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Abstract. We present a fully homomorphic encryption scheme which
has both relatively small key and ciphertext size. Our construction fol-
lows that of Gentry by producing a fully homomorphic scheme from
a “somewhat” homomorphic scheme. For the somewhat homomorphic
scheme the public and private keys consist of two large integers (one of
which is shared by both the public and private key) and the ciphertext
consists of one large integer. As such, our scheme has smaller message
expansion and key size than Gentry’s original scheme. In addition, our
proposal allows efficient fully homomorphic encryption over any field of
characteristic two.

1 Introduction

A fully homomorphic public key encryption scheme has been a “holy grail”
of cryptography for a very long time. In the last year this problem has been
solved by Gentry [7I8], by using properties of ideal lattices. Various cryptographic
schemes make use of lattices, sometimes just to argue about their security (such
as NTRU [II]), in other cases lattices are vital to understand the workings of
the scheme algorithms (such as [9]). Gentry’s fully homomorphic scheme falls
into the latter category. In this paper we present a fully homomorphic scheme
which can be described using the elementary theory of algebraic number fields,
and hence we do not require lattices to understand its encryption and decryption
operations. However, our scheme does fall into the category of schemes whose
best known attack is based on lattices.

At a high level our scheme is very simple, and is mainly parametrized by an
integer N (there are other parameters which are less important). The public key

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 420 2010.
© International Association for Cryptologic Research 2010



Fully Homomorphic Encryption with Relatively Small Key 421

consists of a prime p and an integer  modulo p. The private key consists of
either an integer z (if we are encrypting bits), or an integer polynomial Z(x) of
degree N — 1 (if we are encrypting general binary polynomials of degree N — 1).
To encrypt a message one encodes the message as a binary polynomial, then one
randomizes the message by adding on two times a small random polynomial. To
obtain the ciphertext, the resulting polynomial is evaluated at o modulo p. As
such, the ciphertext is simply an integer modulo p (irrespective of whether we
are encrypting bits or binary polynomials of degree N — 1).

To decrypt in the case where we know the message is a single bit, we mul-
tiply the ciphertext by z and divide by p. We then round this rational number
to the nearest integer value, and subtract the result from the ciphertext. The
plaintext is then recovered by reducing this intermediate result modulo 2. When
we are decrypting a binary polynomial we follow the same procedure, but this
time we multiply by the polynomial Z(x) and divide by p, to obtain a rational
polynomial. Rounding the coefficients of this polynomial to the nearest integer,
subtracting from the original ciphertext, and reducing modulo two will result
again in recovering the plaintext.

2 Preliminaries

2.1 Notation

Given a polynomial g(z) = ZZ:O gir® € Q[z], we define the 2-norm and co-norm
as
t
lg()ll2 = Z;g? and [|g(@)]oc = max |g.].
1=
For a positive value r, we define two corresponding types of “ball” centered at
the origin:

N—1 N—1
Ban(r) = {Z a;x’ Z af < 7"2},

=0 =0
N-1

Boo (1) = {Z @izt —r < a; < } .
=0

We have the usual inclusions Ba n (1) C Boo n(7) and Be n () C Ban (VN - 7).
We also define the following half-ball

N-1
B:OVN(T): {Zaixi:0<ai <r}.
i=0

All reductions in this paper modulo an odd integer m are defined to result in
a value in the range [—(m — 1)/2,...,(m — 1)/2]. The notation a < b, means
assign the value on the left to the value on the right. Whereas a «+— g A where A
is a set, means select a from the set A using a uniform distribution.
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2.2 Ideals in Number Fields

Since the underlying workings of our scheme are based on prime ideals in a
number field, we first recap on some basic properties. See [4] for an introduction
to the elementary computational number theory needed.

Let K be a number field Q(#) where 6 is a root of a monic irreducible poly-
nomial F(z) € Z[z] of degree N. Consider the equation order Z[f] inside the
ring of integers Ok. For our parameter choices we typically have Ox = Z[d],
but this need not be the case in general. Our scheme works with ideals in Z[6)
that are assumed coprime with the index [Ok : Z[f]], so there is little difference
with working in Og. These ideals can be represented in one of two ways, either
by an N-dimensional Z-basis or as a two element Z[6]-basis. When presenting
an ideal a as an N-dimensional Z basis we give N elements 71,...,vy € Z[d],
and every element in a is represented by the Z-module generated by 1, ..., vn-.
It is common practice to present this basis as an n X n-matrix. The matrix is
then set to be (v;,;), where we set v; = Z;V:_Ol 7,707, i.e. we take a row ori-
ented formulation. Taking the Hermite Normal Form (HNF) of this basis will
produce a lower triangular basis in which the leading diagonal (ds, ..., dy) sat-
isfies d;41|d;. Note that this last property of the HNF of a basis only follows for
matrices corresponding to ideals [5] (who use a different orientation).

However, every such ideal can also be represented by a Z[f]-basis given by
two elements, (d1,d2). In particular one can always select 1 to be an integer.
For ideals lying above a rational prime p, it is very easy to write down a two
element representation of an ideal. If we factor F'(x) modulo p into irreducible
polynomials

F(z) =[] Fi@)*  (mod p)

then, for p not dividing [Ok : Z[6]], the prime ideals dividing pZ[f] are given by
the two element representation

pi = (p, F5(0)) .

We define the residue degree of p; to be equal to the degree d; of the polynomial
F;(x). Reduction modulo p; produces a homomorphism

tp; 2 Z10] — T, .

We will be particularly interested in prime ideals of residue degree one. These
can be represented as a two element representation by (p, 0 — «) where p is the
norm of the ideal and « is a root of F(x) modulo p. If x € Z[f] is given by
X = Zﬁgl ;0" then the homomorphism tp simply corresponds to evaluation of
the polynomial x(6) in @ modulo p.

Given a prime ideal of the form (p,6 — «), the corresponding HNF repre-
sentation is very simple to construct, and is closely related to the two element
representation, as we shall now show. We need to row reduce the 2N x N matrix
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p
P 0
0
p
—a 1 0
—a 1
0
—« 1

—Fo —F1 —F2 —FN,Q —FN,1 —

where F(x) = Zfio F;x'. Tt is not hard to see that the HNF of the above matrix
is then given by

p 0
—a 1
H = —a? 1 7
-1 1

where all the integers in the first column, in rows two and onward, are taken
modulo p.

Recall that an ideal is called principal if it is generated by one element, i.e. we
can write p = (y) = v - Z[f]. Note that given an HNF or two-element represen-
tation of an ideal, determining whether it is principal, and finding a generator
is considered to be a hard problem for growing N. Indeed the best known algo-
rithms (which are essentially equivalent to finding the class and unit group of a
number field) run in exponential time in the degree of the field. For fixed degree
they run in sub-exponential time in the discriminant [2]. In addition the genera-
tor of a principal ideal output by these algorithms will be very large. Indeed, this
generator will typically be so large that writing it down as a polynomial in § may
itself take exponential time [I4]. Thus finding a small generator of a principal
ideal is possibly an even harder problem. Quantumly finding a generator of a
principal ideal is relatively easy [10], however writing down a small generator is
not known to be easy.

3 Our Somewhat Homomorphic Scheme

In this section we present our somewhat homomorphic scheme and analyze for
which parameter sets decryption works. To simplify the presentation we present
the scheme at this point as one which just encrypts elements in P = {0, 1}.
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3.1 The Scheme

A somewhat homomorphic encryption scheme consists of five algorithms:
{KeyGen, Encrypt, Decrypt, Add, Mult}. We shall describe each in turn; notice
that the most complex phase is that of KeyGen. The scheme is parametrized
by three values (N,n, ). A typical set of parameters would be (N, 2‘/N, VN).
Later we shall return to discussing the effects of the sizes of these values on the
security level A\ and performance of the scheme.

KeyGen():

— Set the plaintext space to be P = {0,1}.
— Choose a monic irreducible polynomial F(z) € Z[z] of degree N.
— Repeat:
o S() g Boo,n(1/2).
o G(r) —1+2-5S(x).
e p « resultant(G(z), F(x)).
Until p is prime.
D(x) « ged(G(z), F(z)) over Fplx].
Let a € F,, denote the unique root of D(z).
— Apply the XGCD-algorithm over Q[z] to obtain Z(z) = Zili_ol zixt € Z[z]
such that

Z(x)-G(z) =p mod F(x).

— B« zp (mod 2p).
The public key is PK = (p, ), whilst the private key is SK = (p, B).

Encrypt(M, PK): Decrypt(c, SK):
— Parse PK as (p, a). — Parse SK as (p, B).
— If M & {0,1} then abort. — M« (¢c— |c- B/p]) (mod 2).
— R(z) « R Boon(1t/2). — Output M.

C(x) «— M +2- R(x).
— ¢+ C(a) (mod p).

— Output c.
Add(c1, c2, PK): Mult(eq, co, PK):
— Parse PK as (p, a). — Parse PK as (p, a).
— 3 « (c1 +¢c2) (mod p). — ¢3 « (c1-¢2) (mod p).
— Output c3. — Output c3.

3.2 Analysis

In this section we analyze for which parameter sets our scheme is correct and
also determine how many homomorphic operations can be performed before
decryption will fail.
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KeyGen algorithm. We can see that KeyGen generates an element v = G(6)
of prime norm p in the number field K defined by F(z). As such we have con-
structed a small generator of the degree one prime ideal p = 7 - Z[¢]. To find the
two element representation of p, we need to select the correct root o of F(x)
modulo p. Since v = G(0) € p, we have that G(«) = 0 mod p, so G(x) and F(z)
have at least one common root modulo p. Furthermore, there will be precisely
one root in common, since otherwise v would generate two different prime ideals,
which clearly is impossible. This explains the fact that D(z) has degree one; we
are using D(x) to select the precise root of F'(z) which corresponds to the ideal
p generated by . The two element representation of the ideal p then simply is
p=p-Z[0] + (0 — a)Z[)].

Encrypt algorithm. The message M is added to twice a small random polyno-
mial R(z) resulting in a polynomial C(x). The oco-norm of the polynomial R(x) is
controlled by the parameter p. Encryption then simply equals reduction of C(6)
modulo p using the public two element representation (p,6 — «). As explained
before, this simply corresponds to evaluating C(x) in @ modulo p. Furthermore,
note that this precisely implies that C'(8) — ¢ € p.

Decrypt algorithm. By definition of encryption, we have that C'(8) —c¢ € p and
p is principal and generated by v = G(6). Hence, we can write

C0)—c=q(0) v,

with ¢(6) € Z[6)]. It is clear that if we recover the element C(0), then decryption
will work since C'(f) = M +2- R(f). Note that v~ is precisely given by Z(6)/p,
where Z was computed in KeyGen. Dividing by = therefore leads to the following

equality
—c-Z(0)/p=q(0) — (C(0) - 2(0)) /p.

The above equation shows that if ||C(0)- Z(6)/pllc < 1/2, then simply rounding
the coeflicients of —c - Z(0)/p will result in the correct quotient ¢(#). This will
allow for correct decryption by computing C(0) = ¢+ q(0) - v. The crucial part
therefore is to obtain a bound on ||Z(z)|| -

Lemma 1. Let F(x),G(z) € Z[z] with F(z) monic, deg(F) = N and deg(G) =
M < N and resultant(F, G) = p, then there exists a polynomial Z(x) € Zlx] with
Z(x)-G(x) = pmod F(X) and

1Z(@)]lse < 1G@)l3 " - 1E(@)]5"-

ProoF: Over Q[z], we have that ged(G(x), F(x)) = 1, so there exists poly-
nomials S(z),T(z) € Q[z] with deg(S) < N and deg(T) < M such that

S(z) - G(z) + T'(z) - F(z) = 1. It is well known (see for instance Corollary
6.15 of [6 ])1 that the polynomials S and T are given by S = Zﬁgl s;z’ and

T = ZZ o tiz', where the s; and t; are the solutions of
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SN—-1 0
T S0
G-, =]
: 0
to 1

where Syl(G, F) is the Sylvester matrix of G and F. The resultant is precisely
det(Syl(G, F')) = p, so by Cramer’s rule we find an explicit expression for the
coefficients s;, namely, the determinant of a submatrix of Syl(G, F)T (remove
one of the columns containing the coefficients of G and the last row) divided by
p. Using Hadamard’s inequality to bound the determinant of such submatrices,
we finally conclude that |z;| < ||G||Y - || F||3L. O

In the remainder of the paper we will assume that M = N —1 which will happen
with very high probability.

Define

b s {1962 (0 mod P

l9@loo - IRl | AEL)deBIR) < N} ‘

We then have that

19(6) - 7(0)llco < 0o - llglloo - 1Al oo

where deg(g),deg(h) < N. Gentry [8 Section 7.4] derives several bounds on the
above quantity but for the 2-norm and it is easy to obtain the equivalent bounds
for the oco-norm. To illustrate the two extreme cases, i.e. that d,, can range from
fully exponential in N to linear in N, we give the following lemma, which also
motivates why we propose to use F(x) = 2" 4 1 in practice.

Lemma 2. Let Fi(z) = 2 —a and Fy(z) = 2V — ax¥ ! then
doo(F1) < |a|N and 000 (Fo) < \a|N*1N.

PROOF: Let g = Zili_ol giz® and h = Zili_ol hiz®, then

N-1
g-hmod Fy; = Z Z gihk—i +a Z gihnsi—i | 2",
k=0 \0<i<k k<i<N

from which the bound on d,, (F;) immediately follows. Similarly, write g - h =
Ziﬁgz cxz®, then g- h mod F = Zg;ol dpx® with d, = ¢, fork=0,..., N —2
and
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N-1 A
dn_1 = Z CN—1+4i0"
i=0
Since all ¢; clearly are smaller than N||g||eo||h||cc the bound on oo (F2) follows.
(|
From this we can conclude that

c9)-2(9) 0o+ 1Clo - IGII™" - 17157
<
p o p

)

so decryption will work as long as

p

1C]le < _ -
200 Gl IFIY

= IDec-

Note that the expected value of rpec will be roughly ||G||2/20c0, since the resul-
tant p will be about ||G||Y - ||F[|15 . So for ||C|lec < rpec, We have

Cla) =c+q0) v=c—lc Z(x)/plv,

and since M = C(z) mod 2 and v = 1 mod 2 we finally obtain the simplified
decryption function
M =c¢—|c-B/p] mod 2,

where B is zp. Note, we can take B as zy modulo 2p as we are only interested
in rounding ¢ - B/p to the nearest integer and then taking the result modulo 2.
Furthermore, Lemma [I] implies that all coefficients of Z(z) typically will be
smaller than p, since p = resultant(F, G) and thus p ~ |G (z) |2 - ||[F(x)||5f. This
means that the reduction modulo 2p in the key generation will have no effect in
most cases. However, it will turn out to be a necessary assumption in assuring
a uniform distribution when we switch to the full homomorphic scheme.

For our KeyGen algorithm we have that each coefficient of G has size approx-
imately 7, which implies that we have the estimate

For F(x) = oV 4+ 1 we thus obtain the estimate rpe. =~ 7/(2 - v/ N). In the
remainder of the paper we will also sometimes use rgnc instead of u. Note that
if one wants to compare with Gentry’s scheme, one should take into account
that our bounds are formulated for the co-norm, whereas Gentry works with the
2-norm.

Add and Mult algorithms. It is clear that both algorithms are correct. How-
ever, we need to consider how the error values propagate as we apply Add and
Mult. In particular, decryption of ¢ = C(«) will work for a polynomial C(z)
if C(x) € Boo,n(rpec). However, as we apply Add and Mult to a ciphertext
the value of C(z) starts to lie in balls of larger and larger radius. As soon as
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C(x) & Boo,n(rpec), we are no longer guaranteed to be able to decrypt correctly.
This is why our basic scheme is only somewhat homomorphic, since we are only
able to apply Add and Mult a limited number of times.

Let ¢; and ¢y denote two ciphertexts, corresponding to two randomizations
Ci(x) = My + Ni(z) and Ca(x) = My + Na(z); where M; € {0,1} are the
messages and N;(x) € Boo n(r; — 1) is the randomness, i.e. C;(z) € Boon(ri).
We let

C3(z) = M3 + N3(x) = (M1 + Ni1()) + (M2 + Na2(x)),
C4(1’) =M, + N4(1’) = (M1 + N1(1’)) . (M2 + NQ(.T)),

where M3, My € {0,1}. Then
Cg(l’) € Boo,N('rl +r2)

and
04(1') S BOO,N(éoO - "1“2).

Initially we start with a ciphertext with C'(z) lying in Boo v (14 1). After execut-
ing a circuit with multiplicative depth d, we expect the ciphertext to correspond
to a polynomial C’(z) lying in a ball B n(r) with

d
a2 (0o - )2 .
Thus we can only decrypt the output of such a circuit if r < rpec, i.e.

dlog2 <loglog rpec — loglog(dso - 1)

N .
~ log log <\2/ 5 77) — loglog(deo - p1)-

4 Security Analysis

We consider three aspects of security; key recovery, onewayness of the encryption
and semantic security. Whilst semantic security is based on what might at first
appear a non-traditional problem, the other two notions of security are related
to well studied problems in number theory. This is similar to other notions in
cryptography; for example key recovery in ElGamal is related to the DLP prob-
lem, and semantic security to the relatively obscure (for mathematicians) DDH
problem. However, we first show that our scheme is in some sense a specialisation
and optimization of Gentry’s scheme.

Link With Gentry’s Scheme. To discuss the security in more detail, we
first show that our scheme is a specialisation and simplification of the lattice
based scheme of Gentry [7]. The generator « in our scheme is equivalent to the
private basis of the ideal J in Gentry’s scheme, the public basis is then the two
element representation (p, 6 — «). The ideal I of Gentry’s scheme is simply set
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to the principal ideal (2). Therefore, we see that KeyGen is a specialised form
of KeyGen for Gentry’s scheme: in particular we use the compact two element
representation (p, &) of the public basis, instead of the larger HNF representation
as Gentry does.

