Scholar 

  35. Provenzano, P.P., Hayashi, K., Kunz, D.N., et al.: Healing of subfailure ligament injury: comparison between immature and mature ligaments in a rat model. J. Orthop. Res. 20, 975–983 (2002)

    Article  PubMed  Google Scholar 

  36. Sakaguchi, Y., Sekiya, I., Yagishita, K., et al.: Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 52, 2521–2529 (2005)

    Article  PubMed  Google Scholar 

  37. Sheetz, M.P., Felsenfeld, D.P., Galbraith, C.G.: Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol. 8, 51–54 (1998)

    Article  PubMed  CAS  Google Scholar 

  38. van der Elst, M., Klein, C.P., de Blieck-Hogervorst, J.M., et al.: Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: a long-term in vivo study in sheep femora. Biomaterials 20, 121–128 (1999)

    Article  PubMed  Google Scholar 

  39. Vodicka, P., Smetana Jr., K., Dvorankova, B., et al.: The miniature pig as an animal model in biomedical research. Ann. NY Acad. Sci. 1049, 161–171 (2005)

    Article  PubMed  Google Scholar 

  40. Vunjak-Novakovic, G., Martin, I., Obradovic, B., et al.: Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17, 130–138 (1999)

    Article  PubMed  CAS  Google Scholar 

  41. Wickham, M.Q., Erickson, G.R., Gimble, J.M., et al.: Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin. Orthop. Relat. Res. 412, 196–212 (2003)

    Article  PubMed  Google Scholar 

  42. Yanase, M., Ikeda, H., Matsui, A., et al.: Lysophosphatidic acid enhances collagen gel contraction by hepatic stellate cells: association with rho-kinase. Biochem. Biophys. Res. Commun. 277, 72–78 (2000)

    Article  PubMed  CAS  Google Scholar 

  43. Yang, C., Hillas, P.J., Baez, J.A., et al.: The application of recombinant human collagen in tissue engineering. BioDrugs 18, 103–119 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Kiyoto Nagai, MS, Yoshihisa Fujishima, BS, and Machiko Imura, BS, for mechanical testings. This work is supported by the grant of New Energy and Industrial Technology Develop­ment Organization, Japan, the Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norimasa Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakamura, N. et al. (2012). Scaffold-Free Tissue Engineered Construct (TEC) Derived from Synovial Mesenchymal Stem Cells: Characterization and Demonstration of Efficacy to Cartilage Repair in a Large Animal Model. In: Doral, M. (eds) Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15630-4_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15630-4_98

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15629-8

  • Online ISBN: 978-3-642-15630-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics