Skip to main content

Mechanical Strength of Materials

  • Chapter
  • First Online:
Fundamentals of Materials Science
  • 9598 Accesses

Abstract

The response of materials to applied forces concerns a field of material properties which has been of prime interest to human beings since the emergence of mankind. Even as a child, already, one gathers experiences about what we vaguely call the “strength” of a material, by feeling with our fingers how “hard” or “soft” a specific material is.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  • Courtney TH (1990) Mechanical behaviour of materials. McGraw-Hill Publishing Company, New York

    Google Scholar 

  • Dieter GE (1961) Mechanical metallurgy. McGraw-Hill Book Company, New York

    Google Scholar 

  • Haasen P (1978) Physical metallurgy. Cambridge University Press, Cambridge

    Google Scholar 

  • Hoffman O, Sachs G (1953) Introduction to the theory of plasticity for engineers. McGraw-Hill Book Company, New York

    Google Scholar 

  • Honeycombe RWK (1968) The plastic deformation of metals. Edward Arnold Publishers Ltd., London

    Google Scholar 

  • Hosford WF (2005) Mechanical behaviour of materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Hull D, Bacon DJ (2001) Introduction to dislocations, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Suresh S (1991) Fatigue of materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Thomason PF (1990) Ductile fracture of metals. Pergamon Press, Oxford

    Google Scholar 

  • Timoshenko SP, Goodier JN (1982) Theory of elasticity, 3rd edn. McGraw-Hill Book Company, Singapore

    Google Scholar 

  • Timoshenko SP (1953) History of strength of materials. McGraw-Hill Book Company, New York

    Google Scholar 

  • Wachtman JB (1996) Mechanical properties of ceramics. John Wiley & Sons, Inc., New York

    Google Scholar 

  • de With G (2006) Structure, deformation, and integrity of materials, vols. I and II. Wiley-VCH Verlag, Weinheim

    Google Scholar 

Specific

  • Cottrell AH, Bilby BA (1949) Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc A 52:49–62

    Article  Google Scholar 

  • Crumm AT, Halloran JW (2007) Negative Poisson’s ratio structures produced from zirconia and nickel using co-extrusion. J Mater Sci 42:1336–1342

    Article  CAS  Google Scholar 

  • Dao M, Lu L, Asaro RJ, de Hosson JTM, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Materialia 55:4041–4065

    Article  CAS  Google Scholar 

  • Eshelby JD (1956) The continuum theory of lattice defects. Solid State Phys 3:79–144

    Article  CAS  Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids; structure and properties, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Griffith AA (1920) The phenomena of rupture and flow in solids. Philos Trans R Soc London 221A:163–198

    Google Scholar 

  • Hall EO (1951) The deformation and ageing of mild steel. Proc Phys Soc (London) 64B:747–753

    Google Scholar 

  • Kunert M (2000) Mechanical properties on nanometer scale and their relations to composition and microstructure. Ph.D. Dissertation, University of Stuttgart

    Google Scholar 

  • Kunert M, Baretzky B, Baker SP, Mittemeijer EJ (2001a) Hardness-depth profiling on nanometer scale. Metallurgical Mater Trans A 32A:1201–1209

    Article  CAS  Google Scholar 

  • Kunert M, Kienzle O, Baretzky B, Baker SP, Mittemeijer EJ (2001b) Hardness-depth profile of a carbon-implanted Ti-6Al-4 V alloy and its relation to composition and microstructure. J Mater Res 16:2321–2335

    Article  CAS  Google Scholar 

  • Lakes R (1987) Foam structures with a negative Poisson’s ratio. Science 235:1038–1040

    Article  CAS  Google Scholar 

  • Mittemeijer EJ (1983) Fatigue of case-hardened steels; role of residual macro- and microstresses. J Heat Treating 3:114–119

    Article  Google Scholar 

  • Mittemeijer EJ (1985) Nitriding response of chromium-alloyed steels. J Metals 37:16–20

    CAS  Google Scholar 

  • Mittemeijer EJ (2006) X-Ray diffraction analysis of the microstructure of precipitating Al-based alloys. In: Scott MacKenzie D, Totten GE (eds) Analytical characterization of aluminum, steel, and superalloys. Taylor and Francis, London, pp 339–354

    Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  CAS  Google Scholar 

  • Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. Trans ASME J Basic Eng D85:528–534

    Google Scholar 

  • Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Institute (London), 173:25–28

    Google Scholar 

  • Ribeiro FJ, Tangney P, Louie SG, Cohen ML (2006) Hypothetical hard structures of carbon with cubic symmetry. Phys Rev B 74:172101

    Article  Google Scholar 

  • Sevillano JG (2008) Geometrically necessary twins and their associated size effects. Scripta Materialia 59:135–138

    Article  Google Scholar 

  • Shaw LL, Ortiz AL, Villegas JC (2008) Hall-Petch relationship in a nanotwinned nickel alloy. Scripta Materialia 58:951–954

    Article  CAS  Google Scholar 

  • Straumal BB, Lopez GA, Mittemeijer EJ, Gust W, Zhilyaev AP (2003) Grain boundary phase transitions in the Al-Mg system and their influence on high-strain rate superplasticity. Defect and Diffusion Forum 216–217:307–312

    Google Scholar 

  • Voskamp AP, Mittemeijer EJ (1997) The effect of the changing microstructure on the fatigue behaviour during cyclic rolling contact loading. Zeitschrift für Metallkunde 88:310–320

    CAS  Google Scholar 

  • Whithers PJ (2007) Residual stress and its role in failure. Rep Prog Phys 70:2211–2264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Mittemeijer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mittemeijer, E.J. (2010). Mechanical Strength of Materials. In: Fundamentals of Materials Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10500-5_11

Download citation

Publish with us

Policies and ethics