Skip to main content

Optimal Analyses for 3×n AB Games in the Worst Case

  • Conference paper
Advances in Computer Games (ACG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6048))

Included in the following conference series:

  • 1218 Accesses

Abstract

The past decades have witnessed a growing interest in research on deductive games such as Mastermind and AB game. Because of the complicated behavior of deductive games, tree-search approaches are often adopted to find their optimal strategies. In this paper, a generalized version of deductive games, called 3×n AB games, is introduced. However, traditional tree-search approaches are not appropriate for solving this problem since it can only solve instances with smaller n. For larger values of n, a systematic approach is necessary. Therefore, intensive analyses of playing 3×n AB games in the worst case optimally are conducted and a sophisticated method, called structural reduction, which aims at explaining the worst situation in this game is developed in the study. Furthermore, a worthwhile formula for calculating the optimal numbers of guesses required for arbitrary values of n is derived and proven to be final.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Merelo-Guervos, J.J., Castillo, P., Rivas, V.M.: Finding a needle in a haystack using hints and evolutionary computation: the case of evolutionary MasterMind. Applied Soft Computing 6(2), 170–179 (2006)

    Article  Google Scholar 

  2. Knuth, D.E.: The computer as Mastermind. Journal of Recreational Mathematics 9, 1–6 (1976)

    MathSciNet  Google Scholar 

  3. Irving, R.W.: Towards an optimum Mastermind strategy. Journal of Recreational Mathematics 11(2), 81–87 (1978)

    Google Scholar 

  4. Neuwirth, E.: Some strategies for Mastermind. Mathematical Methods of Operations Research 26, 257–278 (1982)

    MATH  MathSciNet  Google Scholar 

  5. Norvig, P.: Playing Mastermind optimally. ACM SIGART Bulletin 90, 33–34 (1984)

    Article  Google Scholar 

  6. Koyama, K., Lai, T.W.: An optimal Mastermind strategy. Journal of Recreational Mathematics 25, 251–256 (1993)

    MATH  Google Scholar 

  7. Rosu, R.: Mastermind. Master’s thesis, North Carolina State University, Raleigh, North Carolina (1999)

    Google Scholar 

  8. Barteld, K.: Yet another Mastermind strategy. ICGA Journal 28(1), 13–20 (2005)

    Google Scholar 

  9. Huang, L.T., Chen, S.T., Huang, S.J., Lin, S.S.: An efficient approach to solve Mastermind optimally. ICGA Journal 30(3), 143–149 (2007)

    Google Scholar 

  10. Shapiro, E.: Playing Mastermind logically. ACM SIGART Bulletin 85, 28–29 (1983)

    Article  Google Scholar 

  11. Chen, S.T., Lin, S.S., Huang, L.T., Hsu, S.H.: Strategy optimization for deductive games. European Journal of Operational Research 183(2), 757–766 (2007)

    Article  MATH  Google Scholar 

  12. Kalisker, T., Camens, D.: Solving Mastermind using genetic algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1590–1591. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Singley, A.: Heuristic solution methods for the 1-dimensional and 2-dimensional Mastermind problem. Master’s thesis, University of Florida (2005)

    Google Scholar 

  14. Chen, S.T., Lin, S.S., Huang, L.T.: A two-phase optimization algorithm for Mastermind. The Computer Journal 50(4), 435–443 (2007)

    Article  Google Scholar 

  15. Berghman, L., Goossens, D., Leus, R.: Efficient solutions for Mastermind using genetic algorithms. Computers and Operations Research 36(6), 1880–1885 (2009)

    Article  MATH  Google Scholar 

  16. Chen, S.T., Lin, S.S.: Optimal algorithms for 2 ×n AB games - a graph-partition approach. Journal of Information Science and Engineering 20(1), 105–126 (2004)

    MathSciNet  Google Scholar 

  17. Chen, S.T., Lin, S.S.: Optimal algorithms for 2 ×n Mastermind games - a graph-partition approach. The Computer Journal 47(5), 602–611 (2004)

    Article  Google Scholar 

  18. Goddard, W.: Mastermind revisited. Journal of Combinatorial Mathematics and Combinatorial Computing 51, 215–220 (2004)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, LT., Lin, SS. (2010). Optimal Analyses for 3×n AB Games in the Worst Case. In: van den Herik, H.J., Spronck, P. (eds) Advances in Computer Games. ACG 2009. Lecture Notes in Computer Science, vol 6048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12993-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12993-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12992-6

  • Online ISBN: 978-3-642-12993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics