Skip to main content

Transgenic Plants for Abiotic Stress Resistance

  • Chapter
Transgenic Crop Plants

Modern agricultural crop production relies on the growth of a few of the world's plant species selected for their superior qualities and suitability as food, animal feed, fiber or industrial end uses. Centuries of selection and, more recently, scientific breeding for adaptation to biotic and abiotic stresses have been necessary to improve yield, yield stability, and product quality in agricultural species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    CAS  PubMed  Google Scholar 

  • Acquaah G (2007) Principles of plant genetics and breeding. Blackwell, Oxford, UK

    Google Scholar 

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    CAS  PubMed  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    CAS  PubMed  Google Scholar 

  • Al-Abed D, Madasamy P, Talla R, Goldman S, Rudrabhatla S (2007) Genetic engineering of maize with the Arabidopsis DREB1A/CBF3 gene using split-seed explants. Crop Sci 47:2390–2402

    CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50:601–639

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Baker J, Steele C, Dure L (1998) Sequence and characterisation of 9 Lea proteins and the genes from cotton. Plant Mol Biol 11:277–291

    Google Scholar 

  • Bargagli R (1998) Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. Springer, Berlin

    Google Scholar 

  • Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353

    CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Bartels D, Phillips J, Chandler J (2007) Desiccation tolerance: gene expression, pathways, and regulation of gene expression. In: Jenks MA, Wood AJ (eds) Plant Desiccation Tolerance. Blackwell, Ames, IA, pp 115–137

    Google Scholar 

  • Batjes NH (1997) A world dataset of derived soil properties by FAO-UNESCO soil unit for global modelling. Soil Use Manag 13:9–16

    Google Scholar 

  • Beard JB, Sifers SI (1997) Genetic diversity in dehydration avoidance and drought resisitance within the Cynodon and Zoysia species. Int Turfgrass Soc Res J 8:603–610

    Google Scholar 

  • Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29:449–459

    PubMed  Google Scholar 

  • Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NPA, Finn CE, Chen THH, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272

    CAS  PubMed  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    CAS  PubMed  Google Scholar 

  • Bertrams M and Heinz E (1981) Positional specificity and fatty acid selectivity of purified sn-glycerol-3-phosphate acyltransferase from chloroplasts. Plant Physiol 68:653–657

    CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    CAS  PubMed  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:216–217

    Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochem Biophys Acta Biomembr 1465:140–151

    CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    CAS  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    CAS  PubMed  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    CAS  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    CAS  PubMed  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007a) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    CAS  Google Scholar 

  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007b) Overexpression of wheat Na +/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    CAS  Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcrip-tional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711

    CAS  PubMed  Google Scholar 

  • Brouquisse R, Weigel P, Rhodes D, Yocum CF, Hanson AD (1989) Evidence for a ferredoxin-dependent choline mono-oxygenase from spinach chloroplast stroma. Plant Physiol 90:322–329

    CAS  PubMed  Google Scholar 

  • Bushoven JT, Hull RJ (2001) Nitrogen use efficiency is linked to nitrate reductase activity and biomass partitioning between roots and shoots of perennial ryegrass and creeping bentgrass. Int Turfgrass Soc Res J 9:245–252

    Google Scholar 

  • Caldwell CR, Turano FJ, McMahon MB (1998) Identification of two cytosolic ascorbate peroxi-dase cDNAs from soybean leaves and characterization of their products by functional expression in E. coli. Planta 204:120–126

    CAS  PubMed  Google Scholar 

  • Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Google Scholar 

  • Ceccardi TL, Meyer NC, Close TJ (1994) Purification of a maize dehydrin. Protein Expr Purif 5:266–269

    CAS  PubMed  Google Scholar 

  • Chandler PM, Robertson M (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 45:113–141

    CAS  Google Scholar 

  • Chandra Babu R, Zhang J, Blum A, David Ho TH, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Google Scholar 

  • Chapman KD (1998) Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci 3:419–426

    Google Scholar 

  • Chen WJ, Zhu T (2004) Networks of transcription factors with roles in environmental stress response. Trends Plant Sci 9:591–596

    CAS  PubMed  Google Scholar 

  • Chen C-W, Yang Y-W, Lur H-S, Tsai Y-G, Chang M-C (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47:1–13

    PubMed  Google Scholar 

  • Chen M, Chen QJ, Niu XG, Zhang R, Lin HQ, Xu CY, Wang XC, Wang GY, Chen J (2007) Expression of OsNHX1 gene in maize confers salt tolerance and promotes plant growth in the field. Plant Soil Environ 53:490–498

    CAS  Google Scholar 

  • Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198

    PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK (2003) Plant salt tolerance. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Springer, Berlin, pp 241–270

    Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–61

    CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    CAS  PubMed  Google Scholar 

  • Cho EK, Hong CB (2006) Over-expression of tobacco NtHSP70—1 contributes to drought-stress tolerance in plants. Plant Cell Rep 25:349–358

    CAS  PubMed  Google Scholar 

  • Clarkson TW (2002) Mercury. In: Sarkar B (ed) Heavy metals in the environment. Marcel Dekker, New York, pp 457–501

    Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    CAS  Google Scholar 

  • Close KR, Gallagher-Ludeman LA (1989) Structure-activity relationships of auxin-like plant growth regulators and genetic influences on the culture induction response in maize (Zea mays L.). Plant Sci 61:245–252

    CAS  Google Scholar 

  • Cobbett CS, Goldsborough PB (2000) Mechanisms of metal resistance: phytochelatins and metallothioneins. In: Ensley BD (ed) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley, New York, pp 247–269

    Google Scholar 

  • Cobbett CS, Goldsborough PB (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  PubMed  Google Scholar 

  • Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C (2008) Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J 53:53–64

    CAS  PubMed  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organ- isms: the role of trehalose. Science 223:701–703

    CAS  PubMed  Google Scholar 

  • Cui X-H, Hao Fu-Shun, Chen H, Chen J, Wang X-C (2008) Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121:207–214

    CAS  PubMed  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    CAS  PubMed  Google Scholar 

  • Curtis IS, Power JB, de Laat AMM, Caboche M, Davey MR (1999) Expression of a chimeric nitrate reductase gene in transgenic lettuce reduces nitrate in leaves. Plant Cell Rep 18:889–896

    CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    CAS  PubMed  Google Scholar 

  • Daniells IG, Holland JF, Young RR, Alston CL, Bernardi AL (2001) Relationship between yield of grain sorghum (Sorghum bicolor) and soil salinity under field conditions. Aust J Exp Agric 41:211–217

    Google Scholar 

  • Dedolph C, Hettel G (eds) (1997) Rice varieties boost yield and improve saline soils. IRRI, Manila, The Philippines

    Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    CAS  Google Scholar 

  • Demin IN, Deryabin AN, Sinkevich MS, Trunova TI (2008) Insertion of cyanobacterial desA gene coding for Δ12-acyl-lipid desaturase increases potato plant resistance to oxidative stress induced by hypothermia. Russ J Plant Physiol 55:639–648

    CAS  Google Scholar 

  • Diamant S, Eliahu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591

    CAS  PubMed  Google Scholar 

  • Dietz KJ (2003) Plant peroxiredoxins. Annu Rev Plant Biol 54:93–107

    CAS  PubMed  Google Scholar 

  • Dure III L (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    CAS  PubMed  Google Scholar 

  • Ellul P, Rios G, Atares A, Roig LA, Serrano R, Moreno V (2003) The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Theor Appl Genet 107:462–469

    CAS  PubMed  Google Scholar 

  • Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytor- emediation of toxic metals: using plants to clean up the environment. John Wiley, New York, pp 3–11

    Google Scholar 

  • FAO (2009a) Aquastat. www.fao.org/nr/water/aquastat/data/query/index.html

  • FAO (2009b) FAO land and plant nutrition management service. www.fao.org/ag/agl/agll/spush/

  • FAO (2009c) Food and Agriculture Organisation of the United Nations.www.fao.org/askfao/topicsList.do?mainAreaId=20263

  • Finnegan PM, Soole KL, Umbach AL (2004) Alternative mitochondrial electron transport proteins in higher plants. In: Day DA, Millar AH, Whelan J (eds) Plant mitochondria: from gene to function. Advances in photosynthesis and respiration. Kluwer, Dordrecht, The Netherlands, pp 163–230

    Google Scholar 

  • Fiorani F, Umbach AL, Siedow JN (2005) The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Plant Physiol 139:1795–1805

    CAS  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agr Water Manag 78:15–24

    Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    CAS  PubMed  Google Scholar 

  • Fowler DB, Limin AE, Wang SY, Ward RW (1996) Relationship between low-temperature tolerance and vernalization response in wheat and rye. Can J Plant Sci 76:37–42

    Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals — an important defence-mechanism studied in transgenic plants. Plant Cell Environ 17:207–523

    Google Scholar 

  • Gaber A, Yoshimura K, Yamamoto T, Yabuta Y, Takeda T, Miyasaka H, Nakano Y, Shigeoka S (2006) Glutathione peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiol Plant 128:251–262

    CAS  Google Scholar 

  • Gao F, Gao Q, Duan X, Yue G, Yang A, Zhang J (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270

    CAS  PubMed  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydro- philic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

    CAS  PubMed  Google Scholar 

  • Gasic K, Korban SS (2007a) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    CAS  Google Scholar 

  • Gasic K, Korban SS (2007b) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    CAS  Google Scholar 

  • Gaxiola R, De Larrinoa F, Villalba JM, Serrano R (1992) A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. EMBO J 11:3157–3164

    CAS  PubMed  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485

    CAS  PubMed  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt- tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    CAS  PubMed  Google Scholar 

  • Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008) Overexpression of the trehalose- 6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    CAS  PubMed  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources. Human causes, extent management & case studies. University of New South Wales, Sydney, Australia

    Google Scholar 

  • Giannino D, Nicolodi C, Testone G, Frugis G, Pace E, Santamaria P, Guardasole M, Mariotti D (2008) The overexpression of asparagine synthetase A from E. coli affects the nitrogen status in leaves of lettuce (Lactuca sativa L.) and enhances vegetative growth. Euphytica 162:11–22

    CAS  Google Scholar 

  • Glass DJ (2000) Economic potential of phytoremediation. In: Raskin I, Ensley BD (eds) Phytor- emediation of toxic metals: using plants to clean up the environment. John Wiley, New York, pp 15–31

    Google Scholar 

  • Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. Oxford Univeristy Press, Oxford, UK, pp 855–864

    Google Scholar 

  • Glassop D, Godwin RM, Smith SE, Smith FW (2007) Rice phosphate transporters associated with phosphate uptake in rice roots colonised with arbuscular mycorrhizal fungi. Can J Bot 85:644–651

    CAS  Google Scholar 

  • Goday A, Jensen AB, Culianez-Macia FA, Mar Alba M, Figueras M, Serratosa J, Torrent M, Pages M (1994) The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6:351–360

    CAS  PubMed  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    CAS  PubMed  Google Scholar 

  • Gorinova N, Nedkovska M, Todorovska E, Simova-Stoilova L, Stoyanova Z, Georgieva K, Demirevska-Kepova K, Atanassov A, Herzig R (2007) Improved phytoaccumulation of cad- mium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity. Environ Pollut 145:161–170

    CAS  PubMed  Google Scholar 

  • Greger M (1999) Metal availability and bioconcentration in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 1–27

    Google Scholar 

  • Guo SJ, Zhou HY, Zhang XS, Li XG, Meng QW (2007) Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. J Plant Physiol 164:126–136

    CAS  PubMed  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    CAS  PubMed  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    CAS  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs — a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159

    CAS  PubMed  Google Scholar 

  • Harmsen K (2002) Long-term behaviour of heavy metals in agricultural soils: a simple analytical model. In: Adriano DC (ed) Biogeochemistry of trace metals. Lewis Publ, Boca Raton, FL, pp 217–247

    Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    CAS  PubMed  Google Scholar 

  • Haygarth PM, Jones KC (1992) Atmospheric deposition of metals to agricultural surfaces. In: Adriano DC (ed) Biogeochemisty of trace metals. Lewis Publ, Boca Raton, FL, pp 249–276

    Google Scholar 

  • He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854

    CAS  PubMed  Google Scholar 

  • He L, Ban Y, Inoue H, Matsuda N, Liu J, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141

    CAS  PubMed  Google Scholar 

  • Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384

    CAS  PubMed  Google Scholar 

  • Hiilovaara-Teijo M, Palva ET (1999) Molecular responses in cold adapted plants. In: Margesin R, Schinner F (eds) Cold adapted organisms ecology, physiology. Enzymology and molecular biology. Springer, Berlin, pp 349–384

    Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savoure A, Jaoua S (2005) Overexpres-sion of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752

    CAS  Google Scholar 

  • Hong YF, Liu CY, Cheng KJ, Hour AL, Chan MT, Tseng TH, Chen KY, Shaw JF, Yu SM (2008) The sweet potato sporamin promoter confers high-level phytase expression and improves organic phosphorus acquisition and tuber yield of transgenic potato. Plant Mol Biol 67:347–361

    CAS  PubMed  Google Scholar 

  • Houde M, Daniel C, Lachapelle M, Allard F, Laliberte S, Sarhan F (1995) Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8:583–593

    CAS  PubMed  Google Scholar 

  • Houde M, Sylvain D, N'Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    CAS  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    CAS  PubMed  Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    CAS  PubMed  Google Scholar 

  • Hua ZM, Yang X, Fromm ME (2006) Activation of the NaCl- and drought-induced RD29A and RD29B promoters by constitutively active Arabidopsis MAPKK or MAPK proteins. Plant Cell Environ 29:1761–1770

    CAS  PubMed  Google Scholar 

  • Huang J, Zhang HS (2007) The plant TFIIIA-type zinc finger proteins and their roles in abiotic stress tolerance. Hereditas (Beijing) 29:915–922

    CAS  Google Scholar 

  • Hunt L, Mills LN, Pical C, Leckie CP, Aitken FL, Kopka J, Mueller-Roeber B, McAinsh MR, Hetherington AM, Gray JE (2003) Phospholipase C is required for the control of stomatal aperture by ABA. Plant J 34:47–55

    CAS  PubMed  Google Scholar 

  • Hussein HS, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomer-curials in chloroplast transgenic plants: Enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol 41:8439–8446

    CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Kim S, Tsukamoto T, Oki H, Kobayashi T, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci USA 104:7373–7378

    CAS  PubMed  Google Scholar 

  • Jang JY, Lee SH, Rhee JY, Chung GC, Ahn SJ, Kang H (2007) Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Mol Biotechnol 40:280–292

    Google Scholar 

  • Jenks MA, Ashworth EN (1999) Plant epicuticular waxes: function, production, and genetics. In: Janick J (ed) Horticultural review. John Wiley, New York, USA, pp 1–68

    Google Scholar 

  • Jenks MA, Hasegawa I, Mohan PM, Jain S (eds) (2007) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Jiang QW, Kiyoharu O, Ryozo I (2002) Two novel mitogen-activated protein signalling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129:1880–1891

    Google Scholar 

  • Jiang CJ, Aono M, Tamaoki M, Maeda S, Sugano S, Mori M, Takatsuji H (2008) SAZ, a new SUPERMAN-like protein, negatively regulates a subset of ABA-responsive genes in Arabi-dopsis. Molecular Genetics and Genomics 279:183–192

    CAS  PubMed  Google Scholar 

  • Jimenez A, Hernandez JA, Pastori G, Del Rio LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    CAS  PubMed  Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279

    CAS  PubMed  Google Scholar 

  • Kalberer SR, Wisniewski M, Arora R (2006) Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci 171:3–16

    CAS  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104:15270–15275

    CAS  PubMed  Google Scholar 

  • Kavi Kishore PB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kawakami A, Sato Y, Yoshida M (2008) Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J Exp Bot 59:793–802

    CAS  PubMed  Google Scholar 

  • Khodakovskaya M, McAvoy R, Peters J, Wu H, Li Y (2006) Enhanced cold tolerance in transgenic tobacco expressing a chloroplast ω-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta 223:1090–1100

    CAS  PubMed  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247–259

    CAS  PubMed  Google Scholar 

  • Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–324

    CAS  PubMed  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiology 131:309–316

    CAS  PubMed  Google Scholar 

  • Kobayashi F, Ishibashi M, Takumi S (2008) Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in trans-genic tobacco. Transgen Res 17:755–767

    CAS  Google Scholar 

  • Koh EJ, Song WY, Lee Y, Kim KH, Kim K, Chung N, Lee KW, Hong SW, Lee H (2006) Expression of yeast cadmium factor 1 (YCF1) confers salt tolerance to Arabidopsis thaliana. Plant Sci 170:534–541

    CAS  Google Scholar 

  • Koniger M, Winter K (1993) Reduction of photosynthesis in sun leaves of Gossypium hirsutum L. under conditions of high light intensities and suboptimal leaf temperatures. Agronomie 13:659

    Google Scholar 

  • Kornyeyev D, Logan BA, Allen RD, Holaday AS (2003) Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition. Plant Sci 165:1033–1041

    CAS  Google Scholar 

  • Kramer U, Chardonnens AN (2000) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672

    Google Scholar 

  • Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA 96:4718–4723

    CAS  PubMed  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    CAS  PubMed  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgen Res 17:651–663

    CAS  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    PubMed  Google Scholar 

  • Lea PJ, Azevedo RA (2006) Nitrogen use efficiency. Ann Appl Biol 149:243–247

    CAS  Google Scholar 

  • Lee H, Jo J (2004) Increased tolerance to methyl viologen by transgenic tobacco plants that over- express the cytosolic glutathione reductase gene from Brassica campestris. J Plant Biol 47:111–116

    CAS  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    CAS  PubMed  Google Scholar 

  • Lee J-T, Prasad V, Yang PT, Wu JF, David Ho TH, Charng YY, Chan MT (2003a) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26:1181–1190

    CAS  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003b) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    CAS  Google Scholar 

  • Lee S, Petros D, Moon JS, Ko TS, Goldsbrough PB, Korban SS (2003c) Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiol Biochem 41:903–910

    CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    CAS  PubMed  Google Scholar 

  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R (2005a) Plant science: Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121–125

    CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Balish RS, Meagher RB (2005b) Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial γ-glutamylcysteine synthe-tase. Environ Toxicol Chem 24:1376–1386

    CAS  Google Scholar 

  • Li J, Guo J, Xu W, Ma M (2006) Enhanced cadmium accumulation in transgenic tobacco expressing the phytochelatin synthase gene of Cynodon dactylon L. J Integr Plant Biol 48:928–937

    CAS  Google Scholar 

  • Li B, Wei A, Song C, Li N, Zhang J (2008) Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol J 6:146–159

    CAS  PubMed  Google Scholar 

  • Liming Y, Qian Y, Pigang L, Sen L (2008) Expression of the HSP24 gene from Trichoderma harzianum in Saccharomyces cerevisiae. J Therm Biol 33:1–6

    Google Scholar 

  • Liu Q, Sakuma Y, Abe H, Kasuga M, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 12:165–178

    CAS  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    CAS  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate — crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002

    Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248

    CAS  Google Scholar 

  • Lynch DV (1990) Chilling injury in plants: the relevance of membrane lipids. In: Katterman F (ed) Environmental injury to plants. Academic, New York, pp 17–34

    Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24:445–466

    CAS  Google Scholar 

  • Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS, Merkle SA (2007) Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnol J 5:254–262

    CAS  PubMed  Google Scholar 

  • Macek T, MackovaÃŒ M, PavliÃŒkovaÃŒ D, SzaÃŒkovaÃŒ J, Truksa M, Cundy AS, Kotrba P, Yancey N, Scouten WH (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22:101–106

    CAS  Google Scholar 

  • Madden EF, Sexton MM, Smith DR, Fowler BA (2002) Lead. In: Sarkar B (ed) Heavy metals in the environment. Marcel Dekker, New York, pp 409–455

    Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Maiorino FM, Brigelius-Flohe R, Aumann KD, Roveri A, Schomburg D, Flohe L (1995) Diversity of glutathione peroxidases. Methods Enzymol 252:38–48

    PubMed  Google Scholar 

  • March TJ, Able JA, Schultz CJ, Able AJ (2007) A novel late embryogenesis abundant protein and peroxidase associated with black point in barley grains. Proteomics 7:3800–3808

    CAS  PubMed  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals — fundamen- tal and applied aspects. Naturwissenschaften 94:77–99

    CAS  PubMed  Google Scholar 

  • Martinez M, Bernal P, Almela C, Velez D, Garcia-Agustin P, Serrano R, Navarro-Avino J (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485

    CAS  PubMed  Google Scholar 

  • Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    CAS  PubMed  Google Scholar 

  • Martinez-Beltran J, Manzur CL (2005) Overview of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of International Salinity Forum, Riverside, CA, USA, pp 311–313

    Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    CAS  PubMed  Google Scholar 

  • Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870

    CAS  PubMed  Google Scholar 

  • McCourt P, Creelman R (2008) The ABA receptors — we report you decide. Curr Opin Plant Biol 11:474–478

    CAS  PubMed  Google Scholar 

  • McLaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients — food safety issues. Field Crops Res 60:143–163

    Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949

    CAS  PubMed  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25:295–303

    CAS  PubMed  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcrip-tion factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614

    CAS  PubMed  Google Scholar 

  • Mills LN, Hunt L, Leckie CP, Aitken FL, Wentworth M, McAinsh MR, Gray JE, Hetherington AM (2004) The effects of manipulating phospholipase C on guard cell ABA-signalling. J Exp Bot 55:199–204

    CAS  PubMed  Google Scholar 

  • Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580:6537–6542

    CAS  PubMed  Google Scholar 

  • Miyazawa S-I, Yoshimura S, Shinzaki Y, Maeshima M, Miyake C (2008) Deactivation of aquaporins decreases internal conductance to CO2 diffusion in tobacco leaves grown under long-term drought. Funct Plant Biol 35:556–564

    Google Scholar 

  • Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the coda gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57

    CAS  PubMed  Google Scholar 

  • Mori S, Nishizawa N, Hayashi H, Chino M, Yoshimura E, Ishihara J (1991) Why are you rice plants highly susceptible to iron-deficiency? Plant Soil 130:143–156

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Munns R, HusainS,Rivelli AR, James RA, Condon AG, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247:93–105

    CAS  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455

    CAS  PubMed  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribu- tion of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279

    CAS  Google Scholar 

  • Nordberg GFB, Sandstrom G, Becking F, Goyer RA (2002) Essentiality and toxicity of metals. In: Sarkar B (ed) Heavy metals in the environment. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646–656

    CAS  PubMed  Google Scholar 

  • Palta JP, Whitaker BD, Weiss LS (1993) Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solanum species. Plant Physiol 103:793–803

    CAS  PubMed  Google Scholar 

  • Park J-A, Cho SK, Kim JE, Chung HS, Hong J-P, Hwang B, Hong CB, Kim WT (2003) Isolation of cDNAs differentially expressed in response to drought stress and characterization of the Ca-LEAL1 gene encoding a new family of atypical LEA-like protein homologue in hot pepper (Capsicum annuum L. cv. Pukang). Plant Sci 165:471–481

    CAS  Google Scholar 

  • Park B-J, Liu Z, Kanno A, Kameya T (2005a) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169:553–558

    CAS  Google Scholar 

  • Park BJ, Liu Z, Kanno A, Kameya T (2005b) Increased tolerance to salt- and water-deficit stress in transgenic lettuce (Lactuca sativa L.) by constitutive expression of LEA. Plant Growth Regul 45:165–171

    CAS  Google Scholar 

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005c) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835

    CAS  Google Scholar 

  • Park MR, Baek SH, de los Reyes BG, Yun SJ (2007) Overexpression of a high-affinity phosphate transporter gene from tobacco (NtPT1) enhances phosphate uptake and accumulation in transgenic rice plants. Plant Soil 292:259–269

    CAS  Google Scholar 

  • Park H-Y, Seok H-Y, Park B-K, Kim S-H, Goh C-H, B-h L, Lee C-H, Moon Y-H (2008) Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Biophys Res Commun 375:80–85

    CAS  PubMed  Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686

    CAS  PubMed  Google Scholar 

  • Pastori GM, Mullineaux PM, Foyer CH (2000) Post-transcriptional regulation prevents accumu- lation of glutathione reductase protein and activity in the bundle sheath cells of maize. Plant Physiol 122:667–675

    CAS  PubMed  Google Scholar 

  • Pauly N, Knight MR, Thuleau P, Van Der Luit AH, Moreau M, Trewavas AJ, Ranjeva R, Mazars C (2000) Control of free calcium in plant cell nuclei. Nature 405:754–755

    CAS  PubMed  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA 105:4524–4529

    CAS  PubMed  Google Scholar 

  • Pavlikova D, Macek T, MackovaÃŒ M, Sura M, Szakova J, Tlustos P (2004a) The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different trans-genes. Plant, Soil and Environ 50:513–517

    CAS  Google Scholar 

  • Pavlikova D, Macek T, MackovaÃŒ M, Szakova J, Balik J (2004b) Cadmium tolerance and accumulation in transgenic tobacco plants with a yeast metallothionein combined with a polyhistidine tail. International Biodeterioration and Biodegradation 54:233–237

    CAS  Google Scholar 

  • Peng LX, Gu LK, Zheng CC, Li DQ, Shu HR (2006) Expression of MaMAPK gene in seedlings of Malus L. under water stress. Acta Biochim Biophys Sin 38:281–286

    CAS  PubMed  Google Scholar 

  • Perruc E, Charpenteau M, Ramirez BC, Jauneau A, Galaud JP, Ranjeva R, Ranty B (2004) A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J 38:410–420

    CAS  PubMed  Google Scholar 

  • Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456

    CAS  Google Scholar 

  • Pino MT, Skinner JS, Jeknic Z, Hayes PM, Soeldner AH, Thomashow MF, Chen THH (2008) Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell Environ 31:393–406

    CAS  PubMed  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, Di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    CAS  PubMed  Google Scholar 

  • Porcel R, Gomez M, Kaldenhoff R, Ruiz-Lozano JM (2005) Impairment of NtAQP1 gene expression in tobacco plants does not affect root colonisation pattern by arbuscular mycorrhizal fungi but decreases their symbiotic efficiency under drought. Mycorrhiza 15:417–423

    CAS  PubMed  Google Scholar 

  • Prasad MNV (2002) Phytoremediation of metal-polluted ecosystems: hype for commercialisation. Russ J Plant Physiol 50:686–700

    Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superox- ide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgen Res 17:281–291

    CAS  Google Scholar 

  • Puhakainen T, Hess MW, Mäkelä P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    CAS  PubMed  Google Scholar 

  • Purvis AC, Shewfelt RL (1993) Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol Plant 88:712–718

    CAS  Google Scholar 

  • Qin QL, Liu JG, Zhang Z, Peng RH, Xiong AS, Yao QH, Chen JM (2007) Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza Sativa L. Mol Breed 19:329–340

    CAS  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441

    CAS  PubMed  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486

    CAS  PubMed  Google Scholar 

  • Rae AL, Jarmey JM, Mudge SR, Smith FW (2004) Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates. Funct Plant Biol 31:141–148

    CAS  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    CAS  PubMed  Google Scholar 

  • Reddy VS, Reddy ASN (2004) Proteomics of calcium-signaling components in plants. Phytochemistry 65:1745–1776

    CAS  PubMed  Google Scholar 

  • Reiser V, Raitt D, Saito H (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. Yeast 20:S169

    Google Scholar 

  • Reisinger S, Schiavon M, Terry N, Pilon-Smits EAH (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial g-glutamylcysteine synthe-tase or glutathione synthetase. Int J Phytoremediation 10:440–454

    CAS  PubMed  Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

    CAS  PubMed  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    CAS  PubMed  Google Scholar 

  • Rios G, Ferrando A, Serrano R (1997) Mechanisms of salt tolerance conferred by overexpression of the HAL1 gene in Saccharomyces cerevisiae. Yeast 13:515–528

    CAS  PubMed  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    CAS  PubMed  Google Scholar 

  • Robinson NJ, Urwin PE, Robinson PJ, Jackson PJ (1994) Gene expression in relation to meatl toxicity and tolerance. In: Basra AS (ed) Stress-Induced Gene Expression in Plants. Harwoon, Switzerland, pp 209–248

    Google Scholar 

  • Robinson BSG, MIlls T, Clothier B, van der Velde M, Laplane R, Fung L, Deurer M, Hurst S, Thayalakumaran T, van der Dijssel C (2003) Phytoremediation: using plants as biopumps to improve degraded environments. Aust J Soil Res 41:599–612

    Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532

    CAS  Google Scholar 

  • Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 256:265–272

    CAS  Google Scholar 

  • Roughan PG, Slack CR (1982) Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol 33:97–132

    CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    CAS  PubMed  Google Scholar 

  • Rugh CL, Bizily SP, Meagher RB (2000) Phytoreduction of environmental mercury pollution. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley, New York, pp 151–169

    Google Scholar 

  • Rus AM, Estan MT, Gisbert C, Garcia-Sogo B, Serrano R, Caro M, Moreno V, Bolarin MC (2001) Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant Cell Environ 24:875–880

    CAS  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. Springer-Verlag, Berlin

    Google Scholar 

  • Sakamoto A, Alia MN (1998) Metabolic engineering of rice leading to biosynthesis of glycine- betaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA- binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Dual function of an Arabidopsis transcription factor DREB2A in in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827

    CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Functional analysis of an Arabidopsis transcription factor DREB2A drought-responsive gene expression. Plant Cell 18:1292–1309

    CAS  Google Scholar 

  • Sang Y, Zheng S, Li W, Huang B, Wang X (2001) Regulation of plant water loss by manipulating the expression of phospholipase D. Plant J 28:135–144

    CAS  PubMed  Google Scholar 

  • Schwartz SH, Qin X, Zeevaart JAD (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 131:1591–1601

    CAS  PubMed  Google Scholar 

  • Scott Russell R (1977) Plant root systems: their function and interaction with the soil. McGraw-Hill, London, UK

    Google Scholar 

  • Segele ZT, Lamb PJ (2005) Characterization and variability of Kiremt rainy season over Ethiopia. Meteorol Atmos Phys 89:153–180

    Google Scholar 

  • Seiffert B, Zhou ZW, Wallbraun M, Lohaus G, Mollers C (2004) Expression of a bacterial asparagine synthetase gene in oilseed rape (Brassica napus) and its effect on traits related to nitrogen efficiency. Physiol Plant 121:656–665

    CAS  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199

    CAS  PubMed  Google Scholar 

  • Seleshi Y, Camberlin P (2006) Recent changes in dry spell and extreme rainfall events in Ethiopia. Theor Appl Clim 83:181–191

    Google Scholar 

  • Seo HM, Jung Y, Song S, Kim Y, Kwon T, Kim DH, Jeung SJ, Yi YB, Yi G, Nam MH, Nam J (2008) Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phos- phate acquisition in rice. Biotechnol Lett 30:1833–1838

    CAS  PubMed  Google Scholar 

  • Serrano R, Mulet JM, Rios G, Marquez JA, De Larrinoa IF, Leube MP, Mendizabal I, Pascual- Ahuir A, Proft M, Ros R, Montesinos C (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    CAS  Google Scholar 

  • Shi WM, Muramoto Y, Ueda A, Takabe T (2001) Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 273:23–27

    CAS  PubMed  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    CAS  PubMed  Google Scholar 

  • Shi LY, Li HQ, Pan XP, Wu GJ, Li MR (2008) Improvement of Torenia fournieri salinity tolerance by expression of Arabidopsis AtNHX5. Funct Plant Biol 35:185–192

    CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7:161–167

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1999) Molecular responses to drought stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought. Heat and salt stress in higher plants. R. G. Landes, Austin, pp 11–28

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross talk between two stress signalling pathways. Curr Opin Plant Biol 3:217–233

    CAS  PubMed  Google Scholar 

  • Sickler CM, Edwards GE, Kiirats O, Gao Z, Loescher W (2007) Response of mannitol-producing Arabidopsis thaliana to abiotic stress. Funct Plant Biol 34:382–391

    CAS  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho T-HD QuR (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    CAS  PubMed  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219

    CAS  PubMed  Google Scholar 

  • Sneddon WA, Fromm H (1998) Calmodulin, calmodulin-regulated proteins and plant responses to the environment. Trends Plant Sci 3:299–304

    Google Scholar 

  • Sneddon WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Google Scholar 

  • Song W-Y, Sohn EJ, Martinoia E, Lee YJ, Yang Y-Y, Jasinski M, Farestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    CAS  PubMed  Google Scholar 

  • Sonoike K (1996) Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37:239–247

    CAS  Google Scholar 

  • Souer E, Van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    CAS  PubMed  Google Scholar 

  • Spollen WG, Nelson CJ (1994) Response of fructan to water deficit in growing leaves of tall fescue. Plant Physiol 106:329–336

    CAS  PubMed  Google Scholar 

  • Staxen I, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96:1779–1784

    CAS  PubMed  Google Scholar 

  • Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206

    CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    CAS  PubMed  Google Scholar 

  • Strand A, Foyer CH, Gustafsson P, Gardestrom P, Hurry V (2003) Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant Cell Environ 26:523–535

    CAS  Google Scholar 

  • Strom AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:205–210

    CAS  PubMed  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    CAS  Google Scholar 

  • Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H (2003) Stress-responsive zinc finger gene ZPT2–3 plays a role in drought tolerance in petunia. Plant J 36:830–841

    CAS  PubMed  Google Scholar 

  • Sui N, Li M, Zhao SJ, Li F, Liang H, Meng QW (2007) Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta 226:1097–1108

    CAS  PubMed  Google Scholar 

  • Sun HK, Hyun SL, Won YS, Kwan SC, Hur Y (2007) Chloroplast-targeted BrMT1 (Brassica rapa type-1 metallothionein) enhances resistance to cadmium and ROS in transgenic Arabidopsis plants. J Plant Biol 50:1–7

    Google Scholar 

  • Suzuki M, Morikawa KC, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK (2008) Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci Plant Nutr 54:77–85

    CAS  Google Scholar 

  • Szabolcs I (1989) Salt-affected soils. CRC, Boca Raton, FL

    Google Scholar 

  • Szalontai B, Kota Z, Nonaka H, Murata N (2003) Structural consequences of genetically engi- neered saturation of the fatty acids of phosphatidylglycerol in tobacco thylakoid membranes. An FTIR study. Biochemistry 42:4292–4299

    CAS  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469

    CAS  PubMed  Google Scholar 

  • Takahiro I, Sakai K, Takeda T, Shigeoka S (1995) Cloning and expression of cDNA encoding a new type of ascorbate peroxidase from spinach. FEBS Lett 367:28–32

    Google Scholar 

  • Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H (2003) Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol 131:454–462

    CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    CAS  PubMed  Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–7

    CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechan- isms. Annu Rev Plant Biol 50:571–599

    CAS  Google Scholar 

  • Tonkovska G, Atanassov A, Atanassov I (2003) The promoter region of Arabidopsis metallothio- nein MT2a gene is strongly induced by treatment with CuII, ZnII and Cd II ions in transgenic Nicotiana benthamiana plants. Biotechnology and Biotechnological Equipment 17:134–139

    CAS  Google Scholar 

  • Torok Z, Goloubinoff P, Horvath I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vigh L (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci USA 98:3098–3103

    CAS  PubMed  Google Scholar 

  • Trujillo LE, Sotolongo M, Menendez C, Ochogavia ME, Coll Y, Hernandez I, Borras-Hidalgo O, Thomma BPHJ, Vera P, Hernandez L (2008) SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol 49:512–525

    CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    CAS  PubMed  Google Scholar 

  • UN-Oceans (2008) Atlas of the oceans.http://www.oceansatlas.org/

  • Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    CAS  PubMed  Google Scholar 

  • Valls M, Atrian S, de Lorenzo V, Fernandez LA (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutrophia CH34 for immobilisation of heavy metals in soil. Nat Biotechnol 18:661–665

    CAS  PubMed  Google Scholar 

  • van Buskirk HA, Thomashow MF (2006) Arabidopsis transcription factors regulating cold acclimation. Physiol Plant 126:72–80

    Google Scholar 

  • Vidal EA, Gutierrez RA (2008) A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Curr Opin Plant Biol 11:521–529

    CAS  PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    CAS  Google Scholar 

  • Vierling E, Kimpel JA (1992) Plant responses to environmental stress. Curr Opin Biotechnol 3:164–170

    CAS  PubMed  Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants: review article. Plant Biotechnol J 5:361–380

    CAS  PubMed  Google Scholar 

  • Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–359

    CAS  PubMed  Google Scholar 

  • Vincent R, Fraisier V, Chaillou S, Limami MA, Deleens E, Phillipson B, Douat C, Boutin JP, Hirel B (1997) Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L plants triggers changes in ammonium assimilation and plant development. Planta 201:424–433

    CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    CAS  PubMed  Google Scholar 

  • von Wiren N, Mori S, Marschner H, Romheld V (1994) Iron inefficiency in maize mutant ys1 (Zea mays L. cv. Yellow Stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol 106:71–77

    Google Scholar 

  • Wagner AM, Wagner MJ, Moore AL (1998) In vivo ubiquinone reduction levels during thermo- genesis in araceae. Plant Physiol 117:1501–1506

    CAS  PubMed  Google Scholar 

  • Wakui K, Takahata Y (2002) Isolation and expression of Lea gene in desiccation-tolerant microspore-derived embryos in Brassica spp. Physiol Plant 116:223–230

    CAS  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2001) Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations. Acta Hortic 560:285–292

    CAS  Google Scholar 

  • Wang RC, OkamotoM,Xing XJ, CrawfordNM(2003a) Microarray analysis ofthe nitrate response in Arabidopsis roots and shoots reveals over 1, 000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003b) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    CAS  Google Scholar 

  • Wang Y, Jiang J, Zhao X, Liu G, Yang C, Zhan L (2006) A novel LEA gene from Tamarix androssowii confers drought tolerance in transgenic tobacco. Plant Sci 171:655–662

    CAS  Google Scholar 

  • Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, Bai Y, Chen X, Wang G (2007a) Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol 65:733–746

    CAS  Google Scholar 

  • Wang RC, Xing XJ, Crawford N (2007b) Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots. Plant Physiol 145:1735–1745

    CAS  Google Scholar 

  • Wang CR, Yang AF, Yue GD, Gao Q, Yin HY, Zhang JR (2008a) Enhanced expression of phospho-lipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227:1127–1140

    CAS  Google Scholar 

  • Wang L, Li X, Chen S, Liu G (2008b) Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA 3. Biotechnol Lett 31:1–7

    Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey NFD, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    CAS  PubMed  Google Scholar 

  • Watanabe M, Shinmachi F, Noguchi A, Hasegawa I (2005) Introduction of yeast metallothionein gene (CUP1) into plant and evaluation of heavy metal tolerance of transgenic plant at the callus stage. Soil Sci Plant Nutr 51:129–133

    CAS  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    CAS  Google Scholar 

  • Wawrzynski A, Kopera E, Wawrzynska A, Kaminska J, Bal W, Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 57:2173–2182

    CAS  PubMed  Google Scholar 

  • Weber S, Wolter FP, Buck F, Frentzen M, Heinz E (1991) Purification and cDNA sequencing of an oleate-selective acyl-ACP: sn-glycerol-3-phosphate acyltransferase from pea chloroplasts. Plant Mol Biol 17:1067–1076

    CAS  PubMed  Google Scholar 

  • Weigel P, Weretilnyk EA, Hanson AD (1986) Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol 82:753–759

    CAS  PubMed  Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Int J Gen Mol Microbiol 58:209–217

    CAS  Google Scholar 

  • Williamson JD, Jennings DB, Guo WW, Pharr DM, Ehrenshaft M (2002) Sugar alcohols, salt stress, and fungal resistance: polyols — multifunctional plant protection? J Am Soc Hort Sci 127:467–473

    CAS  Google Scholar 

  • Wintergerst ES, Maggini S, Hornig DH (2007) Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 51:301–323

    CAS  PubMed  Google Scholar 

  • Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryongenesis abundant proteins and their possible roles. BMC Bioinformatics 4:52

    PubMed  Google Scholar 

  • World Water Council (2008) Water crisis. In: Waord Water Council (ed) Water at a Glance. World Water Council, Marseilles

    Google Scholar 

  • Wu W, Su Q, Xia X, Wang Y, Luan Y, An L (2008a) The Suaeda liaotungensis kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment. Euphytica 159:17–25

    CAS  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2008b) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the Weld conditions. Theor Appl Genet 115:35–46

    CAS  PubMed  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Google Scholar 

  • Xiong L, Ishitani M (2006) Stress signal transduction: components, pathways, and network integration. In: Rai AK, Takabe T (eds) Abiotic stress tolerance in plants: toward the improvement of global environment and food. Springer, Dordercht, The Netherlands, pp 3–29

    Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T-HD WuR (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    CAS  PubMed  Google Scholar 

  • Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008a) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582:1037–1043

    CAS  Google Scholar 

  • Xu WF, Shi WM, Ueda A, Takabe T (2008b) Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from Barley. 1 project supported by a grant of CAS (Chinese Academy of Sciences) Research program on soil biosystems and agro-product safety (No. CXTD-Z2005-4) and the knowledge innovation project of CAS (No. KZCX3-SW-439). Pedosphere 18:486–495

    CAS  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportu- nities. Trends Plant Sci 10:615–620

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  PubMed  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    CAS  PubMed  Google Scholar 

  • Yeo AR, Lee KS, Izard P, Boursier PJ, Flowers TJ (1991) Short- and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). J Exp Bot 42:881–889

    CAS  Google Scholar 

  • Young IC, Eun WN, Hyo SL, Mu SH, Jae SL, Kwan SC (2007) Mercury-tolerant transgenic poplars expressing two bacterial mercury-metabolizing genes. J Plant Biol 50:658–662

    Google Scholar 

  • Yu Q, Hu Y, Li J, Wu Q, Lin Z (2005) Sense and antisense expression of plasma membrane aquaporin BnPIP1 from Brassica napus in tobacco and its effects on plant drought resistance. Plant Sci 169:647–656

    CAS  Google Scholar 

  • Yu H, Chen X, Hong YY, Wang Y, Xu P, Ke SD, Liu HY, Zhu JK, Oliver DJ, Xiang CB (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20:1134–1151

    CAS  PubMed  Google Scholar 

  • Zhang L, Ohta A, Takagi M, Imai R (2000) Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA Proteins. J Biochem 127:611–616

    CAS  PubMed  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu J-K (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    CAS  PubMed  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Over- expression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in trans-genic alfalfa (Medicago sativa). Plant J 42:689–707

    CAS  PubMed  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Tan M, Hu X (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475–487

    CAS  PubMed  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007a) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    CAS  Google Scholar 

  • Zhang JY, Broeckling CD, Sumner LW, Wang ZY (2007b) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265–278

    CAS  Google Scholar 

  • Zhang YX, Xu J, Wang X, Chai TY (2007c) Research advances in drought resistance and heavy metals tolerance of transgenic plant. Chin J Appl Ecol 18:1631–1639

    CAS  Google Scholar 

  • Zhang YY, Li Y, Gao T, Zhu H, D-j W, H-w Z, Y-s N, Liu L-j Wu, Y-r Chu C-c, H-s G, Xie Q (2008a) Arabidopsis SDIR1 enhances drought tolerance in crop plants. Biosci Biotechnol Biochem 72:2251–2254

    CAS  Google Scholar 

  • Zhang J, Tan W, Yang XH, Zhang HX (2008b) Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27:1113–1124

    CAS  Google Scholar 

  • Zhang Y, Wang Z, Chai T, Wen Z, Zhang H (2008c) Indian mustard aquaporin improves drought and heavy-metal resistance in tobacco. Mol Biotechnol 40:1–13

    CAS  Google Scholar 

  • Zhang Y, Yang J, Lu S, Cai J, Guo Z (2008d) Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance. J Plant Growth Regul 27:151–158

    Google Scholar 

  • Zhao F, Guo S, Zhang H, Zhao Y (2006) Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci 170:216–224

    CAS  Google Scholar 

  • Zheng ZL, Nafisi M, Tam A, Li HM, Crowell DN, Chary SN, Schroeder JI, Shen J, Yang Z (2002) Plasma membrane associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell 14:2787–2797

    CAS  PubMed  Google Scholar 

  • Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57:3575–3582

    PubMed  Google Scholar 

  • Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  PubMed  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16:253–277

    CAS  Google Scholar 

  • Zhu YL, Pilon-Smits E, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jewell, M.C., Campbell, B.C., Godwin, I.D. (2010). Transgenic Plants for Abiotic Stress Resistance. In: Kole, C., Michler, C.H., Abbott, A.G., Hall, T.C. (eds) Transgenic Crop Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04812-8_2

Download citation

Publish with us

Policies and ethics