Skip to main content

Radiobiology

  • Chapter
  • First Online:
Book cover Basic Radiation Oncology

Abstract

Radiobiology, in general terms, is the science that evaluates the effects of radiation in living organisms. In the field of radiation oncology, it is defined as the science that investigates the interactions between ionizing radiation and living systems, and the consequences of these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Pouplana LR (ed) (2005) The genetic code and the origin of life. Springer, Berlin, pp 75–91

    Google Scholar 

  2. Thomas DP, William CE (2007) Cell biology. Saunders, Philadelphia, pp 20–47

    Google Scholar 

  3. Sobti, RC, Obe G (eds) (2002) Some aspects of chromosome structure and function. Springer, New York, pp 112–115

    Google Scholar 

  4. Moeller SJ, Sheaff RJ (2006) G1 phase: components, conundrums, context. In: Kaldis P (ed) Cell cycle regulation. Springer, Berlin, pp 1–29

    Chapter  Google Scholar 

  5. Hartwell LH, Culotti J, Pringle JR et al (1974) Genetic control of the cell division cycle in yeast. Science 183:46

    Article  PubMed  CAS  Google Scholar 

  6. Harper JW, Adams PD (2001) Cyclin-dependent kinases. Chem Rev 101:2511

    Article  PubMed  CAS  Google Scholar 

  7. Zinkel SS, Korsmeyer SJ (2005) Apoptosis. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology, 7th edn. Lippincott Williams & Wilkins, Philadelphia, pp 95–98

    Google Scholar 

  8. Jékely G (ed) (2007) Eukaryotic membranes and cytoskeleton. Springer, New York, pp 35–40

    Google Scholar 

  9. Rudolph KL (2007) Telomere shortening induces cell intrinsic checkpoints and environmental alterations limiting adult stem cell function. In: Gutierrez LG, Ju Z (eds) Telomeres and telomerase in ageing, disease, and cancer, part II. Springer, pp 161–180

    Google Scholar 

  10. Bignold LP, Coghlan BL, Jersmann HP. Cancer morphology, carcinogenesis and genetic instability: a background. In: Bignold LP (ed) Cancer: cell structures, carcinogens and genomic instability. Springer, Basel, pp 1–25

    Google Scholar 

  11. Bodansky B (2007) Effects of radiation exposures. In: Bodansky D (ed) Nuclear energy. Springer, pp 85–121

    Google Scholar 

  12. Alexander K, Dietrich B (eds) (2005) Radiological protection. Springer, Berlin, pp 5–40

    Google Scholar 

  13. Hall EJ (2000) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia, p 558

    Google Scholar 

  14. Lewanski CR, Gullick WJ (2001) Radiotherapy and cellular signaling. Lancet Oncol 2:366

    Article  PubMed  CAS  Google Scholar 

  15. Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna, p 486

    Google Scholar 

  16. Saw CB, Celi JC, Saiful Huq M (2006) Therapeutic radiation physics primer. Hematol Oncol Clin North Am 20(1):25–43 (review)

    Google Scholar 

  17. Stabin MG (2008) Quantities and units in radiation protection In: Stabin, Michael G (eds) radiation protection and dosimetry. Springer, New York, pp 67–74

    Google Scholar 

  18. Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. Vienna, International Atomic Energy Agency, p 556

    Google Scholar 

  19. Magill J, Galy J (2005) Radioactivity, radionuclides, radiation. Springer, Heidelberg, pp 117–123

    Google Scholar 

  20. Goitein, M (2008) Radiation oncology: a physicist’s-eye view. Springer, New York, pp 5–6

    Google Scholar 

  21. Beck-Bornholdt HP (1993) Quantification of relative biological effectiveness, dose modification factor and therapeutic gain factor. Strahlentherapie Onkol 169(1):42–47

    PubMed  CAS  Google Scholar 

  22. Magill J, Galy J (2005) Radioactivity, radionuclides, radiation. Springer, Heidelberg, pp 102–103

    Google Scholar 

  23. Katz R, Cucinotta FA (1999) Tracks to therapy. Radiat Meas 31(1–6):379–388 (review)

    Google Scholar 

  24. Blackstock W, Kevin M (2005) Radiotherapy and Chemotherapy. In: Jeremic B (ed) Advances in radiation oncology in lung cancer. Springer, Berlin, p 158

    Google Scholar 

  25. Hobbie RK, Roth BJ (2007) intermediate physics for medicine and biology. Springer, p 463

    Google Scholar 

  26. Bond VP (1995) Dose, effect severity, and imparted energy in assessing biological effects. Stem Cells 13(suppl 1):21–29 (review)

    Google Scholar 

  27. Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. Vienna, International Atomic Energy Agency, p 492

    Google Scholar 

  28. Stabin MG (2008) Quantities and units in radiation protection In: Stabin MG (ed) Radiation protection and dosimetry. Springer, New York, pp 100–102

    Google Scholar 

  29. Fowler JF (2006) Practical time-dose evaluations, or how to stop worrying and learn to love linear quadratics. In: Levitt SH, Purdy JA, Perez CA, Vijayakumar S (eds) Technical basis of radiation therapy, 4th revised edn. Springer, Berlin, pp 444–446

    Google Scholar 

  30. Strandqvist M (1944) Studien uber die cumulative Wirkung der Rontgenstrahlen bei Fraktionierung. Erfahrungen aus dem Radiumhemmet an 280 Haut und Lippenkarzinomen. Acta Radiol 55(suppl):1–300

    Google Scholar 

  31. Thames HD Jr (1988) Early fractionation methods and the origins of the NSD concept. Acta Oncol 27(2):89–103 (review)

    Google Scholar 

  32. Ellis F (1969) Dose, time and fractionation: a clinical hypothesis. Clin Radiol 20:1–7

    Article  PubMed  CAS  Google Scholar 

  33. Goitein M (2008) Radiation oncology: a physicist’s-eye view. Springer, New York, pp 3–4

    Google Scholar 

  34. Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna, pp 485–491

    Google Scholar 

  35. Garwood DL, Cho C, Choy C (2006) Clinical principles and applications of chemoirradiation. In: Levitt SH, Purdy JA, Perez CA, Vijayakumar, S. Technical basis of radiation therapy, 4th revised edn. Springer, Berlin, pp 40–41

    Google Scholar 

  36. Little JB, Hahn GM, Frindel E, Tubiana M (1973) Repair of potentially lethal radiation damage in vitro and in vivo. Radiology 106:689

    PubMed  CAS  Google Scholar 

  37. Barendsen GW, Koot CJ, Van Kersen GR, Bewley DK, Field SB, Parnell CJ (1966) The effect of oxygen on impairment of the proliferative capacity of human cells in culture by ionizing radiations of different LET. Int J Radiat Biol Relat Stud Phys Chem Med 10(4):317–327

    Article  PubMed  CAS  Google Scholar 

  38. Grdina DJ, Murley JS, Kataoka Y (2002) Radioprotectants: current status and new directions. Oncology 63(suppl 2):2–10

    Article  PubMed  CAS  Google Scholar 

  39. Thomas CT, Ammar A, Farrell JJ, Elsaleh H (2006) Radiation modifiers: treatment overview and future investigations. Hematol Oncol Clin North Am 20(1):119–139

    Article  PubMed  CAS  Google Scholar 

  40. Bergonie J, Tribondeau L (1906) Interprétation de quelques résultats de la radiothérapie et essaide fixation d’une technique rationelle. C R Acad Sci 143:983–985

    Google Scholar 

  41. Michalowski AS (1992) Post-irradiation modification of normal-tissue injury: lessons from the clinic. BJR Suppl 24:183–186 (review)

    Google Scholar 

  42. Ancel P, Vintemberger P (1925) Comparison entre les effects des rayons X et ceux du vieillissement sui l’oeuf de pole. CR Soc Biol 99:p832.

    Google Scholar 

  43. Rubin P, Casarett GW (1968) Clinical radiation pathology as applied to curative radiotherapy. Cancer 22(4):767–778

    Article  PubMed  CAS  Google Scholar 

  44. Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122

    Article  PubMed  CAS  Google Scholar 

  45. Withers HR, Taylor JM, Maciejewski B (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14(4):751–759

    Article  PubMed  CAS  Google Scholar 

  46. Awwad HK (2005) Normal tissue radiosensitivity: prediction on deterministic or stochastic basis? J Egypt Natl Canc Inst 17(4):221–230 (review)

    Google Scholar 

  47. Willers H, Held KD (2006) Introduction to clinical radiation biology. Hematol Oncol Clin North Am 20(1):1–24 (review)

    Google Scholar 

  48. Kong FM, Pan C, Eisbruch A, Ten Haken RK (2007) Physical models and simpler dosimetric descriptors of radiation late toxicity. Semin Radiat Oncol 17(2):108–120 (review)

    Google Scholar 

  49. Baumann M, Petersen C, Krause M (2005) TCP and NTCP in preclinical and clinical research in Europe. Rays 30(2):121–126 (review)

    Google Scholar 

  50. Baumann M, Petersen C (2005) TCP and NTCP: a basic introduction. Rays 30(2):99–104 (review)

    Google Scholar 

  51. Lyman JT (1992) Normal tissue complication probabilities: variable dose per fraction. Int J Radiat Oncol Biol Phys 22(2):247–250

    Article  PubMed  CAS  Google Scholar 

  52. Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24(1):103–110

    Article  PubMed  CAS  Google Scholar 

  53. Coutard H (1937) The result and methods of treatment of cancer by radiation. Ann Surg 106(4):584–598

    Article  PubMed  CAS  Google Scholar 

  54. Tubiana M, Dutreix J, Wambersie A (1990) Introduction to radiobiology. Taylor & Francis, London, pp 119–135

    Google Scholar 

  55. Baumann M, Dörr W, Petersen C et al (2003) Repopulation during fractionated radiotherapy: much has been learned, even more is open. Int J Radiat Biol 79(7):465–467

    Article  PubMed  CAS  Google Scholar 

  56. Baumann M, Liertz C, Baisch H et al (1994) Impact of overall treatment time of fractionated irradiation on local control of human FaDu squamous cell carcinoma in nude mice. Radiother Oncol 32(2):137–143

    Google Scholar 

  57. Willers H, Dahm-Daphi J, Powell SN (2004) Repair of radiation damage to DNA. Br J Cancer 90(7):1297–1301

    Article  PubMed  CAS  Google Scholar 

  58. Trott KR (1982) Experimental results and clinical implications of the four R’s in fractionated radiotherapy. Radiat Environ Biophys 20(3):159–170 (review)

    Google Scholar 

  59. Popple RA, Ove R, Shen S (2002) Tumor control probability for selective boosting of hypoxic subvolumes, including the effect of reoxygenation. Int J Radiat Oncol Biol Phys 54:921–927

    Article  PubMed  Google Scholar 

  60. Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna, pp 499–505

    Google Scholar 

  61. Lee CK (2006) Evolving role of radiation therapy for hematologic malignancies. Hematol Oncol Clin North Am 20(2):471–503 (review)

    Google Scholar 

  62. Thames HD, Ang KK (1998) Altered fractionation: radiobiological principles, clinical results, and potential for dose escalation. Cancer Treat Res 93:101–128

    Article  PubMed  CAS  Google Scholar 

  63. ICRP (2006) Assessing dose of the representative person for the purpose of radiation protection of the public. ICRP publication 101. Approved by the Commission in September 2005. Ann ICRP 36(3):vii–viii, 5–62

    Google Scholar 

  64. Prasad KN, Cole WC, Haase GM (2004) Radiation protection in humans: extending the concept of as low as reasonably achievable (ALARA) from dose to biological damage. Br J Radiol 77(914):97–99 (review)

    Google Scholar 

  65. Hall EJ (2009) Radiation biology for pediatric radiologists. Pediatr Radiol 39(Suppl 1):S57–64.

    Google Scholar 

  66. Yamaguchi Y (1994) External dose calculation using computer simulation. J At Energy Soc Jpn 36(7):624–630

    Article  Google Scholar 

  67. Levitt SH, Purdy JA, Perez CA, Vijayakumar S (eds) (2008) Technical basis of radiation therapy, 4th revised edn. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Beyzadeoglu .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beyzadeoglu, M., Ozyigit, G., Ebruli, C. (2010). Radiobiology. In: Basic Radiation Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11666-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11666-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11665-0

  • Online ISBN: 978-3-642-11666-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics