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Abstract. The maximum matching problem is one of the most fun-
damental algorithmic graph problems and OBDDs are one of the most
common dynamic data structures for Boolean functions. Since in some
applications graphs become larger and larger, a research branch has
emerged which is concerned with the theoretical design and analysis of
so-called symbolic algorithms for classical graph problems on OBDD-
represented graph instances. Typically problems get harder when their
input is represented symbolically, nevertheless not many concrete non-
trivial lower bounds are known. Here, it is shown that symbolic OBDD-
based algorithms for the maximum matching problem need exponential
space (with respect to the OBDD size of the input graph). Further-
more, it is shown that OBDD-representations for undirected graphs can
be exponentially larger than OBDD-representations for their directed
counterparts and vice versa.

Keywords: Computational complexity, lower bounds, maximum match-
ing, ordered binary decision diagrams, symbolic algorithms.

1 Introduction

Since modern applications require huge graphs, explicit representations by ad-
jacency matrices or adjacency lists may cause conflicts with memory limitations
and even polynomial time algorithms seem to be not applicable any more. As
time and space resources do not suffice to consider individual vertices, one way
out seems to be to deal with sets of vertices and edges represented by their
characteristic functions. Ordered binary decision diagrams, denoted OBDDs,
introduced by Bryant in 1986 [6], are well suited for the representation and
manipulation of Boolean functions, therefore, a research branch has emerged
which is concerned with the theoretical design and analysis of so-called symbolic
algorithms for classical graph problems on OBDD-represented graph instances
(see, e.g., [11,12], [13], [18,19], [21], [23,24], and [28]). Symbolic algorithms have
to solve problems on a given graph instance by efficient functional operations
offered by the OBDD data structure.

Representing graphs with regularities by means of data structures smaller than
adjacency matrices or adjacency lists seems to be a natural idea. But problems
typically get harder when their input is represented implicitly. For circuit repre-
sentations this has been shown in [1,10,20]. These results do not directly carry

C.S. Calude and V. Sassone (Eds.): TCS 2010, IFIP AICT 323, pp. 286–300, 2010.
c© IFIP International Federation for Information Processing 2010



On Symbolic Representations of Maximum Matchings 287

over to problems on OBDD-represented inputs since there are Boolean functions
like some output bits of integer multiplication whose OBDD complexity is expo-
nentially larger than its circuit size [2,7]. In [8] it has been shown that even the
very basic problem of deciding whether two vertices s and t are connected in a
directed graph G, the so-called graph accessibility problem GAP, is PSPACE-
complete on OBDD-represented graphs. Nevertheless, OBDD-based algorithms
are successful in many applications and despite the hardness results there are
not many concrete non-trivial lower bounds known for the complexity of prob-
lems on OBDD-represented graph instances. In [23] exponential lower bounds on
the space complexity of OBDD-based algorithms for the single-source shortest
paths problem, the maximum flow problem, and a restricted class of algorithms
for the reachability problem have been presented. Recently, the last result has
been generalized and an exponential lower bound on the space complexity of all
OBDD-based algorithms for reachability analysis has been shown in [3]. The re-
sults are not very astonishing but the proofs present worst-case examples which
could be helpful to realize why OBDD-based algorithms are successful in many
applications by characterizing the special cases that can be handled efficiently
and the cases that are difficult to process. In this paper one aim is to present
concrete exponential lower bounds and not only existence proofs that there have
to be objects of large size or that exponential blow-ups may happen for various
problems.

Due to the problem’s rich area of applications the maximum matching problem
has received a considerable amount of attention for explicit graph representa-
tions. Answering an open question posed by Sawitzki (page 186, table 7.4.1 in
[22]), we prove that OBDD-based representations of maximum matchings can be
exponentially larger than the OBDD representation of the input graph. Using
simple counting arguments it can be shown that there exists a complete bipartite
graph whose OBDD complexity is small and for which there exists a maximum
matching whose OBDD complexity is large. In order to present concrete proofs
we present such a graph and a corresponding maximum matching. Searching for
advantageous properties of real-world instances that cause an essentially better
behavior than in the worst-case, the complexity of graph problems with respect
to structured properties of input and/or output OBDDs is interesting. In [21] and
[28] symbolic algorithms for maximum flow in 0-1 networks and topological sort-
ing have been presented which have polylogarithmic running time with respect
to the number of vertices of a given grid graph. These results rely on the very
structured input graph and on restrictions on the width of occuring OBDDs dur-
ing the computation. Our first result on the size of maximum (perfect) matchings
shows that constant input OBDD width is not sufficient to guarantee polynomial
space complexity for the maximum matching problem. Afterwards we present a
graph whose edge set can be represented by OBDDs of small size but for which
the implicit representation of its unique maximum matching needs exponential
OBDD size.

By simple counting arguments it is easy to see that almost all graphs on N
vertices cannot be represented by OBDDs of polylogarithmic size with respect
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to N . On the other hand, it is quite obvious that very simple structured graphs,
e.g., grid graphs, have a small OBDD representation. Therefore, in [18,19] the
question has been investigated whether succinct OBDD representations can be
found for significant graph classes. In this paper we consider whether undirected
graphs can be exponentially larger than their so-called directed counterparts and
vice versa. Our results can be summarized as follows.

Theorem 1. Symbolic OBDD-based algorithms for the maximum matching prob-
lem need exponential space with respect to the size of the implicit representation of
the input graph.

Theorem 2. There exists a directed graph Gd and a corresponding undirected
graph Gu, obtained from Gd by changing the directed edges into undirected ones,
such that the symbolic OBDD representation of Gu is exponentially larger than
the OBDD representation of Gd.

The paper is organized as follows. In Section 2 we define some notation and
present some basics concerning OBDDs, symbolic graph representations, and
the maximum matching problem. Section 3 contains the proof of Theorem 1.
Finally, in Section 4 Theorem 2 is shown and we discuss why the result is not as
obvious as it seems to be at first glance. For a slightly more general model than
OBDDs the representation size for the corresponding undirected counterparts of
directed graphs can only be by a factor of 2 larger than the size for the directed
graph. Furthermore, we will look at an undirected graph GU and a correspond-
ing directed graph GD, obtained from GU by changing each undirected edges
into one directed edge, such that the symbolic OBDD representation of GD is
exponentially larger than the OBDD representation of GU .

2 Preliminaries

In order to make the paper self-contained we briefly recall the main notions we
are dealing with in this paper.

2.1 Ordered Binary Decision Diagrams

When working with Boolean functions as in circuit verification, synthesis, and
model checking, ordered binary decision diagrams are one of the most often used
data structures that support efficiently all fundamental operations on Boolean
functions, like binary operators, quantifications or satisfiability tests. (For a his-
tory of results on binary decision diagrams see, e.g., the monograph of
Wegener [27]).

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.
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In the following a variable ordering π is sometimes identified with the corre-
sponding ordering xπ(1), . . . , xπ(n) of the variables if the meaning is clear from
the context.

Definition 2. A π-OBDD on Xn is a directed acyclic graph G = (V, E) whose
sinks are labeled by Boolean constants and whose non-sink (or decision) nodes
are labeled by Boolean variables from Xn. Each decision node has two outgoing
edges one labeled by 0 and the other by 1. The edges between decision nodes have
to respect the variable ordering π, i.e., if an edge leads from an xi-node to an
xj-node, then π−1(i) ≤ π−1(j) (xi precedes xj in xπ(1), . . . , xπ(n)). Each node
v represents a Boolean function fv ∈ Bn, i.e., fv : {0, 1}n → {0, 1}, defined
in the following way. In order to evaluate fv(b), b ∈ {0, 1}n, start at v. After
reaching an xi-node choose the outgoing edge with label bi until a sink is reached.
The label of this sink defines fv(b). The width of a π-OBDD is the maximum
number of nodes labeled by the same variable. The size of a π-OBDD G is equal
to the number of its nodes and the π-OBDD size of a function f is the size of
the minimal π-OBDD representing f .

It is well known that the size of an OBDD representing a function f that depends
essentially on n Boolean variables (a function g depends essentially on a Boolean
variable z if g|z=0 �= g|z=1) may be different for different variable orderings and
may vary between linear and exponential size with respect to n.

Definition 3. The OBDD size or OBDD complexity of f is the minimum of
all π-OBDD(f).

The size of the reduced π-OBDD representing f is described by the following
structure theorem [25].

Theorem 3. The number of xπ(i)-nodes of the minimal π-OBDD for f is the
number si of different subfunctions f|xπ(1)=a1,...,xπ(i−1)=ai−1 , a1, . . . , ai−1 ∈ {0, 1},
that essentially depend on xπ(i).

Theorem 3 implies the following simple observation which is helpful in order to
prove lower bounds. Given an arbitrary variable ordering π the number of nodes
labeled by a variable x in the reduced π-OBDD representing a given function f
is not smaller than the number of x-nodes in a reduced π-OBDD representing
any subfunction of f .

Partitioned binary decision diagrams, denoted PBDDs, have been introduced
in [14] as a generalized OBDD model allowing a restricted use of nondeterminism
and different variable orderings. They are restricted enough such that most of the
essential operations can be performed efficiently and they allow polynomial-size
representations for more Boolean functions than OBDDs.

Definition 4. A k-PBDD consists of k OBDDs whose variable orderings may
be different. The output value for an input b is defined as 1 iff at least one of
the OBDDs computes 1 on b. A PBDD is a k-PBDD for some k. The size of a
k-PBDD is the sum of the sizes of the k OBDDs.
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2.2 Symbolic OBDD-Based Graph Representations and the
Maximum Matching Problem

In the following for z = (zn−1, . . . , z0) ∈ {0, 1}n let |z| :=
∑n−1

i=0 zi2i. Let G =
(V, E) be a graph with N vertices v0, . . . vN−1. The edge set E can be represented
by an OBDD for its characteristic function, where

XE(x, y) = 1 ⇔ (|x|, |y| < N) ∧ (v|x|, v|y|) ∈ E, x, y ∈ {0, 1}n and n = �log N	.
Undirected edges are represented by symmetric directed ones. In the rest of the
paper we assume that N is a power of 2 since it has no bearing on the essence of
our results. OBDD-represented graphs on N vertices are typically only defined
on log N Boolean variables in comparison to other implicit graph representations
where at least c log N bits for some constant c > 1 are allowed [16,26]. One of
the reasons is that the number of variables of intermediate OBDDs during a
symbolic algorithms can be seen as a performance parameter. Multiplying the
number of variables on which an OBDD depends by a constant c enlarge the
worst-case size asymptotically from S to Sc. (See, e.g., [9] for the importance to
keep the number of variables as low as possible.)

A matching in an undirected graph G = (V, E) is a subset M ⊆ E such that
no two edges of M are adjacent. A matching M is maximum if there exists no
matching M ′ ⊆ E such that |M ′| > |M |, where |S| denotes the cardinality of
a set S. A perfect matching is a matching of cardinality |V |/2. In the symbolic
setting the maximum (perfect) matching problem is the following one. Given
an OBDD for the characteristic function of the edge set of an undirected input
graph G, the output is an OBDD that represents the characteristic function of
a maximum (perfect) matching in G. A graph G = (V, E) is bipartite, if V can
be partitioned into two disjoint nonempty sets U and W , such that for all edges
(u, w) ∈ E it holds u ∈ U and w ∈ W or vice versa.

3 The Maximum Matching Problem on
OBDD-Represented Graphs

In this section we prove Theorem 1 and demonstrate that an exponential blow-
up from input to output size for the maximum matching problem is possible in
the symbolic setting.

Our proof structure is the following one. First, we define an input graph G
for the maximum matching problem. It is not difficult to see that the size of the
corresponding OBDD representation for the characteristic function of its edge
set is polynomial with respect to the number of Boolean variables. Afterwards
we prove that there exists a maximum matching in G represented by its edge set
for which the corresponding characteristic function has exponential OBDD com-
plexity. Therefore, every OBDD-based algorithm solving the maximum matching
problem need exponential space with respect to its input length. We start with a
very simple input graph and show that there exists a maximum matching whose
OBDD complexity is exponentially larger than the OBDD complexity of the
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input graph. The investigated maximum matching is also a perfect matching.
Afterwards we present an example where the maximum matching is unique but
not a perfect matching because the input graph contains many isolated vertices.
Now, we make our ideas more precise.

1) The definition of the input graph G:

Our input graph G = (V, E) is a complete bipartite graph on 2n2+1 vertices.
The vertex set V is partitioned into two nonempty sets U and W of equal size
such that there exists no edge incident to two vertices in U respectively W .
The Boolean encoding of a vertex v ∈ V consists of n2 + 1 Boolean variables
z, x11, . . . , xnn, the variable z indicates whether v is in U (z = 0) or in W (z = 1).
The x-variables can be seen as a Boolean matrix of dimension n × n.

2) The polynomial upper bound on the OBDD size for the characteristic func-
tion of the edge set of G:

G can be represented by an OBDD of size 5. The characteristic function XE of
E is defined on the variables ((z1, x1

11, . . . , x
1
nn), (z2, x2

11, . . . , x
2
nn)). The function

value is 1 iff z1 ⊕ z2 = 1.

3) A maximum matching in G and an exponential lower bound on the OBDD
size for its characteristic function:

It remains to show that there exists a maximum matching in G defined by the
characteristic function of its edge set whose OBDD complexity is exponential.
Note, that our aim is to present a constructive and not only an existence proof.
A vertex v in G has the property P iff the x-variables of its Boolean encoding
correspond to a Boolean matrix that contains exactly one 1-entry in each row
and in each column. Now, we are ready to define a maximum matching in G
whose OBDD complexity is exponential. The crucial idea for the definition of a
perfect matching with large OBDD size is the following. Vertices with property
P are matched to vertices with property P and vertices without P to vertices
without property P . To be more precise, let zu, xu

11, . . . , x
u
nn be the variables

of the Boolean encoding of a vertex u ∈ U and zw, xw
11, . . . , x

w
nn those of a

vertex w ∈ W . The vertices u and w are matched if both have the property
P and xu

ij = xw
ji for all i, j ∈ {1, . . . , n} or if both have not the property P

and xu
ij = xw

ij for all i, j ∈ {1, . . . , n}. Obviously, this is a complete definition
of a perfect matching in G. Let XM be the characteristic function of this edge
set. Next, we prove that the OBDD complexity of XM is exponential. In [15,17]
exponential lower bounds on the size of so-called nondeterministic read-once
branching programs (a more general OBDD model) representing the Boolean
function PERMn, the test, whether a Boolean matrix contains exactly one 1-
entry in each row and in each column, are presented. In the following we consider
an arbitrary OBDD for a carefully chosen subfunction of XM and we investigate
several paths from the source of the OBDD to the 1-sink. Here, for the choice
of the considered paths and for the estimation of the number of different chosen
subpaths some of the ideas presented in [15,17] are used but because of the
different definition of our investigated function we have to add some ideas.
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Let GM be an OBDD on the variables ((z′, x11, . . . , xnn), (z′′, y11, . . . , ynn)) for
the representation of XM and G′

M be the OBDD obtained from GM by replacing
the variables x23, y32 by 1 and x32, y23 by 0. The reason for these replacements
is that all 1-inputs for the subfunction of XM represented by G′

M correspond to
edges between vertices in the input graph G with property P . As a result it is a
little bit easier to argue that G′

M and therefore GM need an exponential number
of nodes. Furthermore, we set z′ to 1 and z′′ to 0. This is not crucial for our
lower bound proof but convenient to keep our proof as simple as possible.

Our aim is to show that there is an exponential number of nodes in the OBDD
G′

M . For the ease of notations we assume w.l.o.g. that n is an even number. We
investigate the paths in G′

M from the source to the 1-sink called accepting paths.
There are 2n− 2 1-edges, i.e., variables set to 1, on these paths and the number
of these paths is (n − 2)(n − 2)!. Now, we separate each accepting path p into
its initial part pu and into the remaining part p� to the 1-sink. Here, we have to
use a different cut as considered in [15,17]. A pair (xij , yji), i, j ∈ {1, . . . , n}, is
called (x, y)-pair. We define a cut through all accepting paths after for exactly
n/2 − 2 (x, y)-pairs there exists at least one variable set to 1 for the first time.
Let Rpu (Cpu) be the set of indices i for which a variable xi∗ or y∗i (x∗i or yi∗)
is set to 1 on pu. If n/2 − 1 rows and columns are fixed, there are (n/2 − 1)!
possibilities to map the indices of the rows to the indices of the columns. Each
initial part of an accepting path can be continued by at most (n/2)! subpath to
the 1-sink. Therefore, there is a set P of different initial paths from the source to
the cut, |P | ≥ (

n−1
n/2−1

)
, such that for two different paths p′u and p′′u in P we know

that Rp′
u
�= Rp′′

u
or Cp′

u
�= Cp′′

u
. Due to our choice of the considered paths, there

are extensions p′� of p′u and p′′� of p′′u which lead to the 1-sink. Since Rp′
u
�= Rp′′

u
or

Cp′
u
�= Cp′′

u
, p′u concatenate with p′′� cannot correspond to a Boolean encoding,

where in each row and in each column is exactly one 1-entry, and therefore,
cannot be an accepting path. Here, we make use of the fact that we investigate
a subfunction of XM whose 1-inputs correspond to edges between vertices with
property P in the input graph. Therefore, the paths in P cannot lead to the same
node in G′

M and the size of the set P is a lower bound on the size of G′
M . Using

Stirling’s formula we obtain a lower bound of Ω(n−1/22n) and we are done.
Summarizing, we have shown that the maximum matching problem may cause

exponential space requirements on OBDD-represented graphs by generating in-
stances with an exponential gap between the input and the output OBDD size.
On the other hand, there exists a perfect matching in G whose OBDD com-
plexity is linear. Therefore, the representation sizes for maximum matchings in
a graph can be quite different. Now, we show that an exponential gap between
input and output size is also possible if the maximum matching is unique. In this
way we demonstrate that every symbolic OBDD-based algorithm for the maxi-
mum matching problem need exponential space. We start with the definition of
a function which is well known in the BDD literature.

Definition 5. The hidden weighted bit function HWBn : {0, 1}n → {0, 1} com-
putes the bit bsum on the input b = (b1, . . . , bn), where sum :=

∑n
i=1 bi and

b0 := 0.
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Bryant [7] has introduced this function as a very simple version of storage access
where each variable is control and data variable. He has also already shown
that the OBDD complexity of HWBn is Ω(2(1/5−ε)n) which has been slightly
improved up to Ω(2n/5) in [5].

1) The definition of the input graph Gn:

...
...

...
...

...
...

...
...

...
...

Fig. 1. The input graph Gn and the set of hidden difficult edges

The graph Gn = (V, E) consists of 22n+2 vertices vi1,i2,i3 , i1 ∈ {0, . . . , 3},
i2, i3 ∈ {0, . . . , 2n − 1}. Let bi = (bi

0, . . . , b
i
n−1) be the binary representation of

an integer i ∈ {0, . . . , 2n−1}. There exists an edge between a vertex vi1,i2,i3 and
a vertex vj1,j2,j3 if one of the following requirements is fulfilled:

- i1 = 0, i2 = 2k,
∑n−1

�=0 bi3
� = k and bi3

k−1 = 1,
j1 = 1, j2 = 0, and j3 = i3, or

- i1 = 2, i2 = 0,
∑n−1

�=0 bi3
� = k and bi3

k−1 = 1,
j1 = 3, j2 = 2k, and j3 = i3, or

- i1 = 1, i2 = 0, j1 = 2, j2 = 0, and j3 = i3.

Figure 1 shows the structure of the input graph Gn, where isolated vertices
are missing. Obviously, the maximum matching in Gn is unique (see Figure 2).
The important property of Gn is that an edge from a vertex v1,i2,i3 to a vertex
v2,j2,j3 belongs to the maximum matching iff i2 = j2 = 0, i3 = j3, and the
binary representation of i3 respectively j3 corresponds to an input that belongs
to HWB−1

n (0). The characteristic function of this edge set is a difficult function
but in our input graph this edge set is in some sense hidden (see Figure 1)
such that the characteristic function of the edge set of the input graph can be
represented by OBDDs of small size.

2) The polynomial upper bound on the OBDD size of XE :

Let x1
0, x

1
1, x

2
0, . . . , x

2
n−1, x

3
0, . . . , x

3
n−1 be the variables of the Boolean encod-

ing of a vertex vi1,i2,i3 , where x1
0, x

2
0, and x3

0 denote the least significant bits,
the x1-variables represent i1, the x2-variables i2, and the x3-variables i3. The
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...
...

...
...

...
...

...
...

...
...

Fig. 2. The unique maximum matching in Gn

characteristic function XE of the edge set depends on 2(2n+2) Boolean variables
((x1

0, x
1
1, x

2
0, . . . , x

2
n−1, x

3
0, . . . , x

3
n−1), (y1

0 , y1
1, y

2
0 , . . . , y

2
n−1, y

3
0, . . . , y

3
n−1)).

Our aim is to prove that XE can be represented by OBDDs of size O(n2)
according to the variable ordering

x1
0, y

1
0 , x

1
1, y

1
1 , x

2
0, y

2
0, . . . , x

2
n−1, y

2
n−1, x

3
0, y

3
0 , . . . , x

3
n−1, y

3
n−1.

There are three different disjoint edge sets, from v0,·,·- to v1,·,·-, from v1,·,·- to
v2,·,·-, and from v2,·,·- to v3,·,·-vertices. We prove that each of them can be repre-
sented by OBDDs of small size. Since the different edge sets can be identified by
the assignments to the x1- and y1-variables which are tested at the beginning of
the OBDD, it suffices to add the OBDD sizes in order to obtain an upper bound
on the OBDD complexity of XE .

If x1
0 = x1

1 = 0, y1
0 = 0, and y1

1 = 1, it is checked whether y2
0 = . . . = y2

n−1 = 0,
and there exists exactly one x2-variable set to 1. If |x2| = 2i, the number of x3-
variables is counted. The function value is 1 if

∑n−1
�=0 x3

� = i, x3
i−1 = 1, and

y3
� = x3

� , 0 ≤ � ≤ n − 1. Since we only have to distinguish n different values for
|x2|, this can be done by an OBDD of width O(n).

If x1
0 = 0, x1

1 = 1, y1
0 = y1

1 = 0, the roles of the x- and y-variables are
exchanged. The cases x1

0 = 1, x1
1 = 0, y1

0 = y1
1 = 1, and x1

0 = x1
1 = 1, y1

0 = 0,
y1
1 = 1 are similar.
If x1

0 = 1, x1
1 = 0, y1

0 = 0, y1
1 = 1, or x1

0 = 0, x1
1 = 1, y1

0 = 1, y1
1 = 0, it is

checked whether |x2| = |y2| = 0 and |x3| = |y3|. This can be done by an OBDD
of constant width.

Altogether, we have seen that XE can be represented by an OBDD of size
O(n2).

3) The exponential lower bound on the OBDD size for the characteristic func-
tion of the maximum matching XM in Gn:

Due to our definition of Gn the maximum matching contains an edge from a
vertex v1,i2,i3 to a vertex v2,j2,j3 if i2 = j2 = 0, i3 = j3, and the binary represen-
tation of i3 respectively j3 corresponds to an input that belongs to HWB−1

n (0).
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Our aim is to adapt the ideas for the exponential lower bound on the OBDD size
of HWBn presented in [7]. Therefore, we consider the subfunction of XM , where
x1

0 = 1, x1
1 = 0, y1

0 = 0, y1
1 = 1, and the x2- and y2-variables are replaced by 0.

In the following we assume that n is a multiple of 10 because it has no bearing
on the essence of the proof. Let π be an arbitrary but fixed variable ordering. A
pair (x3

� , y
3
� ) is called (x, y)-pair and x3

� a partner of y3
� and vice versa. Now, we

define a cut in the variable ordering after for the first time for exactly (6/10)n
(x, y)-pairs there exist at least one variable. T contains the variables before the
cut according to π and B the remaining variables. Let PH be the set of all pairs
(x3

i , y
3
i ), i ∈ {(5/10)n + 1, . . . , (9/10)n}, and PL be the set of all pairs (x3

j , y
3
j ),

j ∈ {(1/10)n + 1, . . . , (5/10)n}. Obviously, T contains at least for (2/10)n pairs
in PH or at least for (2/10)n pairs in PL at least one variable. W.l.o.g. we as-
sume that T contains at least for (2/10)n pairs in PL at least one variable. In
the following we only consider assignments where variables that belong to the
same (x, y)-pair are replaced by the same constant. We consider all assignments
to the variables in T where exactly (1/10)n pairs in PL are replaced by 1, all
other variables in T are set to 0. There are at least

(
(2/10)n
(1/10)n

)
= Ω(n−1/22n/5)

different assignments. Using Theorem 3 it is sufficient to prove that these assign-
ments lead to different subfunctions. For this reason we consider two different
assignments b and b′ to the variables in T . Let (x3

�−1, y
3
�−1) be an (x, y)-pair for

which at least one variable is replaced differently in b and b′. W.l.o.g. x3
�−1 is

set to 0 in b and to 1 in b′. Now, we consider the following assignment br to
the variables in B. The variables for which there is a partner in T are replaced
by the assignment to the partner according to b. The remaining variables are
replaced in such a way that there are exactly �− (1/10)n pairs that are set to 1.
This can be done because there are (4/10)n pairs for which both variables are
in B and � ≤ (5/10)n. Obviously, the function value of the subfunction induced
by b on br is 1. The function value for the subfunction induced by b′ on br is 0
because either |x3| �= |y3| or x3 ∈ HWB−1

n (1).
Altogether, we have shown that the OBDD complexity of XM is at least

Ω(n−1/22n/5).

4 Exponential Blow-Ups for the OBDD-Complexity of
Directed and Undirected Graphs

In this section we prove Theorem 2 and consider the OBDD size of directed and
undirected graphs.

Definition 6. An undirected graph Gu = (V, Eu) is called the counterpart of a
directed graph Gd = (V, Ed) iff for all edges (u, w) ∈ Ed the edge (u, w) is in
Eu. An asymmetric directed graph GD = (V, ED) is called a counterpart of an
undirected graph GU = (V, EU ) if for all edges (u, w) ∈ EU the edge (w, u) is
not in ED but (u, w) ∈ ED or vice versa.

In order to prove Theorem 2, we investigate the following directed bipartite
graph Gd = (V, Ed) defined on 2n2+1 vertices. V is partitioned into the sets U
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Fig. 3. An OBDD for XEd . Missing edges are leading to the 0-sink.

and W of equal size. The Boolean encoding of a vertex v ∈ V consists of n2 + 1
Boolean variables z, x11, . . . , xnn, where the variable z indicates whether v ∈ U
(z = 0) or in W (z = 1). The x-variables can be seen as a Boolean matrix X of
dimension n × n. There exists an edge from a node u ∈ U to a node w ∈ W if
there exists a row that consists only of 1-entries in the Boolean encoding X of u
and a column that contains only 1-entries in the Boolean encoding according to
the x-variables of w. Next, we prove that Gd can be represented by OBDDs of
linear size with respect to the number of Boolean variables but the undirected
counterpart Gu needs exponential size. The characteristic function of the edge
set of Gd is defined on the variables (z1, x1

11, . . . , x
1
nn), (z2, x2

11, . . . , x
2
nn). Our aim

is to prove that XEd
can be represented by OBDDs of size O(n2) and constant

width according to the variable ordering

z1, x1
11, x

1
12, . . . , x

1
nn, z2, x2

11, x
2
21, . . . , x

2
nn,

i.e., the first x-variables are tested in a row-wise manner, variables that belong
to the same row are tested one after another, and the last x-variables are tested
in a column-wise manner. Applying Theorem 3 is is sufficient to prove that there
are only a constant number of different subfunctions obtained by replacements
of the first i variables for all i ∈ {1, . . . , 2n2 + 2} with respect to the considered
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variable ordering. If z1 is 1, the function value is 0 because there are no edges
from a vertex w ∈ W to a vertex u ∈ U . If z1 is 0, the x1-variables are tested row-
wise and it is checked whether there exists a row that consists only of 1-entries.
This can be done by an OBDD of width 1. If the test is negative, the function
value is 0. If the test is positive, the variable z2 is tested. The function value is
0, if z2 is 0, because there are no edges between vertices in U . Afterwards the
x2-variables are tested column-wise and the function value is 1 iff there exists
a column that contains only 1-entries. This can also be done by an OBDD of
width 1. Figure 3 shows an OBDD for XEd

.
For the lower bound proof on the OBDD size for the characteristic function of

the undirected counterpart Gu let π be an arbitrary but fixed variable ordering.
We define a cut in π where for the first time n/2 − 1 rows or n/2 − 1 columns
have a tested x1- or x2-variable. XU contains the x-variables before the cut in
π, XL the remaining x-variables.

Case 1: There are n/2− 1 rows for which an x1-variable or n/2− 1 columns for
which an x2-variable is in XU .

W.l.o.g. we assume that there are n/2− 1 rows for which an x1-variable is in
XU . First, we set z1 to 0 and z2 to 1. The x2-variables are replaced by constants
in the following way:

- the variables x2
11, x

2
21, . . . , x

2
n1 are set to 1,

- the remaining x2-variables are set to 0.

As a result we obtain a subfunction of XEu whose function value is 1 iff the
Boolean matrix defined by x1

11, . . . , x
1
nn contains a row that consists only of 1-

entries. Now, we prove that a π-OBDD for this subfunction needs exponential
size. We set the x1-variables tested first in the first n/2 − 1 rows with respect
to π to all possible assignments. Variables in XU that belong to the same row
are set to the same constant. Next, we prove that two different assignments b
and b′ of these 2n/2−1 partial assignments lead to different subfunctions. For this
reason we consider the following assignment br to the remaining x1-variables in
XL. Let � be a row for which the x1-variables in b are set to 1 and in b′ to 0 (or
vice versa). W.l.o.g. we assume that the x�·-variables in b are set to 1 and in b′

to 0. In br the x1
�· -variables are set to 1, the remaining x1-variables are set to 0.

There exist x1
�·-variables in XL because otherwise there are n rows that have a

variable in XU . The function value of the considered subfunction obtained by b
respectively b′ for br is 1 respectively 0, therefore the induced subfunctions are
different and we are done.

Case 2: There are n/2− 1 columns for which an x1-variable or n/2− 1 rows for
which an x2-variable is in XU .

By replacing the variables z1 by 1 and z2 by 0 the case is similar to the first
one and we are done.

One might think that our result is not very astonishing because the orientation
of an edge can store some kind of information and without this information the
representation size may enlarge. Nevertheless, if the characteristic function XEd
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of a directed graph Gd = (V, Ed) is represented by a circuit, the representation
size for the undirected counterpart can only enlarge by a factor of 2. In the
following we show that the same holds for 2-PBDDs which are slightly more
general than OBDDs. Let ER

d be the set of edges obtained by replacing each
directed edge (u, v) ∈ Ed by the directed edge (v, u). Let GEd

be an OBDD
for the characteristic function XEd

which is defined on x- and y-variables. The
PBDD consists of two OBDDs according to different variable orderings. The first
part represents the edges in Ed and is equal to GEd

, the second part represents
XR

Ed
. For the second part of the 2-PBDD we change the variable ordering of GEd

by renaming the x-and the y-variables, i.e., nodes labeled by xi are now yi-nodes
and vice versa (for all indices). Obviously, the second part of the 2-PBDD has
the same size as GEd

and represents XR
Ed

. Altogether, our result on the OBDD
size of directed graphs and their undirected counterparts is not as obvious as it
seems to be.

In the design and analysis of symbolic graph algorithms OBDDs are often
ordered according to so-called interleaved variable orderings, where x- and y-
variables of the same significance (or with the same indices) are tested consecu-
tively (see, e.g., [21] and [28]). This seems to be reasonable, since the characteris-
tic function of an undirected graph is symmetric. If a directed graph Gd = (V, Ed)
can be represented symbolically by an OBDD GEd

of small size according to an
interleaved variable ordering, its undirected counterpart Gu = (V, Eu) can also
be represented symbolically by an OBDD of small size. To be more precise, if
S is the size of GEd

, the OBDD size of XEu is bounded above by O(S2). The
reason is the following one. If we modify a π-OBDD for a function f into a
π′-OBDD for f , where π′ can be obtained from π by only exchanging the posi-
tion of neighbored variables, the size of the π′-OBDD can only be by a factor
of 3 larger than the size of the π-OBDD (see Theorem 4 in [4]). Afterwards an
OBDD for XEu can be obtained by applying an ∨-synthesis on the OBDDs for
XEd

and XER
d

because now the OBDDs are ordered with respect to the same
variable ordering. Using the well-known results on the worst-case complexity of
the synthesis-operation (see, e.g., [6]), the OBDD size for XEu can be bounded
above by the product of the OBDD sizes for XEd

and XER
d
.

In the rest of this section we show that also between undirected graphs
and their directed counterparts an exponential blow-up in the representation
size is possible. Again, we consider the complete undirected bipartite graph
GU = (V, EU ) defined in Section 3. For each undirected edge in EU we have
two possibilities to choose the orientation. Using a simple counting argument,
it is easy to see that there exists a directed counterpart of GU whose OBDD
complexity is exponential. Finally, we present a concrete directed counterpart of
GU whose OBDD size is exponential. The graph is defined in the following way.
There exists an edge from u ∈ U to a vertex w ∈ W iff the x-variables of the
Boolean encoding of u correspond to a Boolean matrix that contains exactly one
1-entry in each row and in each column. If we replace z1 by 0 and the variables
z2, x2

11, . . . , x
2
nn by 1, we obtain the function PERMn. As already mentioned in

Section 3 the OBDD size of PERMn is Ω(n−1/22n). Therefore, we are done.
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Concluding Remarks

Symbolic graph algorithms on OBDD-based representations are implicitly par-
allel, since vertices or edges are treated simultaneously if they share their OBDD
representations. Sawitzki [24] has shown that a problem is in the complexity class
NC, which contains the problems that can be solved efficiently in parallel, if it
can be solved with a polylogarithmic number of OBDD-operations with respect
to the number of the vertices in a given graph. It is an open problem whether
the maximum matching problem is in NC. Nevertheless, we have seen that sym-
bolic algorithms for this problem need exponential space (with respect to the
number of Boolean variables). Since in the complete bipartite graph presented
in Section 3 there exists a maximum matching of linear OBDD size (a node in U
in matched to a node in W if the x-variables in the Boolean encoding are equal)
and a maximum matching whose representation size is exponential even for a
more general model than OBDDs called nondeterministic read-once branching
programs, we have seen that the representation sizes for maximum matchings in
an input graph can be quite different.
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2006. LNCS, vol. 3831, pp. 471–482. Springer, Heidelberg (2006)

25. Sieling, D., Wegener, I.: NC-algorithms for operations on binary decision diagrams.
Parallel Processing Letters 48, 139–144 (1993)

26. Talamo, M., Vocca, P.: Representing graphs implicitly using almost optimal space.
Discrete Applied Mathematics 108, 193–210 (2001)

27. Wegener, I.: Branching Programs and Binary Decision Diagrams - Theory and
Applications. SIAM Monographs on Discrete Mathematics and Applications (2000)

28. Woelfel, P.: Symbolic topological sorting with OBDDs. Journal of Discrete Algo-
rithms 4(1), 51–71 (2006)


	On Symbolic Representations of Maximum Matchings and (Un)directed Graphs
	Introduction
	Preliminaries
	Ordered Binary Decision Diagrams
	Symbolic OBDD-Based Graph Representations and the Maximum Matching Problem

	The Maximum Matching Problem on OBDD-Represented Graphs
	Exponential Blow-Ups for the OBDD-Complexity of Directed and Undirected Graphs
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




