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Iterative regularization methods
for nonlinear problems

Finding a global minimizer of the Tikhonov function is in general not an easy task. Nu-
merical experience shows that the Tikhonov function has usually many local minima and a
descent method for solving the optimization problem may tend to get stuck especially for
severely ill-posed problems. Since furthermore, the computation of an appropriate regular-
ization parameter can require high computational effort, iterative regularization methods
are an attractive alternative.

For iterative regularization methods, the number of iteration steps k plays the role of
the regularization parameter, and the iterative process has to be stopped after an appropriate
number of steps k	 in order to avoid an uncontrolled expansion of the noise error. In fact,
a mere minimization of the residual, i.e., an ongoing iteration, leads to a semi-convergent
behavior of the iterated solution: while the error in the residual decreases as the number of
iteration steps increases, the error in the solution starts to increase after an initial decay. A
widely used a posteriori choice for the stopping index k	 in dependence of the noise level
Δ and the noisy data vector yδ is the discrepancy principle, that is, the iterative process is
stopped after k	 steps such that∥∥yδ − F

(
xδ

k�

)∥∥2 ≤ τΔ2 <
∥∥yδ − F

(
xδ

k

)∥∥2 , 0 ≤ k < k	, (7.1)

with τ > 1 chosen sufficiently large. In a semi-stochastic setting and for white noise with
variance σ2, the expected value of the noise E{‖δ‖2} = mσ2 is used instead of the noise
level Δ2.

In this chapter we review the relevant iterative regularization methods and discuss
practical implementation issues. We first examine an extension of the Landweber iteration
to nonlinear ill-posed problems, and then address practical aspects of Newton-type meth-
ods. The application of asymptotic regularization methods to the solution of nonlinear
ill-posed problems will conclude our analysis.
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7.1 Nonlinear Landweber iteration

There are several ways to extend the Landweber iteration to the nonlinear case. Interpreting
the Landweber iteration for the linear equation Kx = yδ as a fixed point iteration xk+1 =
Φ (xk) with the fixed point function Φ (x) = x + KT

(
yδ − Kx

)
, we replace Kx by

F (x) in the expression of Φ (x), and obtain the so-called nonlinear Landweber iteration

xδ
k+1 = xδ

k + KT
k rδ

k, k = 0, 1, . . . , (7.2)

where Kk = K
(
xδ

k

)
and

rδ
k = yδ − F

(
xδ

k

)
. (7.3)

Alternatively, the nonlinear Landweber iteration can be regarded as a method of steepest
descent, in which the negative gradient of the nonlinear residual

F (x) =
1
2

∥∥yδ − F (x)
∥∥2

determines the update direction for the current iterate.
As in the linear case, the nonlinear Landweber iteration can only converge if the equa-

tion F (x) = yδ is properly scaled in the sense that

‖K (x)‖ ≤ 1, x ∈ Bρ (xa) ,

where Bρ (xa) is a ball of radius ρ around xa. The scaling condition can be fulfilled in
practice when both sides of the nonlinear equation are multiplied by a sufficiently small
constant

0 < χ ≤
[

max
x∈Bρ(xa)

‖K (x)‖
]−1

,

which then in (7.2) appears as a relaxation parameter,

xδ
k+1 = xδ

k + χ2KT
k rδ

k, k = 0, 1, . . . .

The nonlinear Landweber iteration (7.2) corresponds to standard-form problems with
L = In, while for general-form problems, the iteration takes the form

xδ
k+1 = xδ

k +
(
LT L

)−1
KT

k rδ
k, k = 0, 1, . . . ,

where L is a square and nonsingular regularization matrix.
This method requires a large number of iteration steps to reduce the residual norm

beyond the noise level. Although several modifications of the conventional method have
been proposed to ameliorate this problem (Scherzer, 1998), the computational effort re-
mains extremely high.

7.2 Newton-type methods

For ill-posed problems, the basic concepts of the Newton method provide a reliable basis
for the development of iterative regularization methods. The key idea of any Newton-type
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method consists in repeatedly linearizing the nonlinear equation about some approximate
solution xδ

k, solving the linearized equation

Kkp = rδ
k, (7.4)

for the Newton step pδ
k, and updating the approximate solution according to the relation

xδ
k+1 = xδ

k + pδ
k. (7.5)

Equation (7.4) is typically ill-posed and to obtain a reasonable solution some sort of reg-
ularization is necessary. The type of regularization employed, or the procedure which is
used to compute the Newton step, characterizes a specific iterative method.

7.2.1 Iteratively regularized Gauss–Newton method

The iteratively regularized Gauss–Newton method relies on the solution of the linearized
equation

Kk (x − xa) = yδ
k, (7.6)

with
yδ

k = yδ − F
(
xδ

k

)
+ Kk

(
xδ

k − xa

)
,

by means of Tikhonov regularization with the penalty term ‖L (x − xa)‖2 and the regular-
ization parameter αk. The new iterate minimizes the function

Flk (x) =
∥∥yδ

k − Kk (x − xa)
∥∥2 + αk ‖L (x − xa)‖2

,

and is given by
xδ

k+1 = xa + K†
ky

δ
k,

where K†
k =

(
KT

k Kk + αkLT L
)−1

KT
k is the regularized generalized inverse at the iter-

ation step k. At first glance, this method seems to be identical to the method of Tikhonov
regularization with a variable regularization parameter, but the following differences ex-
ist:

(1) the regularization parameters are the terms of a decreasing sequence satisfying the
requirements

αk > 0, 1 <
αk

αk+1
≤ c, lim

k→∞
αk = 0; (7.7)

(2) the iterative process is stopped according to the discrepancy principle (7.1) instead of
requiring the convergence of iterates and employing the discrepancy principle as an a
posteriori parameter choice method.

Several strategies for selecting the regularization parameters αk can be considered. In our
retrieval algorithm we use the selection criterion

αk = qkαk−1,
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where qk can be chosen as the ratio of a geometric sequence, i.e., qk = q < 1 is constant,
or as

qk =
τΔ2∥∥rδ

k

∥∥2 , (7.8)

and

qk = 1 − τΔ2∥∥rδ
k

∥∥2 . (7.9)

With the choice (7.8) the regularization parameter decreases very fast at the beginning of it-
eration, while the scheme (7.9) allows enough regularization to be applied at the beginning
of iteration and then to be gradually decreased.

Any iterative method using the discrepancy principle as stopping rule requires the
knowledge of the noise level or of its statistical estimate E{‖δ‖2}. Because in many
practical problems arising in atmospheric remote sensing, the errors in the data cannot
be estimated (due to the forward model errors), we propose the following stopping rules:

(1) For a geometric sequence of regularization parameters, we store all iterates xδ
k and

require the convergence of the nonlinear residuals
∥∥rδ

k

∥∥ within a prescribed tolerance.
If
∥∥rδ
∥∥ is the residual at the last iteration step, we choose the solution xδ

k∗ , with k	

being given by ∥∥rδ
k�

∥∥2 ≤ τ
∥∥rδ
∥∥2 <

∥∥rδ
k

∥∥2 , 0 ≤ k < k	, τ > 1.

(2) For the selection rules (7.8) and (7.9), we first estimate the noise level. For this pur-
pose, we minimize the sum of squares

F (x) =
1
2

∥∥yδ − F (x)
∥∥2

by requiring relative function convergence, compute the equivalent noise variance

σ2
e =

1
m − n

∥∥rδ
∥∥2 ,

where
∥∥rδ
∥∥ is the residual at the last iteration step, and then set Δ2 = mσ2

e .

The above heuristic stopping rules do not have any mathematical justification but work
sufficiently well in practice. To our knowledge there is a lack in the mathematical literature
dealing with this topic and, for the time being, we do not see other viable alternatives for
practical applications.

Although, from a mathematical point of view, the iteratively regularized Gauss–Newton
method does not require a step-length procedure, its use may prevent the iterative pro-
cess from yielding an undesirable solution. Taking into account that the Newton step
pδ

k = xδ
k+1 − xδ

k solves the equation

Kfk

(
xδ

k

)T
Kfk

(
xδ

k

)
p = −gk

(
xδ

k

)
,
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where gk is the gradient of the objective function

Fk (x) =
1
2
‖fk (x)‖2

, fk (x) =
[

F (x) − yδ

√
αkL (x − xa)

]
,

and Kfk is the Jacobian matrix of fk, we deduce that

gk

(
xδ

k

)T
pδ

k = −
∥∥Kfk

(
xδ

k

)
pδ

k

∥∥2 < 0,

and so, pδ
k is a descent direction for Fk. Thus, the step-length procedure outlined in

k

In Figure 7.1 we illustrate the solution errors for the iteratively regularized Gauss–
Newton method and Tikhonov regularization. In the iteratively regularized Gauss–Newton
method, the exponent p characterizes the initial value of the regularization parameter, α0 =
σp, while at all subsequent iteration steps, the regularization parameters are the terms of a
geometric sequence with the ratio q = 0.8. The plots show that the iteratively regularized
Gauss–Newton method still yields reliable results for small values of the exponent p, or
equivalently, for large initial values of the regularization parameter. Evidently, a stronger
regularization at the beginning of the iterative process requires a larger number of iteration
steps as can be seen in the right panels of Figure 7.1. The main conclusion of this numerical
simulation is that the iteratively regularized Gauss–Newton method is more stable than
Tikhonov regularization with respect to overestimations of the regularization parameter.

The same results are shown in Figure 7.2 for the dynamical selection criteria (7.8) and
(7.9). The selection criterion (7.8) maintains the stability of the regularization method, but
the errors at small p-values are almost two times larger than those corresponding to a ge-
ometric sequence. As a result, the retrieved profiles oscillate around the exact profiles and
are undersmoothed. Although the selection criterion (7.9) requires a small number of iter-
ation steps, it is less stable with respect to overestimations of the regularization parameter.
This is because we cannot find a unique value of the control parameter τ yielding accurate
results over the entire domain of variation of p. For example, in the case p = 0.3 and the
choice τ = 1.01, the solution error is 0.08. Choosing τ = 1.05, we reduce the solution
error to 0.05, but we increase the solution error at p = 0.5 from 0.06 to 0.09. Thus, for the
applications considered here, a dynamical selection of the regularization parameters is less
reliable than an a priori selection rule using a geometric sequence (with constant ratio).

An important aspect of any iterative method using the discrepancy principle as stop-
ping rule is the choice of the control parameter τ . From a theoretical point of view, τ
should be larger than 4, but in many practical applications this choice leads to a premature
termination of the iterative process. As we do not use the standard version of the discrep-
ancy principle with known noise level, we determine the optimal value of τ by minimizing
the solution error. The results plotted in Figure 7.3 show that for the O3 and the BrO re-
trieval test problems, the optimal value of τ is close to 1, and we find that a good choice
for τ is 1.01.

In Figure 7.4 we plot the histories of regularization parameters and residual norms
for different initial values of the exponent p. The plots show that the limiting values of
the sequences of regularization parameters and residual norms are comparable whatever
the initial values of the regularization parameter are. These values of the regularization

Algorithm 5 can be applied at each iteration step for the Tikhonov function F .
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Fig. 7.1. Relative solution errors and the number of iteration steps for different values of the expo-
nent p. The results are computed with the iteratively regularized Gauss–Newton (IRGN) method and
Tikhonov regularization (TR).
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Fig. 7.2. The same as in Figure 7.1 but for the selection criteria (7.8) (S2) and (7.9) (S3). The control
parameter τ is 1.01.
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Fig. 7.3. Relative solution errors for different values of the control parameter τ .
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Fig. 7.4. Histories of regularization parameters and residual norms for different values of the expo-
nent p.

parameter are 3.04 ·10−5 for p = 0.1, 3.44 ·10−5 for p = 0.5, 3.40 ·10−5 for p = 1.0, and
3.37 · 10−5 for p = 1.5. It is interesting to note that Tikhonov regularization using these
limiting values as a priori regularization parameters, yields small solution errors; for the
average value α = 3.31 · 10−5 in Figure 7.4, the solution error for Tikhonov regularization
is 5 ·10−2. This equivalence suggests that we may perform an error analysis at the solution
with the final value of the regularization parameter.

The retrieved profiles for the four test problems are shown in Figure 7.5. The under-
smoothing effect of the selection criterion (7.8) is more pronounced for the BrO and the
CO retrieval test problems.
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Fig. 7.5. Retrieved profiles computed with the iteratively regularized Gauss–Newton method. The
results correspond to a geometric sequence of regularization parameters with a ratio of 0.8 (S1), and
the selection criteria (7.8) (S2) and (7.9) (S3).

The incorporation of additional constraints into the iteratively regularized Gauss–
Newton method, hereafter abbreviated as IRGN method, results in a regularization method
which is less susceptible to the selection of the regularization parameter over a large range
of values. For the ozone nadir sounding problem discussed in the preceding chapter, the
equality-constrained IRGN method can be designed by replacing the unconstrained mini-
mization problem

min
x

Q (�x) = gT�x +
1
2
�xT G�x,

by the quadratic programming problem (cf. (6.75) and (6.76))

min
x

Q (�x) = gT�x +
1
2
�xT G�x

subject to
n∑

i=1

[�x]i = c.

Here, the Hessian and the gradient of Q are given by G = KT
k Kk + αkLT L and g =

−KT
k yδ

k, respectively. The quadratic programming problem is solved in the framework of
the null-space method by using an explicit representation of the solution in terms of the
vertical column. As opposed to the constrained Tikhonov regularization, both strengths
of the constraints are now computed internally: the regularization parameter, which con-
trols the smoothness of the solution, is decreased during the Newton iteration by a constant
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factor, and the vertical column, which controls the magnitude of the solution, is deter-
mined by using the minimum distance function approach. As in general, iterative methods
require more iteration steps than Tikhonov regularization, only the equality-constrained
IRGN method with variable total column is appropriate for practical applications.

An inequality-constrained IRGN method can be derived if the total column is known
with sufficiently accuracy. The information on the total column should be the result of
an independent retrieval, which can be performed in a distinct spectral interval by using
an appropriate algorithm like the DOAS approach (Van Roozendael et al., 2006; Balis
et al., 2007). The proposed inequality-constrained IRGN method is of the form of the
following model algorithm: at the iteration step k, compute the a priori profile deviation
�xδ

k+1α = xδ
k+1α − xa by solving the quadratic programming problem

min
x

Q (�x) = gT�x +
1
2
�xT G�x (7.10)

subject to
nt∑

i=1

[�x]i ≤ cmax, (7.11)

n∑
i=1

[�x]i ≥ cmin. (7.12)

The layer nt < n, delimits the tropospheric region from above, and the reasons for the
choice (7.11)–(7.12) are the following:

(1) the constraints should be linearly independent since otherwise one of the constraints
can be omitted without altering the solution;

(2) as the nadir radiance is less sensitive to variations of gas concentrations in the tropo-
sphere, the condition (7.11) does not allow large profile deviations in the sensitivity
region above the troposphere;

(3) the condition (7.12) guarantees a sufficiently large deviation of the profile (with respect
to the a priori) over the entire altitude range.

If c is the relative vertical column delivered by an independent retrieval and �c is the
associated uncertainty, we may choose cmin = c − εmin�c with εmin ≥ 1, and cmax = c.
This choice of the upper bound is reasonable since cmax in (7.11) controls only the vertical
column above the troposphere. The quadratic programming problem (7.10)–(7.12) can
be solved by using primal and dual active set methods. The dual active set method of
Goldfarb and Idnani (1983) generates dual-feasible iterates by keeping track of an active
set of constraints (Appendix J). An implementation of the method of Goldfarb and Idnani
is the routine ‘solve.qp’ from the optimization package ‘quadprog’, which is available free
through the internet (CRAN-Package quadprog, 2007).

Considering the same retrieval scenario as in the preceding chapter and taking into
account that the exact relative vertical column for ozone is c = 110 DU, we choose cmin =
80 DU and cmax = 125 DU for equality constraints, and cmin = 105 DU and cmax = 110
DU for inequality constraints.

In Figure 7.6 we plot the solution errors for Tikhonov regularization and the con-
strained and unconstrained IRGN methods. For these simulations, three values of the
signal-to-noise ratio have been considered, namely 50, 100 and 150. The plots show that
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Fig. 7.6. Relative solution errors for Tikhonov regularization (TR), the IRGN method, and the
equality- and inequality-constrained IRGN (IRGN-EQC and IRGN-INEQC) methods.

the constrained IRGN methods yield acceptable reconstruction errors over the entire do-
main of variation of the regularization parameter. The main drawback of the inequality-
constrained IRGN method is its sensitivity to the selection of the bounds cmin and cmax.
The reason is that the method does not use an internal selection criterion for the relative
vertical column and the information on c should be sufficiently accurate. Especially, the
choice of the bound cmin is critical; we found that values smaller than 105 DU lead to large
solution errors.

The retrieved profiles computed with the equality-constrained IRGN method and Ti-
khonov regularization are shown in Figure 7.7. For p = 2.4, the Tikhonov solution is
undersmoothed, while for p = 0.2, the solution is oversmoothed in the sense that mainly
the scaling and less the translation of the a priori profile is reproduced. In both situations,
the profiles computed with the equality-constrained IRGN method are better approxima-
tions of the exact profile.

The computation times of the methods are outlined in Table 7.1. For p = 0.2,
Tikhonov regularization is by a factor of 2 faster than the constrained IRGN methods,
while for p = 2.4 their efficiencies are comparable. This enhancement of computation
time is the price that we have to pay for obtaining stable approximations of the solution
over a large range of values of the regularization parameter.

We conclude this section by referring to a stopping rule which can be used in conjunc-
tion with any iterative regularization method, namely the Lepskij stopping rule (Bauer and
Hohage, 2005). This criterion is based on monitoring the total error

eδ
k = esk + eδ

nk,

where the smoothing and noise errors are given by esk = (In − Ak−1)
(
x† − xa

)
and

eδ
nk = −K†

k−1δ, respectively. The idea of the Lepskij stopping rule is to use the noise
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Fig. 7.7. Retrieval results corresponding to Tikhonov regularization (TR) and the equality-
constrained IRGN (IRGN-EQC) method in the case SNR = 100.

Table 7.1. Computation time in min:ss format for the regularization methods in Figure 7.6. The
numbers in parentheses represent the number of iteration steps and the relative solution errors ex-
pressed in percent.

Method

p TR IRGN IRGN-EQC IRGN-INEQC

2.4 0:20 (4;16.5) 0:23 (5;18.0) 0:26 (5;9.8) 0:24(5;9.9)
0.2 0:20 (4;12.3) 0:39 (12;8.1) 0:50 (12;8.1) 0:42(12;8.3)

error bound ∥∥eδ
nk

∥∥ ≤ cn
Δ

2√αk−1
, cn ≥ 1, (7.13)

to detect the iteration step after which the total error is dominated by the noise error. By
convention, the optimal stopping index kopt is the iteration index yielding roughly a trade-
off between the smoothing and noise errors. To estimate kopt, we assume that the total
error can be bounded as∥∥xδ

k − x†∥∥ ≤ E (k) Δ, k = kopt, . . . , kmax,

where E : N → [0,∞) is a known increasing function. Then, using the result∥∥∥xδ
kopt

− xδ
k

∥∥∥ ≤ ∥∥∥xδ
kopt

− x†
∥∥∥+

∥∥xδ
k − x†∥∥ ≤ E

(
kopt
)
Δ + E (k) Δ ≤ 2E (k) Δ

for all k = kopt + 1, . . . , kmax, we deduce that the optimal stopping index kopt can be
approximated by the first index k	 with the property∥∥xδ

k� − xδ
k

∥∥ ≤ 2E (k) Δ, k = k	 + 1, . . . , kmax. (7.14)



232 Iterative regularization methods for nonlinear problems Chap. 7

The stopping index k	 is called the Lepskij stopping index and (7.14) is called the Lepskij
stopping rule. The main problem which has to be solved is the choice of the function E.
Taking into account that ∥∥eskopt

∥∥ ≈ ∥∥∥eδ
nkopt

∥∥∥ ,

and that
‖esk‖ ≤

∥∥eskopt

∥∥ ≈ ∥∥∥eδ
nkopt

∥∥∥ ≤ ∥∥eδ
nk

∥∥ , k = kopt, . . . , kmax,

we obtain ∥∥xδ
k − x†∥∥ ≤ 2

∥∥eδ
nk

∥∥ , k = kopt, . . . , kmax. (7.15)

Thus, in a deterministic setting we may choose (cf. (7.13) and (7.15))

E (k) =
c

√
αk−1

, c ≥ 1,

while in a semi-stochastic setting, the estimate

E
{∥∥eδ

nk

∥∥2} = σ2trace
(
K†

k−1K
†T
k−1

)
together with (7.15) suggests the choice

E (k) = c

√
1
m

trace
(
K†

k−1K
†T
k−1

)
, c ≥ 2.

7.2.2 Regularizing Levenberg–Marquardt method

In the regularizing Levenberg–Marquardt method, the linearized equation

Kk

(
x − xδ

k

)
= rδ

k, (7.16)

with rδ
k being given by (7.3), is solved by means of Tikhonov regularization with the

penalty term
∥∥L (x − xδ

k

)∥∥2 and the regularization parameter αk. The new iterate min-
imizing the Tikhonov function

Flk (x) =
∥∥rδ

k − Kk

(
x − xδ

k

)∥∥2 + αk

∥∥L (x − xδ
k

)∥∥2 , (7.17)

is given by
xδ

k+1 = xδ
k + K†

kr
δ
k. (7.18)

The difference from the iteratively regularized Gauss–Newton method consists in the penalty
term which now depends on the previous iterate instead of the a priori.

The parameter choice rule αk = qkαk−1 with qk < 1, designed for the iteratively
regularized Gauss–Newton method, can be used for the regularizing Levenberg–Marquardt
method as well. Otherwise, the regularization parameter can be selected by applying the
discrepancy principle to the linearized equation (7.16) (Hanke, 1997): if pδ

αk = K†
αkr

δ
k

with
K†

αk =
(
KT

k Kk + αLT L
)−1

KT
k ,
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denotes the minimizer of the Tikhonov function (7.17) for an arbitrary α, the Levenberg–
Marquardt parameter αk is chosen as the solution of the ‘discrepancy principle’ equation∥∥rδ

k − Kkpδ
αk

∥∥2 = θ
∥∥rδ

k

∥∥2 , 0 < θ < 1, (7.19)

and the Newton step is taken as pδ
k = pδ

αkk. The regularization parameter can also be
chosen according to the generalized discrepancy principle, in which case, αk is the solution
of the equation∥∥rδ

k − Kkpδ
αk

∥∥2 − (rδ
k − Kkpδ

αk

)T
Âαk

(
rδ

k − Kkpδ
αk

)
= θ
∥∥rδ

k

∥∥2 ,

where Âαk = KkK
†
αk is the influence matrix.

As in the iteratively regularized Gauss–Newton method, a step-length procedure can
be used to assure a decrease of the nonlinear residual at each iteration step. Considering
the nonlinear residual

F (x) =
1
2

∥∥yδ − F (x)
∥∥2 ,

and taking into account that the gradient of F at x is given by

g (x) = −K (x)T [yδ − F (x)
]

= −K (x)T rδ (x) ,

we deduce that pδ
k, solving the regularized normal equation(

KT
k Kk + αkLT L

)
p = KT

k rδ
k,

satisfies the inequality

g
(
xδ

k

)T
pδ

k = −
(∥∥Kkpδ

k

∥∥2 + αk

∥∥Lpδ
k

∥∥) < 0.

Thus, pδ
k is a descent direction for F , and the objective function in Algorithm 5 is the

nonlinear residual.
Instead of a step-length algorithm, a trust-region algorithm can be used to guarantee

the descent condition at each iteration step. This choice is justified by the equivalence
between the regularizing Levenberg–Marquardt method and a trust-region method: for a
general-form regularization, the kth iteration step of the optimization problem

min
x

F (x) =
1
2

∥∥yδ − F (x)
∥∥2 ,

involves the solution of the trust-region problem

min
p

Mk (p) (7.20)

subject to ‖Lp‖ ≤ Γk,

where
Mk (p) = F

(
xδ

k

)
− rδT

k Kkp +
1
2
pT KT

k Kkp, (7.21)
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Algorithm 11. Regularizing Levenberg–Marquardt method with a trust-region algorithm.
Given the actual iterate x and the regularization parameter α, the algorithm computes
the new iterate xnew to assure a sufficient decrease of the objective function. The control
parameters can be chosen as εf = 10−4, ε1Γ = 0.1 and ε2Γ = 0.5.

F ← 0.5
∥∥yδ − F (x)

∥∥2; g ← −K (x)T [yδ − F (x)
]
;

compute the step p for α;
Γ ← ‖Lp‖; {trust-region radius for this step}
estimate Γmin ; retcode ← 2; firstcall ← true;
while retcode > 1 do

if firstcall = false compute the trial step p for the trust-region radius Γ;
xnew ← x + p; Fnew ← 0.5

∥∥yδ − F (xnew)
∥∥2; �F ← F −Fnew;

{objective function is too large; reduce Γ and continue the while loop}
if Fnew > F + εfgT p then

if Γ < Γmin then

retcode ← 1; xnew ← x; Fnew ← F ;
else

retcode ← 2; Γtmp ← 0.5
(
gT p

)
‖Lp‖ /

(
�F + gT p

)
;

if Γtmp < ε1ΓΓ then

Γ ← ε1ΓΓ;
else if Γtmp > ε2ΓΓ then

Γ ← ε2ΓΓ;
else

Γ ← Γtmp;
end if

end if

{objective function is sufficiently small}
else

retcode ← 0;
end if

firstcall ← false;
end while

is the quadratic Gauss–Newton model about the current iterate and Γk is the trust-region
radius. The regularizing Levenberg–Marquardt method with a trust-region procedure is
illustrated in Algorithm 11. In contrast to the standard implementation (Algorithm 6), the
regularization parameter (or the Lagrange multiplier) is chosen a priori and is not deter-
mined by the trust-region radius. Only if the descent condition is violated, the trust-region
radius is reduced, and the new step is computed accordingly. To compute the trial step pδ

k

for the trust-region radius Γk, we consider the standard-form problem(
K̄T

k K̄k + αIn

)
p̄ = K̄T

k rδ
k,

with K̄k = KkL−1 and p̄ = Lp , solve the trust-region equation

n∑
i=1

(
σi

σ2
i + α

)2 (
uT

i rδ
k

)2
= Γ2

k, (7.22)
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Fig. 7.8. Relative solution errors and the number of iteration steps for different values of the expo-
nent p. The results correspond to the regularizing Levenberg–Marquardt (LVMR) method and the
iteratively regularized Gauss–Newton (IRGN) method.

for ᾱ, where (σi;vi,ui) is a singular system of K̄k, and then set pδ
k = L−1p̄δ

ᾱk, where
p̄δ

ᾱk = K̄†
ᾱkr

δ
k.

The regularizing Levenberg–Marquardt method is also insensitive to overestimations
of the regularization parameter. The results in Figure 7.8 show that the regularizing Leven-
berg–Marquardt method is superior to the iteratively regularized Gauss–Newton method:
for large initial values of the regularization parameter, the number of iteration steps as well
as the solution errors are smaller.

The retrieved profiles illustrated in Figure 7.9 give evidence that for the BrO retrieval
test problem, the undersmoothing effect of the selection criterion (7.8) is not so pronounced
as in the case of the iteratively regularized Gauss–Newton method.

The results listed in Table 7.2 demonstrate that for the BrO and the CO retrieval test
problems, the solution errors corresponding to the trust-region algorithm are on average
smaller than those corresponding to the step-length algorithm.

The standard trust-region implementation of the Levenberg–Marquardt method (Algo-
rithm 6) is also a regularization, in which the regularization parameter is adjusted by the
trust-region radius (Wang and Yuan, 2005). However, we found that this method is very
sensitive to the selection of the model parameters, especially to the choice of the amplifica-
tion factor ca, which controls the increase of the trust-region radius. The results in Figure
7.10 show that for large initial values of the regularization parameter we have to increase
the amplification factor in order to obtain reasonable accuracies. Acceptable solutions cor-
respond to a small domain of variations of the initial regularization parameter, and the
solution errors are in general slightly larger than those corresponding to the regularizing
Levenberg–Marquardt method.
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Fig. 7.9. The same as in Figure 7.5 but for the regularizing Levenberg–Marquardt method.

Table 7.2. Relative solution errors for the regularizing Levenberg–Marquardt method with the step-
length and trust-region algorithms. The results correspond to a geometric sequence of regularization
parameters with a ratio of 0.8 (S1), and the selection criteria (7.8) (S2) and (7.9) (S3).

Selection criterion

Problem Procedure S1 S2 S3

O3 step-length 4.45e-2 4.46e-2 5.50e-2
trust-region 4.41e-2 4.42e-2 5.01e-2

BrO step-length 5.83e-2 9.05e-2 5.87e-2
trust-region 3.54e-2 4.44e-2 3.92e-2

CO step-length 3.82e-2 2.54e-1 3.76e-2
trust-region 3.12e-2 1.21e-1 1.82e-2

Temperature step-length 1.81e-2 2.16e-2 2.16e-2
trust-region 1.96e-2 3.01e-2 2.13e-2
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Fig. 7.10. Left: relative solution errors versus the exponent p specifying the initial value of the
regularization parameter. Right: amplification factor ca which controls the increase of the trust-
region radius. The results correspond to the O3 retrieval test problem.