We now turn to the encryption algorithm. The element C(0) = M (6)+2- R(9)
is precisely the value of 9’ computed in Gentry’s encryption algorithm, with a
value of rgne (in the 2-norm) equal to v/ N - pu. Gentry then produces his ciphertext
1 by reducing 1’ modulo the ideal J using the HNF basis. It is at this point
that we seem to depart from Gentry’s presentation: we actually compute the
reduction of 9’ modulo p using the public two element representation. Given
1)’ as a polynomial in 6, this involves replacing § by a and reducing the result
modulo p. So given C(x), we produce ¢ by simply computing ¢ = 1, (C(0)) € F,,.
However, given our earlier discussion on the HNF of the ideal given by (p, 6 — «)
we see that the two reduction algorithms are equivalent when we are working in
the equation order Z[6)].

Hence, we conclude that our scheme is a specialisation of Gentry’s scheme. For
the given specialisation our key sizes are much smaller than Gentry’s, whilst our
ciphertexts are the same size. When compared to the full generality of Gentry’s
scheme our ciphertexts are also much smaller than Gentry’s. The link between
the two schemes, and the relative simplicity of our scheme, may help shed light
on parameter choices in Gentry’s original scheme.

Key Recovery. Recall the public key in our scheme consists of a principal
degree one prime ideal in two element representation, whilst the private key
consists of the inverse of a small generator of this principal prime ideal. To see
that the generator v is small, notice that the polynomial G(x) has an co-norm

N
given roughly by 7, whereas the size of p is roughly vV N 7™V- ||FH§V71 Recovering
the private key given the public key is therefore an instance of the small principal
ideal problem:

Definition 1 (Small Principal Ideal Problem (SPIP)). Given a principal
ideal a in either two element or HNF representation compute a “small” generator
of the ideal.

This is one of the core problems in computational number theory and has formed
the basis of previous cryptographic proposals, see for example [3]. There are cur-
rently two approaches to the above problem. The first approach is a deterministic
method based on the Baby-Step/Giant-Step method attributed to [I]. This takes
time

N \/min(A, R) - |A]"D,

where A is the discriminant of Z[f], R is the regulator and A = min_, log [y
is the mimimal logarithmic embedding of . Clearly A can itself be bounded by
7, a minor detail which we leave to the reader.

The second approach to this problem is via Buchmann’s sub-exponential al-
gorithm for units and class groups which is described in [2] and [4][Chapter 6].
This method has complexity
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exp( (NlogN) - \/log loglog(A)>

where again A is the discriminant of the order Z[f]. However, this method is
likely to produce a generator of large height, i.e. with large coefficients. Indeed
so large, that writing the obtained generator down as a polynomial in 6 may
take exponential time.

In conclusion determining the private key given only the public key is an instance
of a classical and well studied problem in algorithmic number theory. In particu-
lar there are no efficient solutions for this problem, and the only sub-exponential
method does not find a solution which is equivalent to our private key.

Onewayness of Encryption. In this section we consider the problem of re-
covering a message given a ciphertext element. It is readily seen that this is
equivalent to solving the following problem: Given p and «a,c € F, find z; for
1 =0,...,N — 1, such that

where |2;| < rgnc, for some integer value of k.
To recast this as a lattice problem, consider the lattice generated by the rows
of the matrix H given earlier. Consider the lattice vector

(k,—z1,...,—xpn) - H=(c—z0,—T1,...,—Tn).

This is a lattice vector which is very close (within rgnc in the co-norm, or V'N -rgnc
in the 2-norm) to the non-lattice vector (c,0,...,0). Hence, determining the
underlying plaintext given the ciphertext is an instance of the closest vector
problem.

However, the underlying lattice is a well-studied lattice in algorithmic number
theory, see for example the applications of LLL described in [T2II3I15]. A lattice
generated by a matrix such as H, namely a matrix in Hermite Normal Form in
which all but one diagonal entry is equal to one, is probably the most studied
lattice problem from the computational perspective in number theory. Thus
whilst we are unable to make use of modern worst-case/average-case reductions
for our scheme, the underlying lattice problem is well studied.

However, for later use, we will recap on the analysis Gentry has given for
this problem. Although one should bear in mind that Gentry’s analysis is for a
general lattice arising from the HNF of an ideal and not for the specific one in our
scheme. The best known attack on Gentry’s scheme is one of lattice reduction,
related to the bounded distance decoding problem (BDDP). In particular it is
related to finding short/closest vectors within a multiplicative factor of rpec/renc
in a lattice of dimension V. If we set

Dec \/Nn

9¢ = P — :
lEnc 2600:“
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then it is believed that solving BDDP has difficulty 27V/¢ (see [8][Section 7.7]). We
shall refer to the value 2/V/¢ as the security level of our somewhat homomorphic
scheme.

Semantic Security. Finally we discuss the semantic security of our somewhat
homomorphic encryption scheme. Consider the following distinguishing problem:

Definition 2 (Polynomial Coset Problem (PCP)). The challenger first
selects b —p {0,1} and runs KeyGen as above to obtain a value of a and p. If
b =0 then the challenger performs

- R(l‘) “~R Boo,N(rEnc)-
— 7+ R(a) (mod p).

Whilst if b =1 the challenger performs
— T <R Fp,
Given (r, PK) the problem is to guess whether b=10 or b= 1.

We call the problem the Polynomial Coset Problem as it is akin to Gentry’s
Ideal Coset Problem from [7]. The problem basically says one cannot determine
whether r is the evaluation of some small polynomial at « or is a random value
modulo p. Note that the size of the space Boo v (renc) is roughly renc” , whereas
F, has size n™V. So if rgnc is much smaller than 7, we are trying to distinguish
a relatively small space within a larger one. Note, in the case where b = 0
we generate the value R(x) from Beo n(renc) as opposed to Bso N (rpec), since
we are interested in arguing about semantic security for what are the simplest
ciphertexts to break.

The proof of the following theorem closely follows the proof of Theorem 7
of [7], but we include it here for completeness.

Theorem 1. Suppose there is an algorithm A which breaks the semantic secu-
rity of our somewhat homomorphic scheme with advantage €. Then there is an
algorithm B, running in about the same time as A, which solves the PCP with
advantage €/2.

ProOOF: The algorithm B creates a challenge ciphertext for algorithm A from
its own challenge (r, PK) by setting

¢ — (Mg(a)+2-7) (mod p),

where My and M; are A’s two challenge messages and 3 < {0, 1}, is B’s choice
of a challenge bit. A sends back a guess 3 for 3 and B returns 3 ® 3'.

When b = 0 in the PCP problem, it is clear that the challenge ciphertext ¢
has the correct distribution, so B obtains the same advantage as A, namely e.
When b = 1, r is uniformly random modulo p and since p is odd, 2r is uniformly
random modulo p and therefore so is c. Hence, the advantage of A is 0, which
implies that B’s overall advantage is €/2. O
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5 A Fully Homomorphic Scheme

We now proceed to turning the somewhat homomorphic scheme into a fully
homomorphic scheme. Since we have shown that our scheme is a specialisation
of Gentry’s scheme, we only need to recast Gentry’s method for our parameters.
Indeed we can simplify the method somewhat, since our ciphertext is an integer
rather than a vector. We assume that our scheme is secure under key dependent
encryptions, purely to keep the notation simpler; to deal with the more general
case is immediate from our discussion.

At a high level we need to define a new algorithm called Recrypt, which takes
a ciphertext ¢ and re-encrypts it to chew, whilst at the same time removing some
of the errors in c. Intuitively this takes a “dirty ciphertext” ¢ and “cleans it” to
obtain the ciphertext cpew-

To do this we augment the encryption key with some additional information,
by extending the algorithm KeyGen with the following additional operations,
based on two integer parameters s; and so. We make use of the fact that we are
only interested in the coefficients of Z(z) modulo 2p.

— Generate s; uniformly random integers B; in [—p,...,p] such that there
exists a subset S of sg elements with

ZBj:B

JES

over the integers.

— Define sk; = 1 if ¢ € S and 0 otherwise. Notice that only so of the bits {sk;}
are set to one.

— Encrypt the bits sk; under the somewhat homomorphic scheme to obtain
¢; < Encrypt(sk;, PK).

— The public key now consists of

PK = (pa «, 51, 852, {civ BZ}:;]) .

We can now describe the re-encryption operation.

Recrypt(c, PK): This algorithm takes as input a “dirty” ciphertext ¢, and then
produces a “cleaner” ciphertext cpey of the same message, but with less “errors”
in its randomization vector. The re-encryption works by performing a homomor-
phic decryption on an encryption of the ciphertexts bits. In the Appendix we
explain the Recrypt algorithm in detail and analyse precisely how complicated
it is for possible real life values.

Note that we have
s1
B = Zskz . Bi7
i=1

hence we will now require that this additional information in the public key does
not compromise the security of the scheme. Gentry reduces this security issue
to the decisional version of the sparse subset-sum problem (SSSP), and hence
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the same assumption needs to be made in our situation. The SSSP problem is
believed to take at least \/(‘Z;) > (51/52)%2/? steps to solve, assuming we are not

in a low density subset sum, i.e. s1/logp > 1. If we take s; to be slightly greater
than log p, then we need to select s, such that

(GRS
52

so as to ensure that the SSSP difficulty is at least as difficult as the difficulty of
the BDDP underlying the somewhat homomorphic scheme.

6 Extension to Large Message Space

We now show that our scheme provides for a more powerful fully homomorphic
scheme than that of Gentry. In [7] the fully homomorphic property can only
be applied to single bit messages, since the Recrypt algorithm for full size mes-
sages is relatively complicated. We shall show we can obtain fully homomorphic
encryption on N-bit messages and then discuss what this actually means.

First return to our basic scheme. We alter the KeyGen algorithm to output the
whole polynomial Z(z) = Zili_ol z;z' modulo 2p as the secret key as opposed to
the single term B. Let the resulting polynomial be denoted B(z) = Zﬁgl bizt.
Encryption is now modified to take any message from the space B:O’ ~N(2), ie.
any binary polynomial of degree less than N. Decryption is then performed
coefficient wise, namely each coefficient m; of M is recovered by computing

m; — (c— [c-bi/p]) (mod 2).

It is easily seen that this modification results in a somewhat homomorphic
scheme with the same multiplicative depth as the original scheme.

We now extend this somewhat homomorphic scheme to a fully homomorphic
scheme. We write each coeflicient of B(z) as a different sum, over a different set

of indices S;,
Z Bi,j = bz
JES:

The secret key is now defined to be sk; ; = 1 if j € S; and 0 otherwise. The
Recrypt algorithm is then immediate. We first apply the Recrypt algorithm as
above, coefficient wise, to obtain new “cleaner” encryptions of each bit of the
message, i.e. we obtain

cr(é)w = Encrypt(m;, PK).

To obtain the encryption of the entire message we simply compute

N-1
Cnew = Encrypt(m, PK) = D o' (mod p).

new
=0
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Note that recombining the different encryptions causes an extra increase in the
error term with a factor of d. This increase in the error term is due to the
multiplication, by a?, of the error term underlying cnew-

Hence, we can obtain fully homomorphic encryption with respect to the alge-
bra Fs[x]/(F). To see the power of this we need to examine the algebra Fs[x]/(F).
If F(x) splits as H§:1 fi (mod 2) with f; coprime and deg f; = d; then by the
Chinese Remainder Theorem we have

FQ[.T]/(F) Edel X X ]det.

By concentrating on a single component of the product on the right we therefore,
by careful choice of F', obtain fully homomorphic encryption in any finite field
of characteristic two of degree less than N. Furthermore, we could also obtain
SIMD style homomorphic encryption in multiple finite fields of characteristic
two at the same time.

7 Implementation Results

We now examine a practical instantiation of our scheme. We take the polynomial
F(z) = 2" 4 1, which is always irreducible over the integers. In particular our
main parameter N is equal to 2", and we have doo = N. We take n = VN
and either g = /N or y = 2. The case of n = 2VN and pu = VN are (for
comparison) also the suggested parameter choices made in [7] (albeit in the 2-
norm). The case of u = 2 is chosen to try to obtain as large a depth for the
somewhat homomorphic scheme as possible.

Recall that if we write 17/(2- VN - i) = 2¢, then the security of our somewhat
homomorphic scheme is assumed to be 2V/¢. We then select s; = logp and s;

to be such that
Jt)-
52

which ensures the difficulty of the SSSP is at least 2/¢. In addition, for our choice
of F(x), the expected multiplicative depth d for our somewhat homomorphic
scheme, is estimated by

n
dlog?2 < loglo —loglog(N - 1) .
g2 < log g<2.\/N) glog(N - p)

We present the implications in the following table, for increasing values of n.

=2 p=+vN
n  logyp oN/e g d  2N/e g5 d
8 4096 2?5 5 03 2% 8 0.0
9 11585 231 6 0.8 2% 7 0.3
10 32768 24 7 12 2% 8 0.8
11 92681 2% 8 1.7 261 9 1.2
12 262144 27 102.1 280 11 1.6
13 741455 2100 1225 2107 1321
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In the Appendix we make a precise estimate for each value of sy what the
corresponding Recrypt algorithm will produce in terms of the “dirtyness” of
the ciphertext. This allows us to be able to estimate, for each value of s3, the
multiplicative depth d which would be required to obtain a fully homomorphic
scheme. In the following table we present the value of d required. The given
value includes the final and-gate to recombine two Recypted ciphertexts. We
note that we only obtain a fully homomorphic scheme if d< d, so we see that
for practical values of n our scheme cannot be made fully homomorphic, although
asymptotically it can be. In fact, in the Appendix we show that for n > 27 it is
possible to obtain a fully homomorphic scheme. For a given fixed security level
(and not the maximum possible for a given N and our choice of parameters), it
should be possible to obtain a slightly lower n.

8 9 10 11 12 13
78 8 8 8 8

S92 6 7
d 77
The above estimates are very crude and we refer to the Appendix for a more
detailed analysis.

Despite this problem with obtaining a fully homomorphic scheme, we timed
the various algorithms for the somewhat homomorphic scheme on a desk-top ma-
chine using the NTL library: This was an x86-64 platform, and housed 2.4 GHz
Intel Core2 (6600) processor cores and used the GCC 4.3.2 C compiler. We were
unable to generate keys for the parameter size of N = 2'2, and smaller values of
N key generation could take many hours. The problem with KeyGen being the
need to compute many resultants and test the resulting number for primality.
This is because the output of the resultant calculation will have log, p bits, so
not only are we working with huge numbers; we also have little chance that this
number is prime on any one iteration. A more general version of KeyGen would
allow for non-prime, but squarefree resultants. But even in this case obtaining
keys for say n = 15 seems daunting. We thus do not present times for the KeyGen
algorithm. The times (in milli-seconds), and the actual value of d computed for
the specific key, are presented in the following table:

d
n  Encrypt Decrypt Mult p=2 pu=+N
8 4.2 0.2 0.2 1.0 0.0
9 388 0.3 0.2 1.5 1.0
10 386.4 0.6 0.4 2.0 1.0
11 3717.2 3.0 1.6 2.5 1.5

We see that in practice our scheme appears to obtain a better depth of decryp-
tion circuit than theory predicts, although still not deep enough to enable fully
homomorphic encryption; at least at practical key sizes.
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A Analysis of the Recrypt Procedure

In this appendix we explain exactly how Gentry’s re-encryption circuit is im-
plemented in the context of our scheme. We first decrease the size of rpec by a
factor of two to ensure that the floating point number obtained in the decryption
procedure is within 1/4 of an integer, i.e. we know that

c-B/p€lr—1/4,z+1/4],
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for some integer z. Since we are only interested in the result modulo 2, we can
actually compute

S1

Z sk;(c+ B; mod 2p)/p| (mod 2).

i=1

As such we are adding up a subset of so values out of s; floating point values,
all of which lie in the range [0,...,2).

To keep the Recryption method manageable we need to minimize the precision
of the floating point numbers (¢ - B; mod 2p)/p that we work with. First note
that if we truncate these values to a fixed precision and make a maximum error
of < 1/2, then we can still recover the correct result since the approximated
sum will be in the interval |z — 3/4,z + 1/4[, and any number in this interval
determines x uniquely. More precisely, if we obtain bits eg, e; and ey such that
the sum computed with fixed precision is given by

€0+271‘61 +272‘62+-‘- R
then the final output is given by
(eo+e1+ex+er-e3) (mod2).

The above equation is derived from examining the four possible cases corre-
sponding to the values of e; and es;

€1 es Output
0 0 €o

1 0 e +1 (mod2)

0 1 eg+1 (mod2)

1 1 ep+1 (mod2)

Assume we work with ¢ bits of precision, i.e. each floating point number in
[0,...,2) is represented as Zf;é ¢;27%. Then since only s numbers are non-
zero, the maximum error in the total sum is given by

00
S2 E 27" = 522_t+1 .
i=t

As such we need to choose t such that sy - 271 < 1/2 which implies that
t = [log, s2]+2. We also define s to be the number of bits to represent all integers
up to S, i.e. s = |logy s2| + 1. To get some idea of the practical implications of
these two values in what follows we give the following table:

»
V)

S92 S
10 4
11 4
12 4
13 4
14 4

© 0~ > W
O W W g
SRS I IS W
oo o o+
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So we see that the value of s is essentially either 3 or 4, and ¢ is either 5 or 6.

The algorithm re-encryption takes as input a ciphertext ¢ and a public key
PK = (p, @, s1, 52, {¢;, Bi};1,) and consists of the following distinct phases:

1. Write down the first ¢ bits of the s; floating point numbers (¢- B; mod 2p)/p
as an s1 X t matrix (b; ;) fori=1,...,s1 and j=1,...,¢.

2. Encrypt each of the bits b; ; under the public key PK to obtain an s; x ¢
matrix of clean ciphertexts (c; ;).

3. Multiply each row of the matrix by the corresponding encryption ¢; of sk; to
obtain (¢; - ¢; ;) mod p. As such we obtain the encryption of a matrix with
only so non-zero rows.

4. Compute the sum of each column as the Hamming weight using symmetric
polynomials and hence reduce the sum of s; floating point values to the sum
of ¢ floating point values of ¢ bits of precision. More precisely, denote by h;_;
the j-th bit of the Hamming weight of the i-th column for ¢ = 1,...,¢ and
j=1,...,s and form the ¢ x ¢ matrix (H; ;) with H; ; = h; ;—;4+s whenever
the right hand side is defined and zero otherwise.

5. Merge rows of the matrix H, so as to obtain an s X ¢ matrix H’ such that
the sum of the rows of H’ equals the sum of the rows of H.

6. Apply carry-save-adders to progressively reduce the matrix to one with two
rows. Each set of three rows is reduced to two, and then this procedure is
repeated.

7. Perform the final addition, and output the encryption of a single bit.

It is perhaps worth recalling that for our scheme we have s1 = log, p and so is

chosen so that \/ (:;) > 27 for our required security level 7, which itself defines

the parameter N. The value p is approximately equal to 2V VN , thus s is very
large indeed. Ciphertexts are integers modulo p and each valid decryptable ci-
phertext can be considered to lie in ball of a given radius. A “clean” ciphertext
lies in a ball of radius p + 1 and as we add/multiply ciphertexts this radius
increases, with the ciphertext becoming increasingly “dirtier”. Recall that we
have the following behaviour: Let ¢; and co denote two ciphertexts, correspond-
ing to two randomizations Cy(x) = M; + Ni(z) and Ca(x) = My + Na(z);
where M; € {0,1} are the messages and N;(z) € Boo,n(ri — 1) is the ran-
domness, i.e. Cij(z) € Boo n(r;). For a ciphertext ¢, denote with rad(c) the ra-
dius of the ball containing the corresponding polynomial C(z), i.e. we have
C(z) € Boo,n(rad(c)). Then

rad(ci + c2) = rad(c1) + rad(cs),
rad(cy - ¢2) = 0o - rad(ey) - rad(ca).

We will now analyze the growth of the error terms during each of the phases of
the re-encryption. Recall that for our choice of parameters we have u = /N,
dso = N and s; = Nv/N. Therefore define p = /N, then we will compute
explicit expressions for the radii of the ciphertexts as a function of p. Recall that
the notation f ~ g means that lim, .o, f/g = 1. If A is a matrix of ciphertexts
we let rad(A4) denote the matrix obtained by applying rad to each entry in A.
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Stages [l and

The result of the first two stages is that we obtain an s; X t matrix A, containing
clean ciphertexts ¢; ; with rad(c; ;) = p+1:=7r2 ~ p.

Stage [3]

Here we take the clean encryptions of the values of sk; and multiply through each
corresponding row to obtain a matrix Az, with (rad(A3));j = oo 73 1= 13 ~ p*
for all , 5.

Stage (4

In this stage, we need to compute the encryption of the sum of the (plaintext)
bits sk; - b;; in each of the columns seperately. Note that the sum is simply the
Hamming weight of the column, so it suffices to compute the bits of the Hamming
weight. Furthermore, since only s entries in each column are one, the number of
bits in the Hamming weight is bounded by s. We let SymPol,(z1,...,xx) denote

the i-th symmetric polynomial on the variables 1, ..., z;. Then the bits of the
Hamming weight of the bit vector (by,...,bx) is given by
(SymPolye—1(b1,...,br) (mod 2), ..., SymPolyo(by,...,br) (mod 2)).

So for each column of our matrix As we need to compute all the symmetric
polynomials up to S = 2°7!. To compute the S symmetric polynomials on
(the encryptions of) s; bits we proceed in a recursive manner, essentially using
Horner’s Rule to compute the last S+1 coefficients of the product [, (b;-z+1).
For each column of A3 we execute the following function to compute the
(encryptions) of the bits of the Hamming weight of the j-th column for j =
1,...,t
— Set (s1,...,85) — (0,...,0).
— Fori=1,...,51 do
e For k = min(s, 5),...,3,2 do
* G < 6 + sp—1 - A3(4,7) (mod p)
e 51 < 51+ A3(i,j) (mod p).
— Return (s1,...,59).
We can also see by analysing the above algorithm how dirty the ciphertexts will
become. To produce s; we need to sum (Sil) terms which consist of the multipli-
cation of ¢ of the ciphertexts in A3 together. If ¢y, ..., cg are eight ciphertexts
given by entries in A3 then we have
rad(c1) ~ p*, rad(cy o) ~ p'% rad(ci---cq) ~ p*2, rad(cp---cg) ~ pt0.

Thus we have
ad(s1) ~ 51 gt ~ g7, adtor) ~ (3 ) -~ 2

rad(s4) ~ (?) - pP~ p* /Al rad(ss) ~ (2) - p*0 ~ ™)L,
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Given the bits h; j fori=1,...,t and j =1,...,s of the ¢t Hamming weights of
the ¢ columns, the sum of the resulting floating point numbers represented by

the rows of Aj is given by
t s
>y h,
i=1 j=1

Since we are only interested in the sum modulo 2, we can see that the above
sum modulo 2 corresponds to the sum of the rows of the ¢ x ¢ matrix H with
H; j = hii—j+s whenever the right hand side is defined and zero otherwise. We
therefore obtain the following matrices H depending on the combination of s
and ¢.

Case (s,t) = (3,5):

We find
o’ 0 0 0 0
pt¢/2 P’ 0 0 0
rad(H) ~ | p3/4! pi8/2 o7 0 0
0 p34/4| p16 2 /)7 0
0 0 p34/4| p16/2 ,07
Case (s,t) = (4,5):
We find
o7 0 0 0 0
p'¢/2 o7 0 0 0
rad(H) ~ | p3t/4! pl6/2 o7 0 0
p70/8! p34/4! p16/2 p7 0

0 /)70/8' p34/4| p16/2 ,07

Case (s,t) = (4,6):

We find
P’ 0 0 0 0 0
p16/2 P’ 0 0 0 0
34 16 7
et /2 p 0 0 0
rad(H) pT0/81 p34/4l pl6/2 Py 0 0
0 p70/8! p34/4! 916/2 p7 0
0 0 pT0/8! p3t/al pl6/2 p7
Stage

We now notice that the entries in each column can be permuted around indepen-
dently. It turns out that it makes more sense, due to the way we will add up the
columns in Stage[6, to order the column entries so that the dirtyness increases as
you descend a column. This also allows us to delete rows which consist entirely
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of zeros. We notice that the resulting matrix H’ will be of size s x t. In the three
examples we do not give the precise permutation of the columns, as this can be
deduced from the implied permutation of the d values.
Case (s,t) = (3,5):
We find ; ; ;
P P P 0 0
rad(H') ~ [ p'°/2  p'/2 p'%/2  p" 0
P4 pPAJAl R4l plo)a T

Case (s,t) = (4,5):
We find
By by & 0
2 /2 p 0
rad(H') ~ | . /2 p
(H') pPA/Al p3/al plo)/2 o7
pTO/8L pTO/81 pPA/4l pi6/2 T

Case (s,t) = (4,6):

We find
by by by 5% 00
2 p%/2 pt/2  p 0o 0
rad(H') ~ | . / . .
( ) ,054/4' ,054/4' ,054/4' p16/2 ,07 0
pTO/8L pT0/81 pTO/81 p3/al pl6/2 T
Stage

We now apply a sequence of carry-save-adders to reduce the number of rows
down to two. We first apply a single chain of carry-save-adders to add the bits in
the first three rows of matrix H’ which produces two rows as output, where the
first row simply contains the exor of the three rows and the second row contains
the sum of all products of two out of three rows. Note, we ignore any overflow
into the bit position corresponding to the binary weight 2! and above. If H' has
four rows we then append the fourth row to the result and apply another chain
of carry-save-adders. At the end of this stage we have a matrix A5 of dimension
2 xt.

From the above estimates for rad(H’) we can then derive the following estimates
for rad(As):

Case (s,t) = (3,5):

We find P4l p3jar p3t/4r pl6ra o7
rad(As) ~ <p52/48 p52/48 p25/2 0 0 ) .

Case (s,t) = (4,5):

We find

d(A ,070/8' ,070/8' p34/4| ,016/2 p7
rad(4s) ~ P06 /41. 81 p32/2.41 /2 0 0 /"
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Case (s,t) = (4,6):

We find
70 /g1 70 /g1 70 /g1 34 /41 16 7
rad(As) ~ 124'0 bt 156 /8 é% /8 p25/4. Pz :
pot/2-41-81 p /4181 p22 /241 p=° /2 0 0
A.1 Stagell

The final stage is to add the two remaining rows together, and then use the
analysis from earlier. More precisely, as before we write the final output as

eco+2 e +2 % gt
where, for i =t —1,...,0,

e; = (As)1,i + (As)2,: + Cit1,
ci = ((As)1,: + (As)2,) - cix1 + (As)1,i - (As5)2,i-

where ¢; = 0. Note that the last two elements on the final row of the above
matrices are equal to zero, so there are no carries to worry about from these
columns. This simplifies the above expressions a little. We then obtain in each
of our cases:

— Case (s,t) = (3,5):

115 61 34 16

p Pt P p
rad(€07€1,627€37€4) = ((2 _4')2a 2.4“ 4 ) 2 7p7)

— Case (s,t) = (4,5):

133 70 34 16

p PO P p
rad(€0’617€27€3’64) = ((24'8')’ 8l ) 4 ) 9 7P7>

— Case (s,t) = (4,6):

p241 p133 p70 p34 ,016 p7>

rad(60761762763765) = <2(4' '8!)27 (2 4. 8')7 8' ) 4! ) )

As discussed earlier we can obtain the result Res of the Recryption procedure
from the values of eq, e; and ey, by computing the expression (eg+e1+ea+eq-e2)
(mod 2). This enables us to determine the value of rad(Res) in our three cases
as follows:
(s,t) (3,5) (4,5) (4,6)
115 133 241

p P P
rad(Res) o g2 (2. 4181 241 81)2
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So using the above method we can Recrypt a ciphertext to obtain a new cipher-
text whose dirtyness measure is bounded by the radius in the above table. We
then operate on this ciphertext by applying an addition or a multiplication with
another similar ciphertext so as to produce a new ciphertext which we then apply
the Recrypt procedure to again. For this to work we require that the ciphertext
before Recryption can itself be validly decrypted. This means that we need to
be able to decrypt a ciphertext with dirtyness measure given by .. - rad(Res)?.
In the following table we present the final outcome. For a specific value of
so we give the values of (s,t) in the algorithm, then we give the value of rad(c)
which needs to be able to be decrypted to obtain fully homomorphic encryption,
and then the corresponding minimum value of the “depth” of the circuit. We
note that this measure of depth is a very crude estimate since it measures the
number of multiplications in a perfectly balanced circuit consisting solely of
multiplications, whereas our measure rad(c) is much more precise.

S9 (s,t) rad(c) depth
232
5,6,7 3,5 7
) ) ( ) ) (2 . 4!)4
268
4
8 S (2-4!-8!)2 7
181
10,11,12,13,14 (4
97 07 ) ) 37 ( 76) 22(4! . 8!)4 8

Recall that the original rpec is given by 2VN /2v/N and thus equal to 2°/2p. To
obtain a fully homomorphic encryption scheme we therefore require that

2r

rad(c) < 4p

where the extra factor of 2 comes from the fact that we made rpec smaller by
a factor of 2. It is easy to see that this bound is not attained for the practical
parameter sizes given in Section [l A complete similar analysis for the case
(s,t) = (5,7) gives a radius rad(c) of

880

rad(c) = (812 . (4! 161)4

which shows that for p > 11680 it is possible to obtain a fully homomorphic
encryption scheme. This corresponds to N > 136422400 or thus n ~ 27.
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