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Abstract. For discrete sets coded by the Freeman chain describing their
contour, several linear algorithms have been designed for determining
their shape properties. Most of them are based on the assumption that
the boundary word forms a closed and non-intersecting discrete curve.
In this article, we provide a linear time and space algorithm for deciding
whether a path on a square lattice intersects itself. This work removes a
drawback by determining efficiently whether a given path forms the con-
tour of a discrete figure. This is achieved by using a radix tree structure
over a quadtree, where nodes are the visited grid points, enriched with
neighborhood links that are essential for obtaining linearity.

Keywords: Freeman code, lattice paths, self-intersection, radix tree,
discrete figures, data structure.

1 Introduction

Many problems in discrete geometry involve the analysis of the contour of dis-
crete sets. A convenient way to represent them is to use the well-known Freeman
chain code [1,2] which encodes the contour by a word w on the four letter al-
phabet Σ = {a, b, a, b}, corresponding to the unit displacements in the four
directions (right, up, left, down) on a square grid. Among the many problems
that have been considered in the literature, we mention : computations of statis-
tics such as area, moment of inertia [3,4], digital convexity [5,6,7], and tiling
of the plane by translation [8,9]. All of these problems are solved by using al-
gorithms shown to be linear in the length of the contour word, but often it is
assumed that the path encoded by this word does not intersect itself. While it
is easy to check that a word encodes a closed path (by checking that the word
contains as many a as a, and as many b as b), checking that it does not intersect
� With the support of NSERC (Canada).
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itself requires more work. The problem amounts to check if a grid point is visited
twice. Of course, one might easily provide an O(n log n) algorithm where sorting
is involved, or use hash tables providing a linear time algorithm on average but
not in worst case.

The goal of this paper is to remove this major drawback. Indeed, we provide a
linear time and space algorithm in the worst case checking if a path encoded by a
word visits any of the grid points twice. Section 2 provides the basic definitions
and notation used in this paper. It also contains the description of the data
structures used in our algorithm: it is based on a quadtree structure [10], used in
a novel way for describing points in the plane, combined with a radix tree (see
for instance [11]) structure for the labels. In Section 3 the algorithm is described
in details. The time and space complexity of the algorithm is carried out in
Section 4, followed by a discussion on complexity issues, with respect to the size
of numbers and bit operations involved. Finally a list of possible applications is
provided showing its usefulness.

2 Preliminaries

A word w is a finite sequence of letters w1w2 · · ·wn on a finite alphabet Σ, that
is a function w : [1..n] −→ Σ, and |w| = n is its length. Therefore the ith letter of
a word w is denoted wi, and sometimes w[i] when we emphasize the algorithmic
point of view. The empty word is denoted ε. The set of words of length n is
denoted Σn, that of length at most n is Σ≤n, and the set of all finite words
is Σ∗, the free monoid on Σ. Similarly, the number of occurrences of the letter
α ∈ Σ, is denoted |w|α. From now on, the alphabet is fixed to Σ = {a, b, a, b}. To
any word w ∈ Σ∗ is associated a vector −→w by the morphism −→ : Σ∗ −→ Z× Z

defined on the elementary translation −→ε = (ε1, ε2) corresponding to each letter
ε ∈ Σ:

−→a = (1, 0),
−→
a = (−1, 0),

−→
b = (0, 1),

−→
b = (0,−1),

and such that −−→u · v = −→u +−→v . For sake of simplicity we often use the notation u

for vectors −→u .
The set of elementary translations allows to

a
a

b

a a a b

b

b

a a

Fig. 1. Path encoded by the
word w = aaababbaaba

draw each word as a 4-connected path in the
plane starting from the origin, going right for a
letter a, left for a letter a, up for a letter b and
down for a letter b. This coding proved to be very
convenient for encoding the boundary of discrete
sets and is well known in discrete geometry as
the Freeman chain code [1,2]. It has been exten-
sively used in many applications and allowed the design of elegant and efficient
algorithms for describing geometric properties.
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level 0

level 1

level 2

level 3

Fig. 2. Partition of N× N

The underlying principle of our al-
gorithm is to build a graph whose
nodes represent points of the plane.
For that purpose, the plane is parti-
tioned as in Fig. 2, where the point
(2, 1) is outlined with its four sons
(solid arrows) and its four neigh-
bors (dashed arrows). The sons of a
node are grouped in grey zones, while
dashed lines separate the levels of
the tree. Each node has two possible
states : visited or not visited. New nodes are created while reading the word
w = w1w2 · · ·wn from left to right. For each letter wi, the node corresponding
to the point

−−−−→
w[1..i] is written as visited and of course, if at some point a node is

visited twice then the path is not self-avoiding and the algorithm stops. During
the process is built a graph G = (N, R, T ) where N is a set of nodes associated
to points of the plane, R and T are two distincts sets of oriented edges. The
edges in R give a quadtree structure on the nodes while the edges in T are links
from each node to its neighbors, for which we give a precise definition.
Definition 1. Given a point (x, y) ∈ Z

2, we say that (x′, y′) is a neighbor of
(x, y) if there exists ε ∈ Σ such that (x′, y′) = (x, y) + ε = (x + ε1, y + ε2).
When we want to discriminate the neighbors of a given point (x, y), for each
ε ∈ Σ, we say that (x′, y′) is an ε-neighbor of (x, y) if (x′, y′) = (x, y) + ε.

2.1 Data Structure

First, we assume that the path is coded by a word w starting at the origin (0, 0),
and stays in the first quadrant N × N. This means that the coordinates of all
points are nonnegative. Subsequently, this solution is modified in order to remove
this assumption. Note that in N×N, each point has exactly four neighbors with
the exception of the origin (0, 0) which admits only two neighbors, namely (0, 1)
and (1, 0), and the points on the half lines (x, 0) and (0, y) with x, y ≥ 1 which
admit only three neighbors (see Fig. 2).

Let B = {0, 1} be the base for writing integers. Words in B
∗ are conveniently

represented in the radix order by a complete binary tree (see for instance [11,12]),
where the level k contains all the binary words of length k, and the order is given
by the breadth-first traversal of the tree. To distinguish a natural number x ∈ N

from its representation we write x ∈ B
∗. The edges are defined inductively by

the rewriting rule x −→ x · 0 + x · 1, with the convention that 0 and 1 are the
labels of, respectively, the left and right edges of the node having value x . This
representation is extended to B

∗ × B
∗ as follows.

A quadtree with a radix tree structure for points in the integer plane. As usual,
the concatenation is extended to the cartesian product of words by setting for
(x ,y) ∈ B

∗ × B
∗, and (α, β) ∈ B× B

(x ,y) · (α, β) = (x · α,y · β).
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Let x and y be two binary words having same length. Then the rule

(x ,y) −→ (x · 0,y · 0) + (x · 0,y · 1) + (x · 1,y · 0) + (x · 1,y · 1) (1)

defines a G′ = (N, R), sub-graph of G = (N, R, T ), such that :

(i) the root is labeled (0, 0);
(ii) each node (except the root) has four sons;
(iii) if a node is labeled (x ,y) then |x | = |y |;
(iv) edges are undirected, e.g. may be followed in both directions.

By convention, edges leading to the sons are labeled by pairs from the ordered
set {(0, 0), (0, 1), (1, 0), (1, 1)}. These labels equip the quadtree with a radix tree
structure for Equation (1) implies that (x′, y′) is a son of (x, y), if and only if

(x′, y′) = (2x + α, 2y + β),

for some (α, β) ∈ B× B. Observe that any pair (x, y) of nonnegative integers is
represented exactly once in this tree. Indeed, if |x | = |y | (by filling with zeros
at the left of the shortest one), the sequence of pairs of digits (the two digits in
first place, the two digits in second place, and so on) gives the unique path in
the tree leading to this pair. Of course the root may have up to three sons since
no edge labeled (0, 0) starts from the root.

Neighboring links. We superpose

a

b a

b

4,2

2,2

5,3

3,1

1,1

5,2

0,0

4,3

1,0

(1,1)

(0,1)

2,1

(0,1)

(1,0)(0,0)

(0,1)

(1,0)

(1,0)

(1,1)(1,0)

(0,0)

(1,1)

(0,1)(1,1) (0,0)

2,0

Fig. 3. The point (2, 1) with its neighbors

on G′ the neighboring relation
given by the edges of T (dashed
lines). More precisely, for each
elementary translation ε ∈ Σ,
each node z© = (x, y) is linked
to its ε-neighbor z©+ε, when it
exists. If a level k is fixed (see
Fig. 2), it is easy to construct
the graph

G(k) = (N (k), R(k), T (k))

such that

(i) if (x ,y) ∈ N (k), then |x | = |y | = k;
(ii) the functions N (k) ↪→ N× N ↪→ B

∗ × B
∗ are injective;

(iii) R(k) is the radix-tree representation : (B<k×B
<k)×(B×B) •−→ B

≤k×B
≤k;

(iv) the neighboring relation is T (k) ⊆ N × (B× B)×N .

Note that the labeling in Fig. 3 is superfluous: each node represents indeed an
integer unambiguously determined by the path from the root using edges in R;
similarly for the ordered edges. Moreover, if a given subset M ⊂ N×N has to be
represented, then one may trim the unnecessary nodes so that the corresponding
graph GM is not necessarily complete.
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3 The Algorithm

Adding 1 to an integer x ∈ B
k is easily performed by a sequential function.

Indeed, every positive integer can be written x = u1i0j, where i ≥ 1, j ≥ 0,
with u ∈ {ε} ∪ {

B
k−i−j−1 · 0}

. In other words, 1j is the last run of 1’s. The
piece of code for adding 1 to an integer written in base 2 is

1 : If j 	= 0 then Return u1i0j−11;
2 : else If u = ε then Return 1 · 0i;
3 : else Return u · 0−1 · 1 · 0i;
4 : end if
5 : end if

where 0−1 means to erase a 0. Clearly, the computation time of this algorithm
is proportional to the length of the last run of 1’s. Much better is achieved with
the radix tree structure, where, given a node z©, its father is denoted f( z©), and
we write f(x, y) or f(x ,y) if its label is (x, y). The following technical lemma is
a direct adaptation to B

∗ × B
∗ of the addition above.

Lemma 1. Let G(k) be the complete graph representing B
≤k × B

≤k for some
k ≥ 1, ε ∈ Σ, and z© = (x , y) be a node of Nk. If one of the four conditions
holds:

(i) ε = a and x [k] = 0, (ii) ε = a and x [k] = 1,

(iii) ε = b and y [k] = 0, (iv) ε = b and y [k] = 1,

then f( z©) = f ( z©+ ε). Otherwise, f( z©) + ε = f( z©+ ε).

The process is illustrated for

10111,01011 11000,01011

...

1011,0101

10110,01011

1100,0101

a a

a

(0,1)

(1,1) (0,1)

(1,1) (0,1)

case (i) in the diagram on
the right where the nodes

(10110, •) and (10111, •)
share the same father while
fathers of neighboring nodes

(•, 01011) and (•, 01011)
are distinct but share the same neighboring relation.
Now, assume that the node (x ,y) exists and that its neighbor (x+1, y+0) does
not. If |x | = |y | = k, then the translation (x, y)+(1, 0) is obtained in three steps
by the following rules:

1. take the edge in R to f(x ,y) = (x [1..k − 1],y [1..k − 1]);
2. take (or create) the edge in T from f(x ,y) to z© = f(x ,y) + (1, 0);
3. take (or create) the edge in R from z© to z© · (0,y [k]).

By Lemma 1, we have z© · (0,y [k]) = (x + 1, y + 0), so that it remains to add
the neighboring link (x ,y) a��� (x + 1, y + 0). Then, a nonempty word w ∈ Σn

is sequentially processed to build the graph Gw, and we illustrate the algorithm
on the input word w = aabb.
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0,1

b aa

1,0 Current node

0,0

b

T

R

Edges in

Visited

Non−visited

Edges in 

(1,0)(0,1)

Fig. 4. Initial graph Gε

• Initialization: the algorithm starts
with the graph containing only the
node (0, 0) marked as visited. For
convenience, the non-visited nodes
(0, 1), (1, 0), and the links from (0, 0)
to its neighbors are also added. This
is justified by the fact that the algo-
rithm applies to nonempty words.

Since (0, 0) is an ancestor of all
nodes, this ensures that every node
has an ancestor linked with its neighbors. The current node is set to (0, 0) and
this graph is called the initial graph Gε.

• Read w1 = a: this corresponds to the trans-

b ab a

0,0

1,00,1

(0,1) (1,0)

Fig. 5. Graph Ga

lation (0, 0) + (1, 0). A neighboring link labeled
a starting from (0, 0) and leading to the node
(1, 0) does exist, so the only thing to do is to fol-
low this link and mark the node (1, 0) as visited.
The current node is now set to (1, 0), and this
new graph is called Ga.

• Read w2 = a: this time, there is no edge in Ga

b

a

b a a

0,0

1,00,1

2,0

(1,0)(0,1)

(0,0)

Fig. 6. Graph Gaa

labeled a starting from (1, 0). Using the trans-
lation rules above, we perform:

(1) go back to the father f(1, 0) = (0, 0);
(2) follow the link a to (1, 0);
(3) add node (2, 0) ∼ (1, 0) · (0, 0) = (10, 00).

Then an edge from (1, 0) to (2, 0) with label a
is added to T . Finally the node (2, 0) is marked
as visited, and becomes the current node.

• Read w3 = b: this amounts to perform the

b

a

b

b a a

0,0

0,1

2,0

1,0

2,1

(0,1)(0,0)

(1,0)(0,1)

Fig. 7. Graph Gaab

translation (2, 0)+(0, 1). Since the edge to f(2, 0)
is labeled by (0, 0), we know that the second co-
ordinate of the current node (2, 0) is even. There-
fore, (2, 1) and (2, 0) must be siblings, that is
f((2, 0) + (0, 1)) = f((2, 0)). What we need to
do then is :
(1) go back to the father f(2, 0) = (1, 0);
(2) follow the edge b if it exists;

Since it is does not exist, it must be created to
reach the node (2, 1) ∼ (10, 01) = (1, 0) · (0, 1).
Again an edge from (2, 0) to (2, 1) with label b is added, (2, 1) is marked as
visited and is now the current node.
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• Read w4 = b: since f((2, 1)) has no neighboring link labeled by b, recursion is
used to find (or build if necessary) the node corresponding

a
b

b

a

b

b ab

0,0

2,0

1,0 1,11,1

2,2

0,1

2,1

(1,0)

(0,0) (0,1) (0,0)

(0,1) (1,1)

Fig. 8. Graph Gaabb

to its translation by b. This leads
to the creation of the node (1, 1) ∼
(0, 0) · (1, 1) marked as non-visited.
Then, the node (2, 2) ∼ (1, 1) · (0, 0)
is added, marked as visited, and be-
comes the current node. Note that a
neighboring links between (1, 0) and
(1, 1), (2, 1) and (2, 2) are added to
avoid eventual searches.

The algorithm readWord sequen-
tially reads w ∈ Σ∗, builds dy-
namically the graph Gw marking the
corresponding node as visited, and determines if the path coded by w is self-
intersecting, i.e. if some node is visited at least twice.

Algorithm 1 (readWord)
Input: w ∈ {a, b, a, b}∗
0 : G ← Gε; c©← root of G;
1 : For i from 1 to |w| do
2 : ε← wi;
3 : z©← findNeighbor(G, c©, ε);
4 : If z© is visited then
5 : w is self-intersecting.
6 : end if
7 : Mark z© as visited ;
8 : c©← z©;
9 : end for

10 : w is not self-intersecting.

Algorithm 2 (findNeighbor)
Input: G = (N, R, T ); c© ∈ N ;

ε ∈ {a, b, a, b};
1 : If the link c© ε��� z© does not exist then
2 : p©← f( c©)
3 : If f( c©+ ε) = f( c©) then
4 : r©← p©;
5 : else
6 : r©← findNeighbor(G, p©, ε);
7 : end if
8 : z©← son of r© corresponding to c©+ε;
9 : Add the neighboring link c© ε��� z©.

10 : end if
11 : return z©;

The algorithm findNeighbor finds, and creates if necessary, the ε-neighbor
of a given node. Thanks to Lemma 1, testing the condition on line 3 is performed
in constant time. At line 8, if the node z© does not exist, it is created. Clearly,
the time complexity of this algorithm is entirely determined by the recursive call
on line 6 since all other operations are performed in constant time. Finally, note
that after each call to findNeighbor on line 3 of readWord, there always exist
a neighboring link c© ε��� z©.

4 Complexity Analysis

The key for analyzing the complexity of this algorithm rests on the fact that
each recursive call of Algorithm 2 requires the addition of a neighboring link.
This implies that given a node z© ∈ N , when all the neighboring links have
been added, there will never be another recursive call on z©. Since a node has
at most 4 sons and each of these sons has at most 2 neighbors not sharing the
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same father, the number of recursive calls on a single node is bounded by 8. It
remains to show that the number of nodes in the graph is proportional to |w|.

First, consider the visited nodes. For each letter read, exactly one node is
marked as visited, so that their number is |w|. In order to bound the number of
non-visited nodes, we need a technical lemma. Recall that the father function
f : N \ {(0, 0)} −→ N extends to subset of nodes in the usual way: for M ⊆ N ,
the fathers of M are f(M) = {f( s©) | s© ∈ M}. Moreover, f can be iterated to
get fh(M), the ancestors of rank h of a subset M . Clearly, f is a contraction
since |f(M)| ≤ |M |, and there is a unique ancestor of all nodes, namely the root.

Lemma 2. Let M = {n1, n2, n3, n4, n5} ⊂ N a set of five nodes such that
(ni, ni+1) ∈ T for i = 1, 2, 3, 4, then, |f(M)| ≤ 4.

Proof. As shown in Fig. 2, the nodes sharing the same father split the plane in
2× 2 squares. As a consequence, at least two of the nodes n1, n2, n3, n4, n5 must
share the same father, providing the bound |f(M)| ≤ 4.

This allows to bound the number of nodes using the fact that all non- visited
nodes are ancestors of visited ones: the only exceptionis the initialisation step
where the non-visited nodes (0, 1) and (1, 0) are created as leaves.

Lemma 3. Given a word w ∈ Σn and the graph Gw = (N, R, T ), the number of
nodes in N is in O(n).

Proof. Let Nv ⊆ N be the set of visited nodes, and h be the height of the tree
(N, R). It is clear that N =

⋃
0≤i≤h f i(Nv), and so

|N | ≤
∑

0≤i≤h

|f i(Nv)|. (2)

By construction, the set Nv forms a sequence of nodes such that two consecutive
ones are neighbors since they correspond to the path coded by w. Thus, by
splitting this sequence of nodes in blocks of length 5, the previous lemma applies,
and we have

|f(Nv)| ≤ 4
⌈ |Nv|

5

⌉
≤ 4

5
(|Nv|+ 4). (3)

By Lemma 1, two neighboring nodes either share the same father or have different
fathers that are neighbors, so it is for the sets f(Nv), f2(Nv), . . . , fh(Nv). So,
by combining inequations (2) and (3), the following bound is obtained

|N | ≤
∑

0≤i≤h

∣∣f i(Nv)
∣∣ ≤

∑

0≤i≤h

⎛

⎝
(

4
5

)i

|Nv|+
∑

0≤j≤i

(
4
5

)j

4

⎞

⎠

≤ |Nv|
(

1
1− 4

5

)
+ 4

∑

0≤i≤h

(
1

1− 4
5

)
≤ 5|Nv|+ 20h.

Since the height h of the tree (N, R) corresponds to the number of bits needed
to write the coordinates of the nodes in N , h ∈ O(log n) and thus |N | ∈ O(n).
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Note that the linearity constant obtained here is very large. Indeed, our goal here
is to prove the linearity of the global algorithm, and not to provide a tight bound.
With a more detailed analysis, the bound |N | ≤ 3|Nv|+ 6h can be obtained for
the number of nodes [13].

Theorem 1. Given a word w ∈ Σn, determining if the path coded by w inter-
sects itself is decidable in O(n).

Proof. Lemma 3 implies that if the path w starts at (0, 0) and stays in the first
quadrant, then determining whether w intersects itself or no is decidable in linear
time. All that is needed to adapt this solution to any word w ∈ Σ∗ is to use four
graphs GI,GII,GIII,GIV simultaneously.

I
I

III

II

IV

II

III IV

The cohesion between these graphs is ensured by special nodes, those representing
points on axes. Since a point on an axis, distinct from the origin, is in exactly
two quadrants, an additionnal link between the two nodes representing this point
is added. These two nodes are equivalent since they represent the same point.
The axis on which this point is located must also be stored in order to identify
the quadrant in which the path enters. Switching from one graph to another is
achieved with the following rules:

(II) a↔ a; (III) a↔ a, b↔ b; (IV) b↔ b.

This allows the processing of all coordinates as positive integers since their sign is
determined by the quadrant. Consequently, each time a special node is created,
its equivalent one is also created in the appropriate graph using the link between
their fathers.

Performance issues and comparison. Among the many ways of solving the inter-
section problem, the naive sparse matrix representation that requires an O(n2)
space and initialization time is eliminated in the first round. When efficiency is
concerned, there are two well-known approaches for solving it: one may store the
coordinates of the visited points and sort them, then check if two consecutive
sets of coordinates are equal or not (we call this sorting algorithm). One may
also store the sets of coordinates in an AVL-tree and check for each new set
of coordinates if it is already present or not (the AVL algorithm). Let us first
assume that the path w ∈ Σn is not self intersecting. Then the length of the
largest coordinate is O(log n). But the largest coordinate is also Ω(log n) be-
cause if the path is not self intersecting, the minimum coordinates are obtained
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when the points remain in a square centered on (0, 0) with
√

n side length. Since
log(
√

n) = 1
2 log n the largest coordinate is also Ω(log n). Thus the storage of

the largest coordinate is in Θ(log n) and the whole storage costs Θ(n log n).
Sorting n ordered pairs can be done in Θ(n log n) swaps or comparisons. But

each swap or comparison costs Θ(log n) clock ticks. Then the whole computation
time is Θ(n log2(n)). In our algorithm, the storage cost and computation time are
both Θ(k) where k is the index of the second occurrence of the point appearing
at least twice in the path or the path length if it is not self intersecting. Unlike
the sorting algorithm, there is no need to store the whole path: the computation
is performed dynamically. With our algorithm, storing the necessary data costs,
both on average and in worst case, O(k) if k can be stored in a machine word
and O(k log k) otherwise. Similarly for the time complexity. We summarize :

Algorithm Unified Cost RAM model General Case
Time Space Time Space

Sorting n log n n n log2 n n log n

AVL tree k log k k k log2 k k log k
Our k k k log k k log k

Consider the simpler problem of checking if a path is closed, that is if for each
ε ∈ Σ we have |w|ε = |w|ε̄. The cost of storing the number |w|ε of occurrences of
each elementary step is in O(1) if each of these numbers can be stored in a single
machine word, or in O(log(nε)) otherwise. Increasing or decreasing the number
|w|ε by 1 costs O(1) on average in both cases, and at worst O(1) for the first
case and O(log n) otherwise. The total time is hence O(n) in the first case and
O(n log n) otherwise.