7.2.3 Newton–CG method

The Newton–CG method relies on the solution of the linearized equation

Kkp = rδ
k, (7.23)

by means of the conjugate gradient for normal equations and by using the nonsingular reg-
ularization matrix L as right preconditioner. For this purpose, the CGNR or the LSQR
algorithms discussed in Chapter 5 can be employed. The main peculiarity of this solution
method is that the linearized equation is not solved completely; only a number of pk iter-
ations are performed at the Newton step k. In this regard it is apparent that the number of
iteration steps pk plays the role of the regularization parameter αk. The resulting algorithm
belongs to the class of the so-called REGINN (REGularization based on INexact Newton
iteration) methods (Rieder, 1999; 2003). The term inexact Newton method refers to an
approach consisting of two components:

(1) an outer Newton iteration which updates the current iterate;
(2) an inner iteration which provides the update by approximately solving a linearized

version of the nonlinear equation.

It should be pointed out that other iterative methods as for example, the Landweber itera-
tion or the ν-method, can be used for solving the linearized equation (7.23).
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Algorithm 12. REGINN (REGularization based on INexact Newton iteration) algorithm.
The control parameters of the algorithm are θ0, θmax , q and τ .

set Δ2 = E
{
‖δ‖2

}
= mσ2 or estimate Δ2;

k ← 0, xδ
0 ← xa;

compute F
(
xδ

0

)
and K0 = K

(
xδ

0

)
; rδ

0 ← yδ − F
(
xδ

0

)
;

θ̃0 ← θ0; θ̃1 ← θ0;
while

∥∥rδ
k

∥∥2 > τΔ2 do {discrepancy principle for the outer iteration}
if k > 1 compute θ̃k by using (7.26) ;
θk ← θmax max

(
τΔ2/

∥∥rδ
k

∥∥2 , θ̃k

)
;

l ← 0 ;
repeat

l ← l + 1;
compute pδ

lk;
until

∥∥rδ
k − Kkpδ

lk

∥∥2 ≤ θk

∥∥rδ
k

∥∥2 {discrepancy principle for the inner iteration}
pk ← l;
xδ

k+1 ← xδ
k + pδ

pkk;
compute F

(
xδ

k+1

)
and Kk+1 = K

(
xδ

k+1

)
; rδ

k+1 ← yδ − F
(
xδ

k+1

)
;

k ← k + 1;
end while

The REGINN method outlined in Algorithm 12 is due to Rieder (1999; 2003). The
outer Newton iteration (the while loop) is stopped according to the discrepancy principle
(7.1). The number of iteration steps pk of the inner scheme (the repeat loop) is chosen ac-
cording to the discrepancy principle for the linearized equation (7.23) (compare to (7.19))∥∥rδ

k − Kkpδ
pkk

∥∥2 ≤ θk

∥∥rδ
k

∥∥2 <
∥∥rδ

k − Kkpδ
lk

∥∥2 , 1 ≤ l < pk, (7.24)

while the following selection criterion is used for the tolerances θk:

(1) choose θ0 ∈ (0, 1) and q ∈ (0, 1];
(2) set θ̃0 = θ̃1 = θ0;
(3) compute

θk = θmax max

(
τΔ2∥∥rδ

k

∥∥2 , θ̃k

)
, (7.25)

where θ̃k is given by

θ̃k =

{
1 − pk−2

pk−1
(1 − θk−1) , pk−1 ≥ pk−2,

qθk−1, pk−1 < pk−2,
k ≥ 2, (7.26)

and θmax ∈ (θ0, 1) bounds the θk away from 1 (uniformly in k and Δ).

The parameter θmax should be very close to 1, for instance, the choice θmax = 0.999
is reasonable. The general idea of the selection rule (7.25)–(7.26) is to start with a small
tolerance and to increase it during the Newton iteration. However, the level θk

∥∥rδ
k

∥∥2should
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decrease during the iterative process, so that on average, the number of iteration steps pk of
the inner scheme should increase with increasing k. In the starting phase of the algorithm,
the nonlinear residual is relatively large and as a result, the level θk

∥∥rδ
k

∥∥2 is not very small
even for small values of the tolerances. Thus, in spite of small tolerances, the repeat loop
will terminate. From (7.26) it is apparent that the tolerance is increased when the number of
passes through the repeat loop of two successive Newton steps increases significantly, and
it is decreased by a constant factor whenever the consecutive numbers of passes through the
repeat loop drop. However, a rapid decrease of the tolerances should be avoided (the repeat
loop may not terminate) and the choice of q in the interval [0.9, 1] is appropriate. In (7.25),
a safeguarding technique to prevent oversolving of the discrepancy principle (especially in
the final Newton step) is incorporated: at each Newton step there holds θk

∥∥rδ
k

∥∥2 ≥ τΔ2.
In our retrieval algorithm we use an a priori selection rule instead of the dynamical

selection criterion (7.24): the number of iteration steps of the inner scheme is assumed to
vary linearly between pmin and pmax,

pk = ξkpmin +
(
1 − ξk

)
pmax, 0 < ξ < 1, (7.27)

or according to the exponential law

pk = pmax − (pmax − pmin) e−ξk. (7.28)

In Figure 7.11 we illustrate the solution error for the selection criterion (7.27) as a
function of the initial number of iteration steps of the inner scheme p0 = pmin. The main
conclusions emerging from this simulation are summarized below.

(1) For each value of pmax, there exists a large interval of variation of pmin yielding ac-
ceptable solution errors.

(2) Large values of both control parameters pmin and pmax mean large values of the num-
ber of iteration steps pk. In this case, the regularization decreases very fast at the
beginning of the iterative process, the retrieved profiles are undersmoothed and the
solution errors are large.

(3) For a fixed value of pmin, small values of pmax yield small values of pk. The regu-
larization applied at each Newton step is large, and therefore, the number of Newton
steps is also large.

At each Newton step k, the number of iterations pk of the selection criterion (7.28) is
smaller than that of the selection criterion (7.27), and as a result, the number of Newton
steps is larger (Figure 7.12).

7.3 Asymptotic regularization

Asymptotic regularization can be regarded as a continuous analog of the Landweber itera-
tion,

xδ
k+1 = xδ

k + KT
k

[
yδ − F

(
xδ

k

)]
, k = 0, 1, . . . .

In this method, a regularized approximation xδ (T ) of the exact solution x† is obtained by
solving the initial value problem (Showalter differential equation)

ẋδ (t) = K
(
xδ (t)

)T [
yδ − F

(
xδ (t)

)]
, 0 < t ≤ T, xδ (0) = xa, (7.29)
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Fig. 7.11. Relative solution errors and the number of Newton steps versus pmin for the selection
criterion (7.27) with ξ = 0.5. Each curve corresponds to a value of pmax ranging between 10 and
30.
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where T plays the role of the regularization parameter. The basic property of asymp-
totic regularization states that x (T ) → x† as T → ∞, where x (t) is the solution of
the noise-free problem with the exact data vector y. For linear problems, this result is
straightforward: the solution of the initial value problem

ẋ (t) = KT [y − Kx (t)] , 0 < t ≤ T, x (0) = xa,

is given by
x (t) = e−KT Ktxa +

(
KT K

)−1
(
In − e−KT Kt

)
KT y,

whence letting T → ∞, we obtain

x (T ) →
(
KT K

)−1
KT y = x†.

For the nonlinear case, convergence results for the unperturbed and perturbed problems in
a continuous setting have been established by Tautenhahn (1994). Applying the family of
Runge–Kutta methods to the initial value problem (7.29), several iterative regularization
methods have been developed by Böckmann and Pornsawad (2008). Similarly, Hochbruck
et al. (2009) proposed an exponential Euler regularization method for solving the Showal-
ter differential equation. In this section we analyze the computational efficiency of the
Runge–Kutta regularization method and of the exponential Euler regularization method.

In the framework of Runge–Kutta methods, an approximate solution of the initial value
problem

ẋ (t) = Ψ (t,x (t)) , x (0) = xa,

is computed as

xk+1 = xk + τk

s∑
i=1

biΨ (t + ciτk,vi) ,

vi = xk + τk

s∑
j=1

aijΨ (t + cjτk,vj) , i = 1, . . . , s, k = 0, 1, . . . ,

where x0 = xa, s is the number of stages, τk is the step length at the actual iteration step
and the coefficients aij , bi and ci with i, j = 1, . . . , s, depend on the particular method
employed. These coefficients are usually arranged in a mnemonic device, known as the
Butcher tableau (Figure 7.13).

For our purpose, we consider consistent Runge–Kutta methods with the property
s∑

i=1

bi = 1. (7.30)

Applying the above scheme to the initial value problem (7.29) yields

xδ
k+1 = xδ

k + τk

s∑
i=1

biK (vi)
T [yδ − F (vi)

]
,

vi = xδ
k + τk

s∑
j=1

aijK (vj)
T [yδ − F (vj)

]
, i = 1, . . . , s, k = 0, 1, . . . .
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Fig. 7.13. General form of a Butcher tableau (1) and specific Butcher tableaus for the explicit Euler
method (2), the implicit Euler method (3), the Radau method (4), and the Lobatto method (5).

Setting

zi = vi − xδ
k = τk

s∑
j=1

aijK (vj)
T [yδ − F (vj)

]
,

and using the linearization

F (vj) = F
(
xδ

k + zj

)
≈ F

(
xδ

k

)
+ K

(
xδ

k

)
zj ,

and the approximation

K (vj) = K
(
xδ

k + zj

)
≈ K

(
xδ

k

)
,

we obtain

xδ
k+1 = xδ

k + τk

s∑
i=1

biKT
k

(
rδ

k − Kkzi

)
, (7.31)

zi = τk

s∑
j=1

aijKT
k

(
rδ

k − Kkzj

)
, i = 1, . . . , s, k = 0, 1, . . . , (7.32)

with Kk = K
(
xδ

k

)
and rδ

k = yδ − F
(
xδ

k

)
. To express (7.31) and (7.32) in a compact

form we introduce the matrices

A = A ⊗ In, Kk = Is ⊗ Kk, B = bT ⊗ In, I = Is ⊗ In,

and the vectors

rδk = 1s ⊗ rδ
k, z =

⎡⎢⎣ z1

...
zs

⎤⎥⎦ ∈ R
sn,

where

A =

⎡⎢⎣ a11 . . . a1s

...
. . .

...
as1 . . . ass

⎤⎥⎦ ∈ R
s×s, b =

⎡⎢⎣ b1

...
bs

⎤⎥⎦ ∈ R
s, 1s =

⎡⎢⎣ 1
...
1

⎤⎥⎦ ∈ R
s,
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and the notation X ⊗ Y stands for the Kronecker product of the matrices X ∈ R
m×n and

Y ∈ R
p×q defined as

X ⊗ Y =

⎡⎢⎣ x11Y . . . x1nY
...

. . .
...

xm1Y . . . xmnY

⎤⎥⎦ ∈ R
mp×nq, [X]ij = xij .

The use of the Kronecker product enables us to derive a transparent solution representation
in a straightforward manner. When working with the Kronecker product, the following
calculation rules have to be taken into account: for compatible matrices X, Y, Z and W,
there hold

(X ⊗ Y) (Z ⊗ W) = XZ ⊗ YW, (7.33)

(X ⊗ Y)T = XT ⊗ YT , (7.34)

(X ⊗ Y)−1 = X−1 ⊗ Y−1. (7.35)

Moreover, if A = A ⊗ In with A ∈ R
s×s and X = Is ⊗ X with X ∈ R

n×n , then the
representations

AX = (A ⊗ In) (Is ⊗ X) = A ⊗ X

and
XA = (Is ⊗ X) (A ⊗ In) = A ⊗ X,

yield the symmetry relation
AX = XA. (7.36)

Now, using the consistency relation (7.30), (7.31) and (7.32) become

xδ
k+1 = xδ

k + τkKT
k rδ

k − τkBKT
k Kkz, (7.37)(

τkAKT
k Kk + I

)
z = τkAKT

k rδk. (7.38)

Equation (7.38) is solved for z,

z = τk

(
τkAKT

k Kk + I
)−1

AKT
k rδk,

and is rearranged in the form

BKT
k Kkz = BKT

k rδk − BA−1
(
τkAKT

k Kk + I
)−1

AKT
k rδk. (7.39)

Since bT 1s = 1 and X = 1 ⊗ X, we have

BKT
k rδk =

(
bT ⊗ In

) (
Is ⊗ KT

k

) (
1s ⊗ rδ

k

)
= KT

k rδ
k, (7.40)

and by virtue of (7.39) and (7.40), (7.37) can be written as

xδ
k+1 = xδ

k + τkBA−1
(
τkAKT

k Kk + I
)−1

AKT
k rδk.

Finally, introducing the regularization parameter αk by

αk =
1
τk

,



244 Iterative regularization methods for nonlinear problems Chap. 7

and using the symmetry relation (cf. (7.36) and the identity KT
k Kk = Is ⊗ KT

k Kk)

A
(
KT

k Kk

)
=
(
KT

k Kk

)
A,

which yields,
A−1

(
AKT

k Kk + αkI
)−1

A =
(
AKT

k Kk + αkI
)−1

,

we obtain the iteration of the Runge–Kutta regularization method

xδ
k+1 = xδ

k + B
(
AKT

k Kk + αkI
)−1

KT
k rδk, k = 0, 1, . . . . (7.41)

It is remarkable to note that for the explicit Euler iteration (s = 1, a11 = 0, b1 = 1)
we are led to z1 = 0, and (7.31) is the iteration of the nonlinear Landweber method (with
a relaxation parameter τk). Furthermore, for the implicit Euler method (s = 1, a11 = 1,
b1 = 1) there holds

A = B = In, Kk = Kk, rδk = rδ
k,

and (7.41) is the iteration of the regularizing Levenberg–Marquardt method with L = In,
i.e.,

xδ
k+1 = xδ

k +
(
KT

k Kk + αkIn

)−1
KT

k rδ
k, k = 0, 1, . . . . (7.42)

The regularizing property of any inversion method discussed up to now is reflected by
the filter factors. This concept can be generalized by introducing the so-called filter matrix.
For example, if (σi;vi,ui) is a singular system of the matrix Kk, then the iterate of the
regularizing Levenberg–Marquardt method (7.42) can be expressed as

xδ
k+1 = xδ

k + VFk

⎡⎢⎣
1
σ1

uT
1 rδ

k
...

1
σn

uT
nrδ

k

⎤⎥⎦ , (7.43)

where the diagonal matrix

Fk =
[
diag

(
fαk

(
σ2

i

))
n×n

]
, fk

(
σ2

i

)
=

σ2
i

σ2
i + αk

, (7.44)

represents the filter matrix. Evidently, for very small values of the regularization pa-
rameter, Fk ≈ In, while for very large values of the regularization parameter Fk ≈
(1/αk) [diag

(
σ2

i

)
n×n

]. For the Runge–Kutta regularization method, the filter matrix is
not diagonal because A is not diagonal. To derive the expression of the filter matrix in this
case, we first employ the relations (cf. (7.33))

AKT
k Kk = A ⊗

(
KT

k Kk

)
= (Is ⊗ V)

(
A ⊗

[
diag

(
σ2

i

)
n×n

]) (
Is ⊗ VT

)
and

αkI = (Is ⊗ V) (αkI)
(
Is ⊗ VT

)
to obtain

AKT
k Kk + αkI = (Is ⊗ V)

(
A ⊗

[
diag

(
σ2

i

)
n×n

]
+ αkI

) (
Is ⊗ VT

)
.
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Then, we use

KT
k rδk = 1s ⊗

(
KT

k rδ
k

)
= (Is ⊗ V)

(
Is ⊗

[
diag

(
σ2

i

)
n×n

])⎛⎜⎝1s ⊗

⎡⎢⎣
1
σ1

uT
1 rδ

k
...

1
σn

uT
nrδ

k

⎤⎥⎦
⎞⎟⎠ ,

and
B (Is ⊗ V) =

(
bT ⊗ In

)
(Is ⊗ V) = bT ⊗ V,

together with (cf. (7.35)) (
Is ⊗ VT

)−1
= Is ⊗ V,

to conclude that

xδ
k+1 =xδ

k +
(
bT ⊗ V

) (
A ⊗

[
diag

(
σ2

i

)
n×n

]
+ αkI

)−1

×
(
Is ⊗

[
diag

(
σ2

i

)
n×n

])⎛⎜⎝1s ⊗

⎡⎢⎣
1
σ1

uT
1 rδ

k
...

1
σn

uT
nrδ

k

⎤⎥⎦
⎞⎟⎠ . (7.45)

The iterate (7.45) can be expressed as in (7.43) by taking into account that X = 1⊗X and
x = 1 ⊗ x. The result is

Fk =
(
bT ⊗ In

) (
A ⊗

[
diag

(
σ2

i

)
n×n

]
+ αkI

)−1 (
1s ⊗

[
diag

(
σ2

i

)
n×n

])
.

Two extreme situations can be considered. If αk is very small, then by virtue of the identity
bT A−11s = 1, which holds true for the Radau and Lobatto methods illustrated in Figure
7.13, we obtain Fk ≈ In. On the other hand, if αk is very large, the consistency relation
bT 1s = 1, yields Fk ≈ (1/αk) [diag

(
σ2

i

)
n×n

]. Thus, the filter matrix of the Runge–
Kutta regularization method behaves like the ‘Tikhonov filter matrix’.

The exponential Euler method is based on the variation-of-constants formula which
allows us to integrate the linear part of semilinear differential equations exactly. For the
Showalter differential equation (7.29), Hochbruck et al. (2009) proposed the following
modification of the original exponential Euler scheme:

xδ
k+1 = xδ

k + τkϕ
(
−τkKT

k Kk

)
KT

k rδ
k, k = 0, 1, . . . ,

with
ϕ (z) =

ez − 1
z

.

Assuming the singular value decomposition Kk = UΣVT and setting αk = 1/τk, the
matrix function can be expressed as

ϕ
(
−α−1

k KT
k Kk

)
= αkV

⎡⎣diag

⎛⎝1 − exp
(
− σ2

i

αk

)
σ2

i

⎞⎠
n×n

⎤⎦VT , (7.46)
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and the iteration takes the form

xδ
k+1 = xδ

k +
n∑

i=1

[
1 − exp

(
−σ2

i

αk

)]
1
σi

(
uT

i rδ
k

)
vi, k = 0, 1, . . . . (7.47)

The exponential Euler regularization method is very similar to the regularizing Levenberg–
Marquardt method in which the Tikhonov filter factors (7.44) are replaced by the filter
factors

fk

(
σ2

i

)
= 1 − exp

(
−σ2

i

αk

)
.

Obviously, the filter factors for the exponential Euler regularization method are close to 1
for large σi and much smaller than 1 for small σi.

The algorithmic implementation of asymptotic regularization methods resembles that
of the regularizing Levenberg–Marquardt method. The main features are as follows:

(1) the iterations (7.41) and (7.47) are applied to the standard-form problem;
(2) the regularization parameters are chosen as the terms of a decreasing sequence αk =

qkαk−1 with constant or variable ratio qk;
(3) a step-length procedure for the nonlinear residual is used to improve the stability of

the method.

Note that the step-length procedure can be used because the Newton step pδ
k can be ex-

pressed as pδ
k = ĜkKT

k rδ
k , where Ĝk is a positive definite matrix; for example, in

the exponential Euler regularization method, we have Ĝk = α−1
k ϕ

(
−α−1

k KT
k Kk

)
, with

ϕ
(
−α−1

k KT
k Kk

)
being given by (7.46).

The numerical performance of asymptotic regularization methods and of the regular-
izing Levenberg–Marquardt are comparable; for large initial values of the regularization
parameters, the solution errors as well as the number of iteration steps are similar (Fig-
ure 7.14).

The asymptotic regularization methods yield results of comparable accuracies, al-
though the solution errors given in Table 7.3 indicate a slight superiority of the Radau
regularization method, especially for the O3 retrieval test problem.

7.4 Mathematical results and further reading

The convergence of the nonlinear Landweber iteration is expressed by the following result
(Hanke et al., 1995): if x† is a solution of the equation F (x) = y in the ball Bρ (xa) of
radius ρ about xa, F has the local property

‖F (x) − F (x′) − F ′ (x′) (x − x′)‖ ≤ η ‖F (x) − F (x′)‖ , 0 < η <
1
2
, (7.48)

for all x, x′ ∈ B2ρ (xa), and the equation F (x) = y is properly scaled in the sense that

‖F ′ (x)‖ ≤ 1, x ∈ B2ρ (xa) ,
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Fig. 7.14. Relative solution errors and the number of iteration steps for the Radau regularization
method and the regularizing Levenberg–Marquardt (LVMR) method.

Table 7.3. Relative solution errors for Radau, Lobatto and exponential Euler regularization methods.
The initial value of the regularization parameter is α = σp.

Selection criterion

Problem Method p S1 S2 S3

Radau 3.78e-2 3.78e-2 4.11e-2
O3 Lobatto 1.5 4.19e-2 4.19e-2 4.73e-2

Euler 4.08e-2 4.08e-2 4.51e-2

Radau 5.88e-2 7.01e-2 5.82e-2
BrO Lobatto 1.2 5.87e-2 6.89e-2 6.92e-2

Euler 5.88e-2 6.91e-2 6.09e-2

Radau 3.72e-2 31.9e-2 3.75e-2
CO Lobatto 1.0 3.79e-2 31.5e-2 3.59e-2

Euler 3.78e-2 34.4e-2 3.27e-2

Radau 1.80e-2 2.07e-2 2.06e-2
Temperature Lobatto 0.9 1.80e-2 2.13e-2 2.10e-2

Euler 1.80e-2 2.17e-2 2.07e-2
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then xδ
k� → x† as Δ → 0, where k	 = k	 (Δ) is the stopping index of the discrepancy

principle ∥∥yδ − F
(
xδ

k�

)∥∥ ≤ τdpΔ <
∥∥yδ − F

(
xδ

k

)∥∥ , 0 ≤ k < k	,

and
τdp > 2

1 + η

1 − 2η
> 2.

In contrast to Tikhonov regularization, the source condition

x† − xa =
[
F ′ (x†)	 F ′ (x†)]μ z, (7.49)

with μ > 0 and z ∈ X , is not sufficient to obtain convergence rates. In Hanke et al.
(1995), the convergence rate O(Δ2μ/(2μ+1)) with 0 < μ ≤ 1/2, has been proven under
the additional assumption that, for all x ∈ B2ρ (xa) , F satisfies

F ′ (x) = RxF ′ (x†) ,
‖I − Rx‖ ≤ cR

∥∥x − x†∥∥ , cR > 0, (7.50)

where {Rx/ x ∈ B2ρ (xa)} is a family of bounded linear operators Rx : Y → Y .
The iteratively regularized Gauss–Newton method was introduced by Bakushinsky. In

Bakushinsky (1992) local convergence was proven under the source condition (7.49) with
μ ≥ 1, provided that F ′ is Lipschitz continuous, i.e.,

‖F ′ (x) − F ′ (x′)‖ ≤ L ‖x − x′‖ , L > 0,

for all x, x′ ∈ B2ρ (xa). Lipschitz continuity of F ′ suffices to prove convergence rates for
the case μ ≥ 1/2, but if μ < 1/2 further conditions, that guarantee that the linearization is
not too far away from the nonlinear operator, are required. In Blaschke et al. (1997), the
convergence rates

∥∥xδ
k� − x†∥∥ =

⎧⎨⎩ o
(
Δ

2μ
2μ+1

)
, 0 < μ < 1/2,

O
(√

Δ
)

, μ = 1/2,
(7.51)

with k	 = k	 (Δ) being the stopping index of the discrepancy principle, have been derived
by assuming the following restrictions on the nonlinearity of F :

F ′ (x) = R (x, x′)F ′ (x′) + Q (x, x′) ,

‖I − R (x, x′)‖ ≤ cR, (7.52)

‖Q (x, x′)‖ ≤ cQ
∥∥F ′ (x†) (x − x′)

∥∥ , cR, cQ > 0,

for all x, x′ ∈ B2ρ (xa). Similarly, the optimal error bound O(Δ2μ/(2μ+1)) for 0 < μ <
1/2 has been proven by Bauer and Hohage (2005) for the Lepskij stopping rule and the
nonlinearity assumptions (7.52). As the best convergence rate of the discrepancy principle
is O(

√
Δ), the generalized discrepancy principle

αk�

〈
yδ − F

(
xδ

k�

)
,
[
F ′ (xδ

k�

)
F ′ (xδ

k�

)	
+ αk�I

]−1 [
yδ − F

(
xδ

k�

)]〉
≤ τΔ2, τ > 1,
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has been considered in Jin (2000), where the optimal convergence rate O(Δ2μ/(2μ+1))
with 0 < μ ≤ 1 has been established under the nonlinearity assumptions:

[F ′ (x) − F ′ (x′)] z = F ′ (x′) h (x, x′, z) ,

‖h (x, x′, z)‖ ≤ cR ‖x − x′‖ ‖z‖ , cR > 0,

for all x, x′ ∈ Bρ

(
x†).

Results on convergence rates under logarithmic source conditions can be found in
Hohage (1997) for the iteratively regularized Gauss–Newton method, and in Deuflhard et
al. (1998) for the nonlinear Landweber iteration.

For a general regularization method of the form

xδ
k+1 = xa + gαk

(
F ′ (xδ

k

)	
F ′ (xδ

k

))
F ′ (xδ

k

)	 [
yδ − F

(
xδ

k

)
+ F ′ (xδ

k

) (
xδ

k − xa

)]
,

(7.53)
the convergence rates (7.51) have been derived by Kaltenbacher (1997, 1998) for the mod-
ified discrepancy principle

max
(∥∥yδ − F

(
xδ

k�−1

)∥∥ , rlk�

)
≤ τdpΔ < max

(∥∥yδ − F
(
xδ

k−1

)∥∥ , rlk
)
, 1 ≤ k < k	,

(7.54)
with

rlk = yδ − F
(
xδ

k−1

)
− F ′ (xδ

k−1

) (
xδ

k − xδ
k−1

)
,

provided that τdp > 1 is sufficiently large, the nonlinearity conditions (7.52) hold, and the
sequence {αk} satisfies (7.7). Note that the stopping rule (7.54) is essentially equivalent
to the termination criterion

max
(∥∥yδ − F

(
xδ

k�−1

)∥∥ ,
∥∥yδ − F

(
xδ

k�

)∥∥)
≤ τ ′

dpΔ < max
(∥∥yδ − F

(
xδ

k−1

)∥∥ ,
∥∥yδ − F

(
xδ

k

)∥∥) , 1 ≤ k < k	,

which stops the iteration as soon as the residual norms at two subsequent iteration steps
are below τ ′

dpΔ. Examples of iterative methods having the form (7.53) are the iteratively
regularized Gauss–Newton method with

gα (λ) =
1

λ + α

and the Newton–Landweber iteration with

gα (λ) =
1
λ

[1 − (1 − λ)p] , α =
1
p
.

Hanke (1997) established the convergence of the regularizing Levenberg–Marquardt
method by using the local nonlinearity assumption

‖F (x) − F (x′) − F ′ (x′) (x − x′)‖ ≤ c ‖x − x′‖ ‖F (x) − F (x′)‖ , c > 0,

for all x, x′ ∈ B2ρ (xa), and by choosing the regularization parameter αk as the solution of
the ‘discrepancy principle’ equation (cf. (7.19))∥∥yδ − F

(
xδ

k

)
− F ′ (xδ

k

) [
xδ

k+1 (α) − xδ
k

]∥∥ = θ
∥∥yδ − F

(
xδ

k

)∥∥ ,

for some θ ∈ (0, 1).
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The regularizing trust-region method was analyzed by Wang and Yuan (2005). Con-
vergence results have been proven under the nonlinearity assumption (7.48) with 0 < η <
1, provided that the iterative process is stopped according to the discrepancy principle with

τdp >
1 + η

1 − η
.

Convergence rates for the regularized inexact Newton iteration method

xδ
k+1 = xδ

k + gαk

(
F ′ (xδ

k

)	
F ′ (xδ

k

))
F ′ (xδ

k

)	 [
yδ − F

(
xδ

k

)]
, (7.55)

and the source condition (7.49), have been established by Rieder (1999, 2003). The gen-
eral iteration method (7.55) includes the regularizing Levenberg–Marquardt method, and
Newton-type methods using as inner iteration the CGNR method, the Landweber iteration
and the ν-method.

The convergence of the Runge–Kutta regularization method has been proven by Böck-
mann and Pornsawad (2008) under the nonlinearity assumption (7.48).

The recent monograph by Kaltenbacher et al. (2008) provides an exhaustive and per-
tinent analysis of iterative regularization methods for nonlinear ill-posed problems. In ad-
dition to the methods discussed in this chapter, convergence and convergence rate results
can be found for the modified Landweber methods (iteratively regularized Landweber it-
eration, Landweber–Kaczmarz method), Broyden’s method, multilevel methods and level
set methods.

In Appendix H we derive convergence rate results for the general regularization meth-
ods (7.53) and (7.55) in a discrete setting. The regularization scheme (7.53) corresponds
to the so-called Newton-type methods with a priori information, e.g., the iteratively reg-
ularized Gauss–Newton method, while the regularization scheme (7.55) corresponds to
the Newton-type methods without a priori information, e.g., the regularizing Levenberg–
Marquardt method.
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