There are other ways to deal with paths having negative coordinates. Indeed,
since the property of being self intersecting or not is invariant by translation, it
suffices to translate the path conveniently. This can be achieved by making one
pass on the word w to determine the starting node s© as follows:
(a) s©← (n, n), where n = |w|;
(b) s©← (x, y) where x and y are determined from the extremal values.

In both cases it takes O(n) for reading the word, O(log n) time and space to
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represent s©. Then the path is encoded in the radix-tree starting from s©. In our
solution, we avoid the linear preprocessing for determining these values.

Numerical results. Our algorithms were implemented in C++ and tested on
numerous examples.The results
achieved for instance with wn =

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60  70

Visited nodes
Non-visited nodes

anbn reveal a smaller linearity
constant than the constant pro-
vided in the proof of Lemma 3,
and confirmed their efficiency.

The radix-tree built for each
word corresponds, as shown in
Fig. 2, to points in the discrete
plane N×N. We provide on the
right an illustration of the nodes
involved in the radix-tree in the
case of the word

w = a30b60a40b
11

a30ba15b
10

.

5 Concluding Remarks

The first advantage of our algorithm is that ordering of edges can be used for
avoiding labeling of both nodes and edges. Moreover, the neighboring relation T
as presented is not implemented in its symmetric form. It could be easily done
since each time a neighboring link c© ε��� z© is added at line 9 of Algorithm 2,
we can add its symmetric link z© ε̄��� c© at constant cost. This does not change
the overall complexity, and further analysis is required for determining if it is
worthwhile. On the other hand, our algorithm is useful for solving a series of
related problems in discrete geometry.
Determining if a path w crosses itself. When a node is visited twice, deciding
whether the path crosses itself or not amounts to check local conditions, describ-
ing all the possible configurations (See [8] Section 4.1).
Determining if w ∈ Σn is the Freeman chain code of a discrete figure. It suffices
to check that the last visited node is the starting one. This does not penalize
the linear algorithms for determining, for instance, if a discrete figure is digitally
convex [7], or if it tiles the plane by translation [8]. In the case of a self inter-
secting path, it also allows the decomposition of a discrete figure in elementary
components, not necessarily disjoint.
Node multiplicity. By replacing the “visited/unvisited” labeling of nodes with a
counter (set to 0 when a node is created), the number of times a node is visited
is computed by replacing the lines 4, 5, 6 and 7 in Algorithm 1 by the incremen-
tation of this counter. Then, the obsolete line 10 must be removed.
Intersection of distinct paths. Given two distinct paths u and v of length bounded
by n = max{|u|, |v|}, with starting nodes s© and r© respectively, their
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intersection is computed by constructing first the graph Gu, inserting the node
r© in Gu, and constructing Gu,v = Gu + Gv. Again the overall algorithm remains
in O(n). As a byproduct of this construction, given two nonintersecting closed
paths u and v, it is decidable whether the interior of u is included in the interior
of v; and consequently one may compute the exterior envelope of discrete figures.

Paths in higher dimension. The graph construction extends naturally to arbi-
trary d-tuples in B

∗×· · ·×B
∗, for representing numbers in N

d. Therefore, all the
problems cited above can be treated in a similar way, by processing sequentially
words on an alphabet Σd = {ε1, ε̄1, . . . εd, ε̄d}, of size 2d. In the multidimen-
sional case the trees used are no longer quadtrees but higher order trees, and in
particular octrees for the 3-dimensional case.

All of these problems can be solved in linear time and space complexity.
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